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Social scientists often classify text documents to use the resulting labels as an outcome or a predictor in
empirical research. Automated text classification has become a standard tool since it requires less
human coding. However, scholars still need many human-labeled documents for training. To

reduce labeling costs, we propose a new algorithm for text classification that combines a probabilistic
model with active learning. The probabilistic model uses both labeled and unlabeled data, and active
learning concentrates labeling efforts on difficult documents to classify. Our validation study shows that
with few labeled data, the classification performance of our algorithm is comparable to state-of-the-art
methods at a fraction of the computational cost. We replicate the results of two published articles with only
a small fraction of the original labeled data used in those studies and provide open-source software to
implement our method.

INTRODUCTION

T ext classification—the act of measuring under-
lying concepts by categorizing sequences of
text into two or more categories—is a funda-

mental task in social science research. In political
science, researchers have used this approach to clas-
sify a wide variety of textual data, including legislative
speeches (Motolinia 2021; Peterson and Spirling
2018), correspondences to administrative agencies
(Lowande 2018), public statements of politicians
(Airoldi, Fienberg, and Skinner 2007; Stewart and
Zhukov 2009), news articles (Boydstun 2013), election
manifestos (Catalinac 2016), social media posts (King,
Pan, and Roberts 2017), religious speeches (Nielsen

2017), and human rights text (Cordell et al. 2022;
Greene, Park, and Colaresi 2019).1

Because manually labeling a large number of docu-
ments to classify text is too costly, researchers are
increasingly turning to machine learning and natural
language processing (NLP) methodologies to auto-
mate this task. For example, to investigate the rela-
tionship between Internet access and state repression
in Syria, Gohdes (2020) manually labeled 2,000 out of
65,274 documents in order to train a machine learning
model to predict the class of the documents in the rest
of the corpus. Similarly, Park, Greene, and Colaresi
(2020) train a classifier using 4,000 of the 2,473,874
documents in their corpus to analyze the association
between Information Communication Technologies
(ICTs) and the U.S. Department of State’s human
rights reports. Although these approaches are more
efficient thanmanually labeling an entire corpus, label-
ing thousands of documents still demands considerable
time and effort, as the authors of these studies
acknowledge.

To help researchers reduce the amount of labeled
data required to train an accurate classification model,
we introduce activeText, a fast and easy-to-use algo-
rithm for text classification that can be run on a stan-
dard laptop. Our method combines probabilistic
modeling, semi-supervised learning (Nigam et al.
2000; Zhu and Goldberg 2022), and active learning
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(McCallum and Nigam 1998; Miller, Linder, and
Mebane 2020; Settles 2011) to help guide researchers
to label documents more efficiently.
Recently, deep learning models like Bidirectional

Encoder Representations from Transformers (BERT,
Devlin et al. 2019) have become popular due to the
impressive performance on many text classification
tasks (Liu et al. 2019). However, they require sub-
stantial computational resources to train and can be
prone to overfitting when labeled data are scarce
(Yue et al. 2021). In addition, it is difficult to under-
stand how their predictions are generated (Rudin
2019). Consequently, deep learning models may not
be the best choice when researchers have limited
computational resources and labeled data. We present
activeText as an additional option for researchers who
face these challenges.
The simple mixture model we use at the core of

activeText runs an order of magnitude faster than deep
learning models by employing the expectation–maxi-
mization (EM) algorithm (Dempster, Laird, and Rubin
1977) for parameter estimation. Because of the com-
putational efficiency of our model, we embed it in an
active learning framework where the most informative
documents are selected for human labeling. As a result,
users of activeText can rapidly iterate between training
the model to generate estimates of label uncertainty
and selecting informative documents for human label-
ing to train a classification model with high accuracy
using only a small fraction of the documents in their
corpus.
Another key feature of our approach is that the

parameters of our mixture model can be easily
inspected to understand how the model is making its
predictions. We leverage this interpretability to allow
users with existing subject expertise to boost classifica-
tion performance by upweighting keywords associated
with each classification category. All these features
make of activeText an attractive option for social sci-
ence researchers for whom labeled data and computa-
tional resources are scarce.
We demonstrate the performance of activeText in

three ways. First, we conduct a series of validation
experiments to assess our performance on four com-
mon political science classification tasks using real
text corpora: identifying news articles as political,
identifying toxic hate speech, classifying the topic of
supreme court rulings, and identifying mentions of
physical integrity violations in human rights reports.
Our validation experiments show that when there are
few labeled documents, activeText generally outper-
forms alternatives, including DistilBERT (Sanh et al.
2019), a more computationally efficient variant of
BERT, in terms of classification performance. We
show that this benefit is most pronounced when the
corpus is unbalanced, and that upweighting keywords
can boost further model performance. We also show
that in contrast to models such as BERT, which
require substantial computational resources to train,
activeText can easily be run on a standard laptop using
the statistical programming language R, with the
prediction of classification labels typically completing

in seconds for a corpus with tens of thousands of
documents.

Second, we replicate Gohdes (2020) and Park,
Greene, and Colaresi (2020) using activeText to show
how researchers could have used our method to reach
the same substantive conclusions—a higher level of
Internet access is associated with a larger proportion
of targeted killings, and ICTs are not associated
with the sentiment of the State Department’s human
rights reports, respectively—with far fewer labeled
documents.

Third, we use simulations to explore the general
conditions under which activeText performs well, and
to evaluate the impact of mislabeling documents and
the potential biases introduced by active learning on
the classification performance of activeText. We show
that activeText is robust to minor instances of mislabel-
ing and that the in-sample bias introduced by active
learning does not affect out-of-sample classification
performance.

This article proceeds as follows: In the
Section “Machine Learning Approaches to Text
Classification,” we introduce readers to the concepts
of semi-supervised and active learning approaches to
text classification. In the Section “The Method,” we
describe both the semi-supervised and the active learn-
ing components of activeText, and how we combine the
two. In the Section “Validation Performance,” we show
the results from comparing our model to popular alter-
natives on validation datasets. Then, the Section
“Reanalysis with Fewer Human Annotations” presents
the results of our replication studies. Finally, we discuss
several practical concerns, directions for future research,
and possible improvements to the algorithm in the
Section “Discussion.” Code and data to reproduce the
analysis of this article are available at the American
Political Science Review Dataverse (Bosley et al. 2024).

MACHINE LEARNING APPROACHES TO
TEXT CLASSIFICATION

In social science research, it is common for researchers
to want to classify a large collection of text documents
into two or more categories based on the content of the
text in order to test a substantive hypothesis. The
biggest impediment to this process is the cost of man-
ually labeling a large collection of text documents.
Rather than exhaustively labeling all documents,
researchers often use machine learning techniques to
automate the process, with supervised learning being
the most common paradigm. In supervised learning, a
model is trained on a labeled dataset to learn the
relationship between text features and class labels
(Kotsiantis 2007), and a variety of supervised learning
algorithms, such as naive Bayes, support vector
machine (SVM), and logistic regression, have been
applied to text classification tasks in political science
research (Colleoni, Rozza, and Arvidsson 2014; Hil-
lard, Purpura, and Wilkerson 2008).

