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Abstract

We study the impact of service time distributions on the distribution of the maximum queue
length during a busy period for the M*/G/1 queue. The maximum queue length is an
important random variable to understand when designing the buffer size for finite-buffer
(M/G/1/n) systems. We show the somewhat surprising result that, for three variations
of the preemptive last-come—first-served discipline, the maximum queue length during a
busy period is smaller when service times are more variable (in the convex sense).
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1. Introduction

An important design issue for telecommunications systems and other applications is deter-
mining the buffer size when buffers are finite. We can better understand the effect of a particular
buffer size by understanding the distribution of the maximum queue length during a busy period
in an infinite buffer system. We give a characterization of the busy-period maximum queue
length, M, for the MX/G/1 queue for three types of preemptive last-come—first-served (LCFS)
discipline:

(1) LCFS-p-resume disciplines, in which preempted services are resumed when service
recommences;

(i) LCFS-p-repeat disciplines with resampling, in which preempted services must be
restarted from scratch when service recommences and a new service time is chosen
from the service time distribution;

(iii) LCFS-p-repeat disciplines without resampling, in which preempted services must be
restarted from scratch when service recommences, but the total service requirement for
a given customer is the same each time it restarts its service.
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These characterizations of M for each of the queueing disciplines allow us to show the effects
of service time distribution on M, as stated in (a)—(c) below. For a fixed service discipline, let
M and M’ be the maximum number of customers during a busy period in two MX/G/1 queues
with respective generic service times S and S’, and with the same arrival rate A and the same
batch size distribution. We assume that the distributions of S and S’ are such that the queues are
stable. In this paper, we show that the following relations hold; the definitions of the various
stochastic orders can be found in the next section.

(a) Under the LCFS-p-resume discipline, if §" <y § then M’ <y M.

(b) Under the LCFS-p-repeat discipline with resampling, if E(e™*%') > E(e™*5) then
M <y M.

(¢) Under the LCFS-p-repeat discipline without resampling, if S’ <jcy S then M’ <y M.

A consequence of our results is the somewhat surprising conclusion that M will be stochas-
tically smaller when service times are more variable (in the convex sense) under the preemptive
LCEFS disciplines. Miyazawa (1990) and Miyazawa and Shanthikumar (1991) showed that
for the finite-buffer MX/G/1/n queue under a nonpreemptive discipline, the loss rate, i.e. the
probability that a random customer is lost, will be larger when service times are more variable
in the convex sense. Our result relates to the loss rate, but the effect goes in the other direction.
That is, we find that for preemptive LCFS disciplines, P(M > n) is smaller when service times
are larger in the convex sense, where P(M > n) can be interpreted as the probability of at least
one loss occurring during a busy period in the MX/G/1/n queue; see also Chang et al. (1991).

For other results on the impact of the service time and batch size distributions on various
performance measures of queueing systems, see, for example, Hordijk (2001), Makowski
(1994), Shanthikumar and Yao (1994), and the references therein. For other applications of the
preempt—repeat service discipline, see, for example, Adiri ez al. (1991), Birge et al. (1990), and
Cai et al. (2004), (2005).

The paper is organized as follows. First, in the next section, we recall some definitions of
stochastic ordering. We then study M for each of the preemptive LCFS disciplines, providing
some numerical illustrations of our results.

2. Preliminaries

Recall the following stochastic ordering relations for random variables X and Y.

Definition 2.1. X is larger than Y in the stochastic sense, i.e. X >4 Y, if E(¢ (X)) > E(¢(Y))

for all increasing functions ¢ for which the expectations exist.
Equivalently, X > Y if and only if P(X > #) > P(Y > ¢) for all 7.

Definition 2.2. X is larger than Y in the convex sense, i.e. X >¢ Y, if E(¢(X)) > E(¢(Y))
for all convex functions ¢ for which the expectations exist.

Note that X >.x Y implies E(X) = E(Y) and var(X) > var(Y). In this sense, the convex
ordering is an ordering of variability in random variables.

Definition 2.3. X is larger than Y in the increasing-concave sense, i.e. X >jcy Y, if E(¢ (X)) >
E(¢(Y)) for all increasing concave functions ¢ for which the expectations exist.