Even though supervised learning reduces the
amount of labeling required relative to hand-coding
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all documents, it still requires a substantial amount of
labeled data to train amodel that generalizes well to the
entire corpus, typically in the order of several thousand
labeled documents. In most applied political science
applications, however, researchers start with little to no
labeled data, making it laborious to label sufficient data
to train accurate classifiers. In this section, we discuss
two machine learning approaches that we leverage in
our method to address the challenge of labeled data
scarcity: semi-supervised learning and active learning.2

Solutions to Labeled Data Scarcity

To address the challenge of labeled data scarcity, several
approaches have been proposed in the machine learning
literature, including semi-supervised and active learning.
Semi-supervised learning aims to leverage the structure
of large amounts of unlabeled data to improve classifica-
tion performance (Miller and Uyar 1996; Nigam et al.
2000). In a semi-supervised setting, the model learns
from both labeled and unlabeled data, using the labeled
data as a foundation for measurement and incorporating
patterns recovered from the unlabeled data to produce
more accurate and robust predictions. This approach is
particularly useful when labeled data are scarce, but
unlabeled data are abundant.
Active learning, on the other hand, focuses on stra-

tegically selecting the most informative instances for
labeling, minimizing the labeling effort while

maximizing the model’s performance (Settles 2011).
One of the most studied active learning approaches is
uncertainty sampling (Lewis andGale 1994; Yang et al.
2015), where documents are chosen for labeling based
on how uncertain the model is about their correct
classification. By focusing labeling efforts on these
informative documents, active learning can learn the
decision boundary more efficiently than randomly
selecting documents for labeling. In addition, active
learning approaches have been shown to be particu-
larly effective when the classification categories are
imbalanced, which is a common occurrence in social
science classification exercises (Miller, Linder, and
Mebane 2020).

An active learning algorithm typically involves a
sequence of iterative steps applicable to any classifica-
tion methodology. The first step is to estimate the
probability that each document belongs to a specific
classification outcome. The second step involves
actively selecting the documents that the model is most
uncertain about and focusing manual labeling efforts
among those documents (Hoi, Jin, and Lyu 2006).
Then, the class probabilities are re-estimated using
the newly labeled data. The algorithm cycles through
these steps until a stopping criterion is met, such as a
fixed budget for labeling (Ishibashi andHino 2020) or a
threshold for improvement in accuracy metrics such as
precision, recall, or F1 score (Altschuler and Blood-
good 2019).

To illustrate the difference between passive and
active learning for labeling a document, consider the
scenario where a researcher aims to classify each unla-
beled (U) document as either political (P) or nonpoli-
tical (N) based on the frequency of terms like
“Spending” and “Gridlock” (Figure 1, panel a, presents

FIGURE 1. Labeling: Passive vs. Active Learning

N

N
P

P

P

N

N
N

N

N

P

N

N

N

N

N

N N

P

P

P P

P

N

N

NN

N

N N

N

a. The Corpus

Gridlock

S
pe

nd
in

g

P

PP

U U

U

U

U

U

U

U

UU

UU

N

N
P

P

P

N

N
N

N

N

P

N

N

N

N

N

N N

P

P

P P

P

N

N

NN

N

N N

N

b. Passive Learning

Gridlock
S

pe
nd

in
g

P NLabeled: 'Political' 'Non−Political'
UUnlabeled:

P

PP

U U

U

U

U

U

U

U

UU

UU

N

N
P

P

P

N

N
N

N

N

P

N

N

N

N

N

N N

P

P

P P

P

N

N

NN

N

N N

N

c. Active Learning

Gridlock

S
pe

nd
in

g

P

PP

U

U

U

U

U

U

U

UU

UU

Region of
 uncertainty

U

Note: Panel a presents a corpus where a classifier based on term frequencies of “Spending” and “Gridlock” is utilized to categorize
unlabeled (U) documents as political (P) and nonpolitical (N). Panel b depicts a passive learning approach where the next document to be
labeled is randomly selected. In contrast, panel c demonstrates active learning, where obtaining the true label of the U located in the region
of uncertainty for the classifier (shaded region) is prioritized, as it provides more informative insights into learning the decision boundary
between P and N.

2 For an introduction of basic concepts inmachine learning applied to
text data for classification tasks, including topics like feature repre-
sentation, supervised and unsupervised learning, discriminative ver-
sus generative models, and model evaluation metrics, please refer to
Section A of the Supplementary Material.
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the corpus). In passive learning (panel b), the next
document to be labeled is randomly selected, regard-
less of its position in the feature space. In contrast,
active learning (panel c) prioritizes labeling documents
in the region of uncertainty (shaded region), where the
model is less confident about their true labels. By
focusing labeling efforts on these informative docu-
ments, active learning can learn the decision boundary
more efficiently than passive learning

Deep Learning and activeText

In recent years, transfer learning, especially using deep
learning approaches and pretrained embeddings, has
become popular. Transfer learning is a machine learn-
ing technique where knowledge gained from solving
one problem is applied to a different but related prob-
lem, often leading to improved performance and
reduced training time compared to training from
scratch (Ruder et al. 2019). This approach relies on
leveraging large pretrained models, such as BERT
(Devlin et al. 2019), which have been trained on vast
amounts of unlabeled text data using the Transformer
architecture (Vaswani et al. 2017) to learn rich, contex-
tual representations of words and sentences. Rather
than encode text as a sparse vector of word frequencies
and learn the relationship between text features and
class labels, as in the bag-of-words representation,
these models learn embeddings—dense, vector repre-
sentations of words that capture semantic and syntactic
similarities between words and documents. Once the
embedding representations of text data are learned,
they can be fine-tuned toward a specific classification
task using a collection of labeled data,3 allowing the
model to adapt its learned representations to the spe-
cific domain and task at hand.
While transfer learning with deep learning models

has been shown to excel atmany text classification tasks
(Devlin et al. 2019; Liu et al. 2019), simpler models still
have a place in the text classification toolkit, especially
when labeled data and computing resources are scarce.
Deep learning models require significant computa-
tional resources and can be time-consuming to train,
even when fine-tuning pretrained models (Strubell,
Ganesh, and McCallum 2019), and require substantial
technical expertise in machine learning and natural
language processing to implement relative to simpler
models. They also have an extremely large number of
parameters, making them more prone to overfitting
when labeled data are limited (Yue et al. 2021).4 In
addition, their complex architectures and high-
dimensional representations can make them difficult

to interpret (Guidotti et al. 2018). For a model to be
interpretable, we mean both that the model’s predic-
tions can be explained in terms of the input features and
that themodel’s parameters can be used to gain insights
into the underlying phenomena and test substantive
theories, both of which are essential in political science
research.5

Because of these limitations, we argue that when
labeled data are scarce, computational resources are
limited, and model interpretability is crucial—that is,
the conditions under which the typical political scientist
operates—combining semi-supervised and active
learning techniques with a simple mixture model6 is a
viable alternative to deep learning approaches at a
fraction of the computational cost.7

In the following sections, we propose activeText, a
novel method that combines semi-supervised learning
and active learning with a generative mixture model
based on bag-of-words representations of text data.
Our approach leverages the EM algorithm to learn
from both labeled and unlabeled data and incorporates
uncertainty-based active learning to strategically select
examples for labeling. We demonstrate the effective-
ness of our approach through experiments and case
studies on real-world political science datasets,
highlighting its performance, interpretability, and com-
putational efficiency compared to alternative methods.

THE METHOD

In this section, we present our modeling strategy and
describe our active learning algorithm. For the proba-
bilistic model (a mixture model for discrete data) at the
heart of the algorithm, we build on the work of Nigam
et al. (2000), who show that probabilistic classifiers can
be augmented by combining the information coming
from labeled and unlabeled data. As we will discuss
below, we insert our model into an active learning
algorithm and use the EM algorithm to maximize the
observed-data log-likelihood function and estimate the
model parameters.

Model

Consider the task of classifying N documents as one of
two classes (e.g., political vs. nonpolitical). Let D be a
N × V document feature matrix, whereV is the number
of features.8 In most applications, features are words,

3 Fine-tuning involves adding a classification layer on top of the
pretrained model and training it on the target task while keeping the
pretrained model weights mostly fixed (Howard and Ruder 2018).
4 Overfitting occurs when a model learns to fit the noise or random
fluctuations in the training data, rather than the underlying patterns,
leading to poor performance on new, unseen data, and is a common
problem in machine learning, particularly when the amount of
labeled data is small and/or the model is complex (Hastie, Tibshirani,
and Friedman 2009).

5 See Rudin (2019) for a discussion of the importance of interpret-
ability in machine learning.
6 Mixturemodels are probabilisticmodels that can effectively capture
the underlying structure of the data while remaining computationally
efficient and interpretable (McLachlan, Lee, and Rathnayake 2019).
7 This is not to say that social scientists should not use deep learning
models. To the contrary, we expect that in many cases, deep learning
models will outperform simpler models, especially when labeled data
are abundant and computational resources are not a constraint.
8 Throughout the article, we denote a row or a column of a matrix by
using � in the subscript, where the subscript �a represents the ath
column and the subscript b� represents the bth row.
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but they can also be bi-grams, tri-grams, or other tokens
suchword embeddings, etc.We useZ, a vector of length
N, where each entry represents the class assigned to
each document. If a document i is assigned to the kth
class (out of K classes), then Zi ¼ k, where k ∈ f0, 1g
(e.g., k ¼ 1 represents the class of documents about
politics, and k ¼ 0 those that are nonpolitical). Because
we use a semi-supervised approach, some documents
are already hand-labeled. This means that the value of
Zi is known for the labeled documents and is unknown
for unlabeled documents.
To facilitate exposition, we assume that the classifi-

cation goal is binary, however, our approach can be
extended to accommodate (1) multiclass classification,
whereK > 2and each document is classified into one of
theK classes, for example, classifying news articles into
three classes: politics, business, and sports (see
Section D of the Supplementary Material); and
(2) modeling more than two classes but keeping the
final classification output binary (see Section E of the
Supplementary Material).9
Equations 1–7 summarize the model:

Labeled Data:

Zi ¼ k ! hand‐coded, k ∈ f0, 1g: (1)

(2)

(3)

Unlabeled Data:
π � Betaðα0, α1Þ: (4)

(5)

(6)

(7)

If document i is unlabeled, we first draw the param-
eter π ¼ pðZi ¼ 1Þ , the overall probability that any
given document belongs to the first class (e.g., political
documents), from a Beta distribution with hyperpara-
meters α0 and α1 .10 Similarly, for the other class (e.g.,

nonpolitical documents), we have that 1−π ¼ pðZi ¼ 0Þ.
Given π, for each document indexed by i, we draw the
class assignment indicator Zi from a Bernoulli distribu-
tion.11 Then, we draw features for document i from a
multinomial distribution governed by the total number
of words in document i (ni) and the vector η�k represents
the kth column of theV × Kmatrix η, where each entry
of η�k is represented by the scalar ηvk ¼ pðDivjZi ¼ kÞ.
The prior of η�k is the Dirichlet distribution with hyper-
parameter vector β�k (the kth column of the V × K
matrix β). Finally, Di� is a row vector of length V that
represents the word counts of document i. Conditional
on Zi ¼ k, Di� is drawn from a multinomial distribution
with parameters ni and η�k. If document i has a label, the
key distinction from the scenario with unlabeled data is
that each Zi is not drawn from a Bernoulli distribution.
Instead, its value is manually determined through hand-
coding.12 Other than this point, the structure of the
model remains unchanged for the labeled data.

Altogether, if we denote Lobsðπ, ηjD,Z, λÞ as the
observed data log-likelihood for all the data, based on
Equations 1–7, then we can express it as

Lobsðπ, ηjD,Z, λÞ ¼ Llabeledðπ, ηjDlabeled,ZlabeledÞ
þλ × Lunlabeledðπ, ηjDunlabeled,ZunlabeledÞ:

(8)

In other words, the result of adding the information
from the observed log-likelihoods for the labeled and
unlabeled data, respectively, and where, λ ∈ ½0, 1� is a
parameter that adjusts the influence originating from
the unlabeled data on the observed data log-likelihood.
The inclusion of such a parameter follows from the
scarcity of labeled data compared to the abundance of
unlabeled data, which is a significant challenge in
implementing semi-supervised learning approaches,
as the likelihood function of text in unlabeled docu-
ments is likely to overwhelm that of the labels. This is a
common problem with combining information from
text and other sources through likelihood-based
methods, as text data usually contain an order of mag-
nitude more observed variables—features—than other

9 In this second approach, we hierarchically map multiple subclasses
into one class, for example, collapsing the classification of documents
that are about business and sports into a larger class (nonpolitics),
and letting the remaining documents be about politics.
10 An anonymous reviewer asked us to further justify our choice of
the beta prior over other prior distributions such as the uniform
distribution. We opted for a Beta distribution with hyperparameters
α0 and α1 for a couple of reasons. First, it is conditionally conjugate in
our model, allowing for efficient computation of posterior updates
for π, as demonstrated in Section C of the Supplementary Material.
Conjugate prior distributions often provide good approximations and
simplify computations, similar to standard likelihood models
(Gelman et al. 2014, 36). This principle also applies to our model,
since the model for Zi given π is the Bernoulli distribution for which
the Beta distribution is conjugate. We note that the uniform prior is a
special case of the Beta prior with α0 ¼ α1 ¼ 1 (e.g., Blitzstein and
Hwang 2019, 380). Second, unless α0 and α1 are significantly large
compared to the number of documents in each class, their selection

has minimal impact on estimating π, as discussed in Section C of the
Supplementary Material. We set α0 ¼ α1 ¼ 2 in our study to avoid
prior density on extreme values of π such as π ¼ 0 and π ¼ 1 while
ensuring computational feasibility, but our package provides the
option for setting the prior parameter values of the user’s choice.
We thank the anonymous reviewer for raising this point.
11 An alternative approach would be to allow groups of documents to
have distinct values of π. In such a setting, for each observation i in
group g, we could have πg ¼ pðZi ¼ kjGi ¼ gÞ, whereGi is a variable
indicating the group assignment of document i and the total number
of groups is smaller than N. This modeling strategy can be beneficial
for datasets with inherent group structures like longitudinal data,
especially when the group hierarchy is observed. Yet, the datasets
utilized in this article lack a clear preestablished group structure.
Therefore, instead of specifying πg, we opted for specifying π. While
incorporating a hierarchical structure to π could be an interesting
extension of our model, we leave it for future research. We thank an
anonymous reviewer for highlighting this point.
12 In Equation 1, we use! to represent a deterministic assignment of
the classes to documents.
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types of data. To ensure that a classifier effectively
extracts information from labeled data and is not solely
influenced by unlabeled data, it is crucial to enhance
the relative importance of labeled data; otherwise, the
signal from labeled data will be overshadowed by the
overwhelming presence of unlabeled data. To address
this, we weight information from unlabeled documents
by utilizing a decision factor, λ (Nigam et al. 2000).13
When λ equals 1, the model equally considers each
document, irrespective of whether it is labeled by
human supervision or labeled probabilistically by the
algorithm. As λ moves from 1 to 0, the model reduces
the importance of information contributed by probabi-
listically labeled documents in the estimation of η and π.
When λ reaches 0, themodel disregards the information
from all probabilistically labeled documents, turning it
into a supervised algorithm.
Additionally, note that an important advantage of