Definition 2.4. X is larger than Y in the Laplace transform sense, i.e. X >y Y, if E(e %) <
E(e™%Y) for all & > 0 for which the expectations exist.
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Note that X > Y implies X <jcy Y, which in turn implies X <pr Y.
Finally, for reasons of brevity we use the following notation. When we say that X =
(Y| Z=2),wemeanthat P(X = x) =P(Y = x | Z = z) for all x.

3. Preemptive LCFS disciplines

3.1. LCFS preempt-resume discipline

We first consider the M*/G/1 queue with the LCFS preempt—resume (LCFS-p-resume)
discipline. That is, the customer who has been in the system the least amount of time is always
served, and newly arriving customers preempt earlier arrivals already in service. Within a batch,
customers are arbitrarily labeled, so that we may think of them as arriving sequentially, though
immediately after each other. Thus, one customer in a newly arriving batch will be considered
the most recent arrival and will immediately enter service, and the rest of the batch cannot be
served until that customer, as well as all customers arriving in later batches that preempt that
customer, have been served.

Customers who resume service after being preempted restart their service where they left
off. Hence, a random service with service time S that is preempted when 7 units of service have
already been received has remaining service time (S —¢ | S > 7). We also assume that service
is nonidling. Let T be a generic interarrival time, where T has an exponential distribution with
rate A, and let X be a generic batch size with arbitrary distribution and mean p. We assume
that the queue is stable, i.e. A E(S) < 1.

Let customer O be the last customer in the first batch in the busy period, i.e. the first customer
to enter service, and let S be the service time of customer 0. Let N = N(Sp) be the number
of Poisson batch arrival times that occur during the service of customer 0, and let N(s) =
(N(So) | So = s). Note that the service will be interrupted if N (Sp) > 0. Let X be the number
of customers in the first batch of the busy period and define M (k,n) = (M | Xo =k, N =n)
and M (k) = (M | Xo = k), meaning that M (Xo, N) = M = M(Xg). LetM;, i =1,2,...,
be independent, identically distributed copies of M, and define max;~;, ., M; tobe Oifn = 0.
For the LCFS-p-resume discipline, we then have the following characterization of M (k, n).
The symbol ‘2’ stands for equality in distribution.

Lemma 3.1. The maximum queue length M (k, n) for the MX/G/1 queue under the LCFS-p-
resume discipline satisfies

M(k,n)émax{_max M,-+k,M(k—1)}, k>1,n>0,

i=1,...,n

where M(0) =0and M;, i = 1,2, ..., and M (k — 1) are independent.

Proof. We can think of constructing the busy period, conditional on having Xo = k, So = s,
and N (s) = n, as follows. Denote the arrival epochs, on a clock that only ticks when customer O
is being served, by 0 < #; < -+ < t, < 5. A batch of customers arrives at time #; and starts
a new independent busy period (and stops our clock temporarily), except that there are k other
customers in the queue (the original customers) throughout that busy period. When this first
sub-busy period is over, at time #] + 7 say, customer O returns to service and our clock resumes
ticking. Another batch arrives at time #, + t, starting a new independent busy period, and
so on, until the n sub-busy periods have been completed and the original service time s has
elapsed. A new busy period then starts, serving one of the other k — 1 customers that arrived in
the first batch. The maximum queue length during this busy period has the same distribution
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as M(k — 1). Because the arrival process is memoryless, this construction is stochastically
equivalent to the dynamics of a generic MX/G/1 busy period starting with k customers.

Let P(k,b) = P(M(k) < b) and P(b) = P(M < b) = E(P(Xyp, b)). Then P(0,b) = 1
and P(0) = 0. Using the fact that E(P(b — k)™N) is the z-transform, or probability-generating
function of N evaluated at z = P(b — k), we have, from Lemma 3.1,

P(k,b) =EPM +k <b)M)P(k — 1, b)
=EP®B-b")Pk—-1,b)
= E(e PGSy px — 1, p), 1<k<b.

Corollary 3.1. For b and k such that b > k > 1, we have

k
P(k,b) = [ [E*!-FE=DS),

i=1

If we restrict ourselves to unit batch sizes only, meaning that X = 1 and P(b) = P(1, b),
we have the following corollary.