the interpretability of the key model parameters facil-
itates augmentation of themodel using additional infor-
mation such as domain knowledge. For example, each
element of η�k represents the probability of observing a
unique feature given the class of the document. In the
Section “Active Keyword Upweighting,” we show how
to augment the model to allow some features to be
highly associated with an specific class and in that way
improve performance.
Finally, because the observed data log-likelihood of

our model is difficult to maximize, we use the EM
algorithm to estimate the parameters.14

An Active Learning Algorithm

Our active learning algorithm (see Algorithm 1) can be
split into the following steps: estimation of the probabil-
ity that each unlabeled document belongs to the positive
class, selection of the unlabeled documents whose pre-
dicted class ismost uncertain, and labelingof the selected
documents by human coders. The algorithm iterates
until a stopping criterion is met. In this section, we also
describe an optional keyword upweighting feature,
where a set of user-provided keywords provide prior
information about the likelihood that a word is gener-
ated by a given class to the model. These keywords can
either be provided at the outset of the model or identi-
fied during the active learning process.
We now proceed to describe in detail each step of our

algorithm:

Algorithm 1. Active Learning with EM Algorithm to
Classify Text

Result: Obtain predicted classes of all documents.
Randomly select a small subset of documents, and ask
humans to label them
[Active Keyword]: Ask humans to provide initial key-
words
While: Stopping conditions are not met yet do

(1) [ActiveKeyword]: Up-weight the important of
keywords associated with a class;

(2) Predict labels for unlabeled documents using
EM algorithm

(3) Select documents with the highest uncertainty
among unlabeled documents, and ask humans
to label them

(4) [Active Keyword]: Select words most strongly
associated with each class, and ask humans to
label them;

(5) Update sets of labeled and unlabeled
documents for the next iteration

end

Estimation

In the first iteration, themodel is initialized with a small
number of labeled documents.15 The information from
these documents is used to estimate the parameters of
the model: the probability of a document being, for
example, about politics, π , and V × 2 matrix η, repre-
sents the feature-class probabilities. If there is no
labeled data, the model can be initialized by manually
assigning initial values to the model parameters. These
values can be set randomly or to a fixed value. From the
second iteration on, we use information from both
labeled and unlabeled documents to estimate the
parameters using the EM algorithm, with the log-
likelihood of unlabeled documents being weighted by
λ, and with the η and π values from the previous
iteration as the initial values. Using the estimated
parameters, we compute the probability that each
unlabeled document belongs to the politics class.

Selection

Using the predicted probability that each unlabeled
document belongs to the politics class, we use Shannon
Entropy (i.e., the level of uncertainty) to determine
which of the probabilistically labeled documents it was
least certain about. In the binary classification case, this
is the equivalent of calculating the absolute value of the
distance between the politics class probability and 0.50
for each document. Using this criterion, the model
ranks all probabilistically labeled documents in des-
cending order of uncertainty. The n most uncertain

13 Kim, Londregan, and Ratkovic (2018, 217–8) use a similar strategy
to balance the information from both a smaller dataset (roll calls) and
a larger dataset (textual data) within a model designed for estimating
ideal points.
14 For a full derivation of the EM algorithm for our binary classifica-
tion model and its graphical representation, see Section C of the
Supplementary Material. Furthermore, refer to Section D of the
Supplementary Material for the corresponding details (model
description, estimation, and graphical representation) for our model
extension to multiclass classification and to Section E of the Supple-
mentaryMaterial for the details regarding our second extension, that
is, binary classification with multiple classes.

15 While we assume that these documents are selected randomly, the
researcher may choose any subset of labeled documents with which
to initialize the model.
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documents are then selected for human labeling, where
n is the number of documents to be labeled by humans
at each iteration.

Labeling

A human coder reads each document selected by the
algorithm and imputes the “correct” label. For exam-
ple, the researcher may be asked to label as political or
nonpolitical each of the following sentences:

The 2020 Presidential Election had the highest turnout in
U.S. history! [Political]

Argentina wins the 2022 FIFA World Cup, defeating
France! [Nonpolitical]

These newly labeled documents are then added to the
set of human-labeled documents, and the process is
repeated from the estimation stage.

Stopping Rule

Ourmethod is highly modular and supports a variety of
stopping rules. This includes an internal stability crite-
rion, where stoppage is based on small amounts of
change of the internal model parameters, as well as
the use of a small held-out validation set to assess the
marginal benefit of labeling additional documents on
measures of model evaluation such as accuracy or F1.
With either rule, the researcher specifies some bound
such that if the change in model parameters or out-of-
sample performance is less than the prespecified
bound, then the labeling process ends. For example,
we use the out-of-sample validation stopping rule with
a bound of 0.01 for the F1 score in Section “Reanalysis
with Fewer Human Annotations.”

Active Keyword Upweighting

The researcher also has the option to use an active
keyword upweighting scheme, where a set of keywords
is used to provide additional information. This is done
by incrementing elements of the β (the prior parameter
of η) by γ, a scalar value chosen by the researcher. In
other words, we impose a tight prior on the probability
that a given keyword is associated with each class.16
To build the set of keywords for each class,
(1) activeText proposes a set of candidate words,
(2) the researcher decides whether they are indeed
keywords or not,17 and (3) activeText updates the
parameters based on the set of keywords.
To select a set of candidate keywords, activeText

calculates the ratio that each word was generated by a
particular class using the η parameter. Specifically, it
computes ηvk=ηvk0 for k ¼ f0, 1g with k0 the opposite

class of k, and chooses topm words whose ηvk=ηvk0 are
the highest as candidate keywords to be queried for
class k.18 Intuitively, words closely associated with the
classification classes are proposed as candidate key-
words. For example, words such as “vote,” “election,”
and “president,” are likely to be proposed as the
keywords for the political class of documents in the
classification between political vs. nonpolitical docu-
ments.

After activeText proposes candidate keywords, the
researcher decides whether they are indeed keywords
or not. This is where the researcher can use her exper-
tise to provide additional information. For example,
she can decide names of legislators and acronyms of
bills as keywords for the political class.

Using the set of keywords for each class, activeText
creates a V × 2 keyword-class matrix κ, where each
element κvk takes the value of γ if word v is a keyword
for class k, otherwise 0. Before we estimate parameters
in each active iteration, we perform a matrix sum
β  κ + β to incorporate information from keywords.
The keyword approach therefore effectively upweights
our model with prior information about words that the
researcher thinks are likely to be associated with one
class rather than another.

VALIDATION PERFORMANCE

This section shows the performance comparisons
between activeText and other classification methods.
First, we show comparisons between active and passive
learning. Then, we compare classification and time
performance between activeText and a version of
BERT called DistilBERT, a state-of-the-art text clas-
sification model using word embeddings as vector
representations of the data.19 Finally, we show
how keyword upweighting can improve classification
accuracy.

We compare the classification performance on each
of the following sets of documents: internal forum
conversations of Wikipedia editors (class of interest:
toxic comment), BBC News articles (political topic),
the United States Supreme Court decisions (criminal
procedure), and Human Rights allegations (physical
integrity rights allegation).20 We use 80% of each
dataset for the training data and hold out the remaining
20% for evaluation. Documents to be labeled are
sampled only from the training set, and documents in
the test set are not included to train the classifier, even

16 See Eshima, Imai, and Sasaki (2024) for a similar approach for
topic models.
17 The researcher may also provide an initial set of keywords, and
then iteratively add new keywords.

18 Words are excluded from candidate keywords if they are already in
the set of keywords, or if they are already decided as non-keywords.
Thus, no words are proposed twice as candidate keywords.
19 We trained the BERTmodels using Nvidia V100Graphics Proces-
sing Units (GPUs) on an high-performance computing (HPC) plat-
form.
20 Section B of the Supplementary Material presents a comprehen-
sive description of the validation data and the preprocessing required
for analyses.
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in our semi-supervised approach. The out-of-sample F1
score is calculated using the held-out testing data.21

Classification Performance

Figure 2 shows the results from three model specifica-
tions: activeText (denoted by the solid line); Random
Mixture, a version of activeText that uses passive
instead of active learning (denoted by the dotted line);
and DistilBERT (denoted by the dashed line).
Each panel corresponds to a unique combination of a

dataset and the proportion of documents associated
with the class of interest, with the rows corresponding

to the datasets and the columns corresponding to the
proportions. The parentheses beside the name of each
corpus represent the proportion of positive labels in the
population configuration, that is, the proportion of
documents in the corpus that are labeled as the class
of interest.22 Within each panel, the x-axis represents
the number of documents labeled, and the y-axis rep-
resents the average out-of-sample F1 score averaged
across 50 and 10Monte Carlo simulations in the case of
the activeText models and the DistilBERT model,
respectively. In the activeText models, 20 documents
are labeled in each iteration.23

FIGURE 2. Comparison of Classification Results with Random and Active Versions of activeText and
DistilBERT
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21 See Section A.4 of the Supplementary Material for a detailed
description of the F1 score and other commonly used model evalu-
ation metrics.

22 See Section B of the Supplementary Material for more details on
how we generate validated data with class-imbalance.
23 Table H.1 in Section H.1 (Dataverse-only) presents similar evi-
dence, based on other evaluation metrics (precision and recall). In
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There are two key takeaways from Figure 2. First, we
show that activeText is either equivalent to or outper-
forms its random sampling counterpart in nearly all
cases, and the benefit from active learning is larger
when the proportion of documents in the class of
interest is smaller. The exception is the Human Rights
corpus, where the benefit of active learning is marginal,
and where at the 50% proportion, random sampling
slightly outperforms active learning with less than two
hundred labeled documents.
Second, we show that in nearly all cases, activeText

either outperforms or performs comparably to the
DistilBERT model. As in the comparison between
the active and random versions of activeText, the
advantage of activeText is larger when the proportion
of documents in the class of interest is small. This is
particularly true in the case of the BBC, Supreme
Court, and Wikipedia corpora for the 5% and popula-
tion specifications. This advantage is not permanent,
however: as the number of labeled documents
increases, DistilBERT (as expected) performs well
and even exceeds the F1 score of activeText in the case
of Wikipedia. As before, the exception is the Human
Rights corpus, where DistilBERT outperforms active-
Text at the 50% and population levels.24
The early poor performance of activeText on the

Human Rights corpus may be due to the fact that
documents are short. Short-labeled documents provide
less information, making it more difficult for the model
to distinguish between classes. We discuss how the
information can be augmented using keywords to
improve our method’s classification performance in
Section “Benefits of Keyword Upweighting.” The key-
word upweighting we propose takes advantage of the
substantive interpretability of the feature-class matrix η
in our generative model.

Runtime

In Figure 3, we compare computational runtime for
activeText and DistilBERT. For this analysis, our goal
was to compare how long it would take a researcher
without access to a high-performance computing
(HPC) platform or an expensive GPU to train these
models. To this end, we trained the activeText and
DistilBERT models on a base model M1 Macbook
Air with 8 GB of RAM and seven GPU cores. While
the activeText models were trained using a single cen-
tral processing unit (CPU), we used the recent

implementation of support for the GPU in M1 Macs
in PyTorch25 to parallelize the training of the BERT
model using the M1 Mac’s GPU cores.26 We also
computed the time values cumulatively for activeText
since it is expected that model will be fit over and over
again as part of the active learning process, whereas for
a model like BERT, we expect that the model would
only be run once, and as such do not calculate its run-
time cumulatively. For the Human Rights and Wikipe-
dia corpora, which each have several hundred thousand
entries, we used a random subsample of fifty thousand
documents. For the Supreme Court and BBC corpora,
we used the full samples. Finally, we present the
time results in logarithmic scale to improve visual
interpretation.

Figure 3 shows that usingDistilBERT comes at a cost
of several orders of magnitude of computation time
relative to activeText.Using theWikipedia corpus as an
example, at five hundred documents labeled the base-
line activeTextwould have run to convergence 25 times,
and the sum total of that computation time would have
amounted to just under 100 seconds.With DistilBERT,
however, training a model with five hundred docu-
ments and labeling the remaining 45,500 on an average
personal computer would take approximately
10,000 seconds (2.78 hours).

Benefits of Keyword Upweighting

In Figure 2, active learning did not improve the perfor-
mance on the human rights corpus, and the F1 score
was lower than other corpora in general. One reason
for the early poor performance of activeTextmay be the
length of the documents. Because each document of the
human rights corpus consists of one sentence only, the
average length is shorter than other corpora.27 This
means that the information the models can learn from
labeled documents is less compared to the other cor-
pora with longer documents.28 In situations like this,
providing keywords in addition to document labels can
improve classification performance because it directly
shifts the values of the feature-class probability matrix,
η, even when the provided keywords is not in the
already labeled documents.

Figure 4 compares the performance with and without
providing keywords. The darker lines show the results

addition, Figure H.4 in Section H.3 (Dataverse-only) includes com-
parisons of our generative approach, activeText, in terms of predictive
performance against SVM, a popular discriminative method used for
classification tasks.
24 Figure D.2 in Section D of the Supplementary Material illustrates
that the multiclass version of activeText performs better than other
alternative models for the BBC and Supreme Court datasets. Addi-
tionally, our findings in Figures E.1 and E.2 in Section E of the
Supplementary Material indicate that even in binary classification
tasks, activeText excels when considering the presence of multiple
classes. Again, this is especially noticeable in datasets such as the
BBC and Supreme Court corpora, where the number of underlying
classes exceeds 2.