Corollary 3.2. If X = 1 then, for b > 1, we have P(b) = E(e *(1-P(=1)S5),
We can now see how the distribution of S affects M.

Theorem 3.1. For MX/G/1 queues operating under the LCFS-p-resume discipline, if ' <i S
then M' <y M. In particular, if S’ >cx S then M' <4 M.

Proof. Toshow that M’ <y M, we show that P(k, b) < P’(k, b) (with the obvious definition
for P’) for all k and b, by induction on k and 5. We have P(0,b) = 1 = P’(0, b) for each b,
and P(k,1) =0 = P’(k, 1) for k > 1. Furthermore, since S’ <i1 S, we have

P(1,1) =P(S < T) = E(e*5) <E@e ™) = P'(1, 1).

Suppose that P(i,a) < P’(i,a) fora < b and all i > 0, meaning that P(a) < P’(a) for all
a < b, and suppose that P(i, b) < P'(i,b) forall 0 < i < k. Now consider P(k, b). From
Corollary 3.1, the induction hypothesis, and the assumption that § < S, it follows that

k
P(k.b) = HE(C—A(I—P(b—i))S)
i=1

e HI=P/(b=D)S)

IA

IA

[TEC

i=1
nE(e—k(l—P’(b—i))S’)
i=1

k
k
P'(k, b).

This completes the proof.

This theorem is illustrated in Figures 1, 2, and 3 for three convex-ordered families of
distribution (namely uniform, Pareto, and hyperexponential distributions). In each figure, we
plot P(M < n), calculated using Corollary 3.2, against n.

https://doi.org/10.1239/jap/1127322037 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1127322037

Service time variability 887

104
08} AR
06f x°

041

02r

0.0 - : :
0 5 10 15 20

FIGURE 1: A plot of P(M < n) against n for uniform service time distributions uniform(0.9, 1.1) (+) and
uniform(0, 2) (x), with E(S) = 1. We have set A = 0.9.
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FIGURE 2: A plotof P(M < n) against n for Pareto(«) service time distributions with distribution function

Fy(x) =1 — (¢ — )/(@x))*, x > (¢ — 1)/a (meaning that E(S) = 1). We have used « = 1.5 (+4),
o =2 (x),and o = 10 (), and have set A = 0.95.
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FIGURE 3: A plot of P(M < n) against n for hyperexponential(k) service time distributions with
P(S=X)=1-2%=1-P(S = X»), where X; and X are exponentially distributed with means

1/2(1 — 2%y and 2% /2, respectively (meaning that E(S) = 1). We have used k = 1 (+), k = 3 (x), and
k = 10 (), and have set A = 0.95.
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Remark 3.1. It is well known (Kelly (1979)) that the M/G/1 queue under the LCFS-p-resume
discipline exhibits service time insensitivity in the sense that the marginal distribution of the
number in the stationary system, L, depends on the service time distribution only through its
mean. At first this seems at odds with our results, but we must bear in mind that the maximum
number in the system during a busy period depends on the sample path evolution of the queue
length over a busy period. Hence, the behavior of M and L may be very different. This idea is
further illustrated in the following heuristic example.

Example 3.1. Let M be the maximum number in an M/G/1 LCFS-p-resume queue with S = 1
(call this system I) and let M’ be the corresponding maximum when the first service time in
a busy period, §’, is equally likely to be ¢ or 2 — ¢, meaning that § <. S, and the other
service times in the busy period are identically equal to 1 (call this system II). Then, for & very
small, the first busy period in system II is equally likely to be very short and have a maximum
of 1, or to consist essentially of two busy periods, each evolving as a busy period of system I.
The second of these busy periods starts when the initial customer has received 1 — %8 units of
service. That is, roughly speaking, M’ is equally likely to be 1 or to have the same distribution
as max{My, M,}, meaning that M" %4 M. Note, however, that L and L’ have roughly the same
distribution. Indeed, P(L = 0) = P(L’ = 0), since the workload is the same in both systems.
Furthermore, a random arrival during a busy period in system II will either see a customer with
S’ = ¢ in service, with very small probability, or will arrive during one of the two busy periods
that each evolve as in system I. Finally, note that the distribution of the length of a busy period
does depend on the distribution of S.