25 See https://pytorch.org/blog/introducing-accelerated-pytorch-
training-on-mac/.
26 Specifically, we trained a DistilBERT model (see Sanh et al. 2019)
for three epochs (the number of passes of the entire training dataset
BERT has completed) using the default configuration from the
Transformers and PyTorch libraries for the Python programming
language and used the trained model to predict the labels for the
remaining documents for each corpus.
27 With the population data, the average length of each document is
121 (BBC), 17 (Wikipedia), 1,620 (Supreme Court), and 9 (Human
Rights).
28 In our simulation studies described in the Section “The Bias of
Active Learning” and Section F of the Supplementary Material, we
confirmed that the classification performance is poor when the
document length is short. Please refer to Section K (Dataverse-only)
for the full set of results.
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with keywords and the lighter lines without. The col-
umns specify the proportion of documents associated
with the class of interests: 5%, 50%, and the population
proportion (16%). As in the previous exercises, 20 doc-
uments are labeled at each sampling step, and one
hundred Monte Carlo simulations are performed to
stabilize the randomness due to the initial set of docu-
ments to be labeled. We simulated the process of a user
starting with no keywords for either class and then
being queried with extreme words indexed by v whose
ηvk=ηvk0 is the highest for each class k, with up to
10 keywords for each class being chosen based on the
estimated ηat a given iteration of the active process. To
determine whether a candidate keyword should be
added to the list of keywords or not, our simulated user
checked whether the word under consideration was
among the set ofmost extremewords in the distribution
of the “true” η parameter, which we previously esti-
mated by fitting our mixture model with the complete
set of labeled documents.29

The results suggest that providing keywords
improves performance when the proportion of docu-
ments is markedly imbalanced across classes. The key-
words scheme improved the performance when the
number of labeled documents is smaller on the corpus
with 5%or 16% (population) labels associated with the
class of interest. By contrast, it did not on the corpus
where both classes were evenly balanced. These results
highlight that our active keyword approach benefits the
most when the dataset suffers from serious class imbal-
ance problems.30

One caveat is that we provided “true” keywords, in
the sense that we used the estimated η from a fully
labeled dataset. In practice, researchers have to decide
if candidate keywords are indeed keywords using their
substantive knowledge. In this exercise, we believe that
the keywords supplied to our simulation are what
researchers with substantive knowledge about physical

FIGURE 3. Comparison of Classification and Time Results across activeText and DistilBERT
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FIGURE 4. Classification Results of activeText with and without Keywords
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29 Specifically, the simulated user checked whether the word in
question was in the top 10% of most extreme words for each class
using the “true” η parameter. If the candidate word was in the set of

“true” extreme words, it was added to the list of keywords and
upweighted accordingly in the next active iteration.
30 Figure H.3 in Section H.2 (Dataverse-only) demonstrates how
active keyword works by visualizing the feature-class matrix, η , at
each active iteration. In particular, we show how the keyword scheme
accelerates the learning process of the feature-class matrix η.
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integrity rights can confidently adjudicate. For exam-
ple, the keywords, such as “torture,” “beat,” and
“murder,” match our substantive understanding of
physical integrity right violation. Nevertheless, as we
explain in Section “Labeling Error” and Section F of
the Supplementary Material, humans can make mis-
takes, and some words may be difficult to judge. Thus,
we examined the classification performance with vary-
ing degrees in the amount of error at the keyword
labeling step. In Section K of the Supplementary Mate-
rial, we show that the active keyword approach still
improves the classification performance compared to
the no-keyword approach—even in the presence of
small amounts (less than 20%) of “honest” (random)
measurement error in keyword labeling.

REANALYSIS WITH FEWER HUMAN
ANNOTATIONS

To further illustrate the benefits of our proposed
approach for text classification, we conduct reanalyses
of two recently published aritcles: Gohdes (2020) and
Park, Greene, and Colaresi (2020). We show that with
activeText, we can arrive at the same substantive con-
clusions advanced by these authors but using only a
small fraction of the labeled data they originally used.

Internet Accessibility and State Violence

In the article “Repression Technology: Internet Acces-
sibility and State Violence,”Gohdes (2020) argues that
higher levels of Internet accessibility are associated
with increases in targeted repression by the state. The
rationale behind this hypothesis is that through the
rapid expansion of the Internet, governments have
been able to improve their digital surveillance tools
and target more accurately those in the opposition.
Thus, even when digital censorship is commonly used
to diminish the opposition’s capabilities, Gohdes (2020)
claims that digital surveillance remains a powerful tool,
especially in areas where the regime is not fully in
control.
To measure the extent to which killings result from

government targeting operations, Gohdes (2020) col-
lects 65,274 reports related to lethal violence in Syria.
These reports contain detailed information about the
person killed, date, location, and cause of death. The
period under study goes from June 2013 to April 2015.
Among all the reports, 2,346 were hand-coded by
Gohdes, and each hand-coded report can fall under
one of three classes: (1) government-targeted killing,
(2) government-untargeted killing, and (3) non-
government killing. Using a document-feature matrix
(based on the text of the reports) and the labels of the
hand-coded reports, Gohdes (2020) trained and tested a
state-of-the-art supervised decision tree algorithm
(extreme gradient boosting, XGboost). Using the
parameters learned at the training stage, Gohdes
(2020) predicts the labels for the remaining reports for
which the hand-coded labels are not available. For each
one of the 14 Syrian governorates (the second largest

administrative unit in Syria), Gohdes (2020) calculates
the proportion of biweekly government targeted kill-
ings. In other words, Ghodes collapses the predictions
from the classification stage at the governorate-biweekly
level.

We replicate Gohdes (2020) classification tasks using
activeText. In terms of data preparation, we adhere to
the very same decisions made by Gohdes (2020). To do
so, we use the same 2,346 hand-labeled reports (1,028
referred to untargeted killing, 705 to a targeted killing,
and 613 a non-government killing) of which 80% were
reserved for training and 20% to assess classification
performance. In addition, we use the same document-
feature matrices.31 As noted in Section “An Active
Learning Algorithm,” because activeText selects
(at random) a small number of documents to be hand-
labeled to initialize the process, we conduct one hun-
dred Monte Carlo simulations and present the average
performance across initializations. As in “Validation
Performance,” we set λ ¼ 0:001. The performance of
activeText and XGboost is evaluated in terms of out-of-
sample F1 score. Following the discussion above, we
stopped the active labeling process at the 30th iteration
when the out-of-sample F1 score stopped increasing by
more than 0.01 units (our pre-specified threshold).
Table 1 presents the results.32 Overall, we find that as
the number of active learning steps increases, the clas-
sification performance of activeText is similar to the one
in Gohdes (2020). However, the number of hand-
labeled documents that are required by activeText is
significantly smaller (around one-third, as indicated by
the bold text in Table 1) if compared to the ones used by
Gohdes (2020).

In social science research, text classification is often
not the end goal but a means to quantify a concept that
is difficult to measure and make inferences about the
relationship between this concept and other constructs
of interest. In that sense, to empirically test her claims,
Gohdes (2020) conducts regression analyses where the
proportion of biweekly government targeted killings is
the dependent variable and Internet accessibility is the
main independent variable—both covariates are mea-
sured at the governorate-biweekly level. Gohdes
(2020) finds that there is a positive and statistically
significant relationship between Internet access and
the proportion of targeted killings by the Syrian gov-
ernment. Using the predictions from activeText, we
construct the main dependent variable and replicate
the main regression analyses in Gohdes (2020).33

31 Gohdes (2020) removed stopwords, punctuation, and words that
appear in at most two reports, resulting in 1,342 features and a
document-feature matrix that is 99% sparse. The median number
of words across documents is 13.
32 The values in the bottom row are based on Gohdes (2020),
Table A9.
33 The results presented in Section I.1 (Dataverse-only) demonstrate
two main findings. First, the classification results of activeText, as
shown in Table I.1 in Dataverse, are almost identical to that of
Gohdes (2020). Second, the proportion of biweekly government
targeted killings from activeText, depicted in Figure I.1 in Dataverse,
is also highly consistent with the same measure by Gohdes (2020).
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Tables I.2 and I.3 in Section I.2 (Dataverse-only)
report the estimated coefficients, across the same
model specifications in Gohdes (2020). The point esti-
mates and the standard errors are almost identical
whether we use XGboost or activeText. Moreover,
Figure 5 presents the expected proportion of targeted
killings by region and Internet accessibility, using the
preferred regression specification by Gohdes. This
model, as detailed in column V of Tables I.2 and I.3

in Dataverse, incorporates the interaction between
region and Internet accessibility. Gohdes finds that in
the Alawi region, which is recognized for its loyalty to
the regime, higher levels of Internet access correspond
to a significantly lower expected proportion of targeted
killings compared to other regions in Syria. In the
absence of the Internet, however, there is no discern-
ible difference across regions (see Figure 5, right
panel). Our reanalysis does not change the substantive

TABLE 1. Classification Performance: Comparison with Gohdes (2020) Results

Ouf-of-sample F1 score per class

Model Step Labels Untargeted Targeted Non-government

activeText 0 20 0.715 0.521 0.800
10 220 0.846 0.794 0.938
20 420 0.867 0.828 0.963
30 620 0.876 0.842 0.963
40 820 0.879 0.845 0.961

Gohdes (2020) 1,876 0.910 0.890 0.940

Note: Bold values represent the number of manually labeled documents and the classification performance if activeText stops at the
iteration with less than 0.01 increase of the out-of-sample F1 score.

FIGURE 5. Replication of Figure 3 in Gohdes (2020): Expected Proportion of Target Killings, Given
Internet Accessibility and Whether a Region is Inhabitated by the Alawi Minority

activeText with 620 labels Gohdes (2020) with 1876 labels
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Note: The results from activeText are presented in the left panel and those of Gohdes (2020) are on the right.
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conclusions by Gohdes (2020) (Figure 5, left panel),
however, it comes just at a fraction of the labeling
efforts (labeling 620 instead of 1,876 reports).

Human Rights Are Increasingly Plural

Park, Greene, and Colaresi (2020) investigate how the
rapid growth (in the last four decades) of ICTs has
changed the composition of texts referring to human
rights, and show that the average sentiment with which
human rights reports are written has not drastically
changed over time. They claim that if one wants to
really understand the effect of changes in the access to
information on the composition of human rights
reports, it is necessary to internalize the fact that human
rights are plural (i.e., bundles of related concepts). In
other words, the authors argue that having access to
new information has indeed changed the taxonomy of
human rights over time, evenwhen there has not been a
change in tone.
To empirically test such a proposition, Park, Greene,

and Colaresi (2020) conduct a two-step approach. First,
by training an SVM for text classification with three
classes (negative, neutral, and positive sentiment), the
authors show that the average sentiment of human
rights reports has indeed remained stable even in
periods where the amount of information available
has become larger.34 Second, they use a network
modeling approach to show that while the average
sentiment of these reports has remained constant over
time, the taxonomy has drastically changed. In this
section, using activeText, we focus on replicating the
text classification task of Park, Greene, and Colaresi
(2020), which is key to motivating their puzzle.
As in the reanalyses of Gohdes (2020), we adhere to

the same preprocessing decisions made by Park,
Greene, and Colaresi (2020) when working with their
corpus of Country Reports on Human Rights Practices
from 1977 to 2016 by the U.S. Department of State. In
particular, we use the same four hand-labeled human
rights reports (1,182 are positive, 1,743 are negative,
and 1,075 are neutral) and use the same document-
feature matrices (which contain thirty thousand fea-
tures, a combination of unigrams and bigrams). Again,
we conduct one hundred Monte Carlo simulations and
present the average performance across initializations.
As shown in Figure J.1 in Section J (Dataverse-only),
we stopped the active labeling process at the 25th
iteration of our algorithm as the out-of-sample F1 score
(from an 80/20 training/test split) does not increase by
more than 0.01 units.35 Using the results from the

classification task via activeText, the sentiment scores
of 2,473,874 documents are predicted. With those pre-
dictions, we explore the evolution of the average sen-
timent of human rights reports per average information
density score.36

Figure 6 shows that by labeling only five hundred
documents with activeText, instead of four thousand
labeled documents used by Park, Greene, and Colaresi
(2020) to fit their SVM classifier, we arrive at the same
substantive conclusion: the average sentiment of
human rights reports has remained stable and almost
neutral over time. In Figure J.2 in Section J (Dataverse-
only), we also show that this result is not an artifact of
our stopping rule and it is robust to the inclusion of
additional label documents (e.g., labeling 1,000, 1,500,
and 2,000 documents instead of just 500).

DISCUSSION

In this section, we address three key issues concerning
our proposed approach: (1) the (in-sample) bias that
occurs when actively selecting observations to train a
model; (2) the impact of mislabeling documents and
keywords; and (3) the practical considerations about
downweighting unlabeled data.

The Bias of Active Learning

As highlighted by Dasgupta (2011), Dasgupta and Hsu
(2008), and Farquhar, Gal, andRainforth (2021), active
learning introduces in-sample statistical bias due to
training non-i.i.d data. As described above, active
learning involves selecting the most informative data
points for training. This selection can introduce bias
because the newly labeled documents may not repre-
sent the entire of the target population.

To illustrate the nature of this bias, let’s denote the
population risk as r ¼ EZ,D½LðZi, ẐiÞ� . Here, L repre-
sents a loss function, such as the L1 or L2 norms. For
each observation indexed by i, Zi denotes its true label,
and Ẑidenotes the predictionsmade based on themodel
parameters and thedata’s features (D). It is important to
note that EZ,D indicates the expectation calculated over
the joint distribution ofZandD. In the training stage,we
want to find the model parameters that minimize the
population risk. However, the population risk is not
observed, and we can only estimate it using the labeled
data. Hence, the empirical risk, derived from an i.i.d
sample of the population with a size denoted as Nl, can

be computed by the formula: R̂ ¼ 1
Nl

PNl

j¼1½LðZj, ẐjÞ� .
This calculation provides an unbiased estimate of
r because the labeled data are randomly selected from
the population. With active learning, the empirical risk

34 As explained in Appendix A1 of Park, Greene, and Colaresi
(2020), negative sentiment refers to text about a clear ineffectiveness
in protecting or to violations of human rights; positive sentiment
refers to text about clear support (or no restrictions) of human rights;
and neutral sentiment refers to stating a simple fact about human
rights.
35 The only point where we depart from Park, Greene, and Colaresi
(2020) is that we use an 80/20 split for training/testing, while they use
k-fold cross-validation. Conducting k-fold cross-validation for an
active learning algorithm would require over-labeling because the

labeling process should be repeated k times as well. Because of this
difference, we refrain from comparing our model performance met-
rics to theirs.
36 Information density is a proxy for ICTs based on a variety of
indicators related to the expansion of communications and access
to information, seeAppendix B in Park,Greene, andColaresi (2020).
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is ~R ¼ 1
M