The M*/G/1/b LCFS-p-resume queue also exhibits insensitivity, i.e. the distribution of the
number in system, L, depends on the distribution of S only through its mean. Hence, the loss
rate in the MX/G/1/b queue, P(L, = b), is insensitive to the distribution of S. In contrast, our
result shows that the probability of at least one loss occurring during a busy period, P(M > b),
does depend on the distribution of S, and is greater when S is larger in the Laplace transform
sense.

3.2. LCFS preempt-repeat discipline with resampling

Now we suppose that when services are preempted they must be restarted from scratch. The
new service time is assumed to be an independent random variable with the same distribution.
We call this the LCFS-p-repeat discipline with resampling. Of course, the behavior of the queue
under the LCFS-p-resume and LCFS-p-repeat disciplines is the same when the service times
are exponential.

We use the same notation as in the previous subsection. Now, for stability, we need
ALE(S(S)) < 1 and AnE(Se(S")) < 1, where S¢(S) is the effective service time, i.e. the
total time a random customer must spend in service, including restarts due to interruptions.
Thus, E(Se(S)) = E(S AT) +P(S > T)E(Se(S)), where a A b = min{a, b}, and, hence,

E(SAT)

E(Se(S)) = PS<T)

3.1

For T exponentially distributed with rate A, it is not hard to show that

1 — E(e™*5)

BB = Z gy

and, hence, that we need E(e %) > w/(u + 1) for stability.
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For the MX/G/1 LCFS-p-repeat queue, we can identify the following embedded random
walk. The number in the system at arrival and departure epochs during a busy period is
equivalent to a random walk on the nonnegative integers with absorbing state 0. The random
walk starts at the random point X, decreases by 1 if T > § (a departure), and increases if
T < S (an arrival). When it increases, it increases by X, where X is independent of S and T'.
Thus, we have the following characterization of M, where I = 1if T < §, I = 0 otherwise,
and M(k) = (M | Xg = k).

Lemma 3.2. The maximum queue length, M (k), for the MX/G/1 queue under the LCFS-p-
repeat discipline satisfies

M) 2 IM(k+ X) + (1 — I) max{k, Mk — 1)},

where M(0) = 0; I, X, and M (k — 1) are mutually independent; and M (k + X) is independent
of I and M (k — 1).

Let I’ =1if T > S and let I’ = 0 otherwise. If P(T > §’) > P(T > S) then I’ > I.
From Lemma 3.2 and a coupling argument, it then follows that M’ <y M. Therefore, we have
the following theorem.

Theorem 3.2. For MX/G/1 queues operating under the LCFS-p-repeat discipline, if
E@e™%) = Be™)

then M' <4 M.

Note that for the LCFS-p-repeat discipline, we only need the Laplace transform of the service
time evaluated at (the arrival rate) A to be ordered for two service time distributions, rather than
a complete Laplace transform ordering. Thus, all possible distributions of service times can be
completely ordered and, hence, we have a complete stochastic ordering of the corresponding
maximum queue lengths. Of course, it is also true that §” > S implies S’ <pr S, which in
turn implies that E(e™*S") > E(e™*5).

3.3. LCFS preempt-repeat discipline without resampling

For our final model, we suppose again that when services are preempted they must be restarted
from scratch, but that the service time is now drawn from the service time distribution only
once. We call this the LCFS-p-repeat discipline without resampling. Note that the LCFS-p-
repeat disciplines with and without resampling are the same for deterministic service times. For
stability, we again need A E(Se(S)) < 1 and A E(Se(S”)) < 1, where S (S) is the effective
service time. Given that § = s, the service time is deterministic and the effective service time,
Se, is the same as in (3.1), that is

E(s/\T)_l—e—“_l[eM

EGe()15=9=5027) = T — 3

—1].

Hence, )
E(Se) = E(E(Se(S) | $)) = X[E(e”) —1]
and, for stability, we need E(e*s ) < (u+1)/p. If, for example, S is exponentially distributed

with mean v, then for stability we need v > A(u + 1). Note that this value is larger than for
the repeat discipline with resampling. Intuitively, a large value of the service time has a large
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probability of being interrupted and having to restart, and each time it does so it will again have
a large service time.

With Xo, So, and M defined as in the last subsection, and with 7 defined to be the first
interarrival time after the busy period starts, we now let M (k, s) = (M | Xo =k, So = s) and
Mk) =Mk,S) = (M | Xo=k). Let I(s) = 1if T} < s and let I (s) = 0 otherwise. We
have the following lemma.

Lemma 3.3. The maximum queue length, M (k, s), for the MX/G/1 queue under the LCFS-p-
repeat discipline without resampling satisfies

Mk, s) = I(s)max{M + k, M(k, s)} + (1 — I(s)) max{k, M (k — 1)},

where M(0) = 0and I1(s), M, M(k, s), and M (k — 1) are independent.

Proof. Giventhat Xo = k and So = s, if an arrival occurs before the first service completion,
anew (sub-)busy period starts, except that there are k additional customers in the queue. When
this sub-busy period ends, the original busy period starts again (independently of 77 and of M
for the sub-busy period just ended) with Xo = k and Sp = s. If the first service is completed
before an arrival, then we may consider the remainder of the busy period to be a new independent
busy period with £ — 1 initial customers.

Let P(k,b,s) =PM(k,s) <b), P(k,b) =P(M (k) <b) =E(P(k,b, Sy)), and P(b) =
P(M < b) = E(P(Xy, b, Sp)). We then have the following corollary to Lemma 3.3.

Corollary 3.3. For b and k such that b > k > 1, and for all s, we have

P(T >s5)P(k—1,b) e ™P(k—1,b)
1—P(T <s)Pb—k) 1—(1—e*Pb—k)'

P(k,b,s) =

Using this corollary, we can prove the following result.

Theorem 3.3. For MX/G/1 queues operating under the LCFS-p-repeat discipline without re-
sampling, if 8" <icy S then M’ <4 M. Hence, if S’ >cx S then M’ <y M.

Proof. From Corollary 3.3, for b and k such that b > k > 1, and s > 0, we have

Pk—1,b
Pk, b,s) = ( ) .
e —PMb—k)+ Pb—k)
It is easy to show that f(s) := a/(ce* + d) is a decreasing convex function of s for all

a,c,d > 0 such that c + d > 0 (meaning that — f(s) is increasing and concave). Hence, if
S <icy S then —E(f(8") < —E(f(S)) and E(f(S")) > E(f(S)). Also note that P (k, b, s)
isincreasing in P(k — 1, b) and P (b — k) for fixed s. The result now follows from an induction
argument similar to the one in the proof of Theorem 3.1.

4. Other queueing disciplines

We were unable to obtain results for other queueing disciplines, though we make the
following conjectures. By the foreground—background discipline (also known as ‘LAS’ or
‘LAST’ for ‘least attained service time first’) we mean the discipline that always serves the
customer who has so far received the least amount of service. Thus, like the LCFS preemptive
disciplines, new arrivals immediately preempt customers in service, but, once a new arrival
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attains as much service as other customers, the multiple customers with the least attained
service are served in a processor-sharing fashion. Note that for nonpreemptive disciplines,
such as the first-come—first-served and (nonpreemptive) LCFS disciplines, the number in the
system and, hence, the maximum queue length in a busy period are independent of the particular
discipline. We conjecture that, under the foreground—background discipline, if S’ >.x S then
M’ <4 M. Under nonpreemptive service disciplines, if S’ >jcx S then M’ >ix M, where
X >icx Y means that E( f (X)) > E(f(Y)) for all increasing convex functions f.

Our second conjecture is contrary to the results for preemptive LCFS disciplines in this paper,
in the sense that, when service times become more variable, the performance of nonpreemptive
disciplines, as measured by the maximum queue length, deteriorates. This contrast may
be explained as follows: when service times are highly variable, the preemptive LCFS and
foreground—background disciplines permit customers with shorter services to be served first,
which can improve performance relative to nonpreemptive disciplines. Furthermore, the effect
of a larger variability in nonpreemptive systems is consistent with our intuition and results for
other performance measures like the mean waiting time.
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