PM
m¼1½LðZm, ẐmÞ�, where M is the number of

labeled data selected actively. Because these M data
points are not a random sample of the population, ~R is
no longer an unbiased estimator of r.
Farquhar, Gal, and Rainforth (2021) propose an

unbiased estimator of the population risk with active
learning, called leveled unbiased risk estimator
(LURE), ~Rlure ¼ 1

M

PM
m¼1½vmLðZm, ẐmÞ� , where vm is

a function of the sampling probabilities of the actively
selected documents (refer to Section F of the Supple-
mentary Material for more details). They show that
~Rlure is an unbiased estimate with minimum variance in
its class of weighted estimators for the empirical risk. In
other words, the in-sample bias in the active learning
process can be corrected by ~Rlure (refer to Theorems
3 and 4 in Farquhar, Gal, and Rainforth 2021).
Importantly, according to Farquhar, Gal, and Rain-

forth (2021), one factor that determines whether the
in-sample bias correction improves out-of-sample pre-
dictive performance is the complexity of the model.
For example, they empirically show that the in-sample
bias correction with LURE improves the out-of-
sample classification performance for a simple linear
regression, but not for a neural network. Farquhar,
Gal, and Rainforth (2021) argue that for overparame-
terized models, correcting the in-sample bias from
active learning might not be advantageous to improve
out-of-sample classification because active learning
can serve as a regularization mechanism against over-
fitting bias. While activeText does not possess as many
parameters as a neural network, it has many more
parameters than linear regressions depending on the
number of features of the data. This implies that it is
an open question whether the in-sample bias correc-
tion improves the out-of-sample predictive perfor-
mance of activeText.
To examine whether the in-sample statistical bias has

adverse effects on the out-of-sample classification per-
formance, we conducted a series of simulation studies

involving 108 different configurations. In our simulation
studies, wemanipulated various aspects of the simulated
data, such as the number of unique words, the average
length of the documents (measured in number of
words), the difficulty of classification, and the proportion
of positive class documents in the corpus.

Figure 7 presents the results of implementing the
LURE bias correction to activeText under a simulation
setup. This setup involves generating simulation data
with one thousand documents, five hundred unique
features, an average of 50 features per document, and
the reference class accounting for 10% of the corpus.
We perform one hundred Monte Carlo simulations in
this context. The left panel presents the in-sample bias
of the ~R and ~Rlure , and the right panel presents the
corresponding out-of-sample F1 scores. The bias is
calculated as the difference between the population
risk and the empirical risk. For active learning, this is
represented as r−E½~R� , while for its bias-corrected
version, it is r−E½~Rlure�.

Figure 7 shows that regarding the in-sample bias of
the empirical risk, ~Rexhibits an upward bias in the early
stages of the labeling process, which gradually
decreases as more documents are labeled. This bias
arises because the most uncertain documents are
labeled first in active learning, causing the empirical
risk to initially surpass the population risk. In contrast,
we find that LURE weights effectively eliminate the
in-sample bias of activeText. However, as the right
panel of Figure 7 shows, the unadjusted version of
activeText demonstrates better out-of-sample classifi-
cation performance compared to its bias-corrected
counterpart. Consequently, our findings indicate that
addressing in-sample bias does not necessarily improve
the out-of-sample classification performance of active-
Text. These results hold across different simulation
settings and in our validation data. For a more detailed
overview of the simulation results, interested readers
can refer to Section F of the Supplementary Material.

FIGURE 6. Replication of Figure 1 in Park, Greene, and Colaresi (2020): The Relationship between
Information Density and Average Sentiment Score
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Labeling Error

Although our main findings operate under the
assumption that labelers are accurate, it is important
to acknowledge that human labelers can still make
errors. We will now investigate how mislabeling of
documents and keywords that are actively selected
impacts the classification performance of activeText.
Specifically, we aim to demonstrate the potential
impact of measurement errors in labeling, particularly
focusing on the effect of “honest” mistakes (classical
measurement error) on classification performance
and basic downstream analysis.
In the case of mislabeling actively selected docu-

ments, our results show that random perturbations
from true document labels do hurt the classification
performance.37 For example, in Section G.1 of the
Supplementary Material, we find that in the case of
the BBC News articles dataset described above, when
about 20 out of two hundred documents are labeled
with the incorrect label (10% mislabeling), the out-of-
sample F1 score remains high at around 0.87. However,
when the mislabeling of documents exceeds one in five

documents ( ≥ 20% mislabeling), there is a significant
decrease in the out-of-sample F1 score (the F1 is less
than 0.75). This pattern holds across all validation
datasets (refer to Figure G.1 in Section G.1 of the
Supplementary Material).

To illustrate how mislabeling affects downstream
analyses, we consider a simple example. Suppose we
are trying to predict the number of documents related
to a specific category, like politics in the BBC data. In
our validation studies, we already know the actual
proportions of documents in the categories we are
interested in. For instance, in the BBC dataset, 19%
of the articles cover politics, while in the Wikipedia
corpus, 9% of the documents are deemed toxic. Simi-
larly, 26% of Supreme Court cases involve criminal
procedure, and 16% of Human Rights reports include
allegations of physical integrity rights violations. To
gauge the impact of mislabeling, we assess the bias in
the predictions for the proportion of documents in the
target class made by our model. As illustrated in
Figure G.2 in Section G.1 of the Supplementary Mate-
rial, the bias increases as the rate of mislabeling rises.
For example, in theWikipedia comments dataset, if we
accurately label around two hundred documents, the
bias is minimal. However, introducing 30%mislabeling
results in a bias increase of 0.25 units. This trend is
consistent across all datasets, mirroring what we

FIGURE 7. Bias of the Empirical Risk for Labeled Data (Left Panel) and Out-of-Sample Classification
Performance (Right Panel) of activeText and activeText+LURE
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of-sample F1 score across one hundred Monte Carlo simulations. Shaded areas represent the 95% confidence intervals across Monte
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37 As outlined in Section G.1 of the Supplementary Material, in
binary classification, honest mistakes in labeling documents entails
choosing (at random) the opposite label from the true one.
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observed with the F1 score. Essentially, even minor
unintentional errors (honest mistakes) diminish accu-
racy when computing simple summary statistics such as
a sample mean.
In contrast to our results for the mislabeling of

documents, if compared to the no-keyword approach,
a small amount of classical measurement error on
keyword labeling does not hurt the classification per-
formance.38 For example, the results presented in
Figure G.3 in Section G.2 of the Supplementary Mate-
rial shows that when random noise is introduced, the
classification performance of activeText for binary
classification decreases slightly as the proportion of
mislabeled keywords increases to 30% or more. This
trend remains consistent across different validation
datasets and values of γ (the upweight assigned to each
keyword).
In light of these results, we believe that future

research focus on developing new active learning algo-
rithms that prioritize assigning labelers based on their
labeling expertise and adapt to various types of labeling
errors. One approach could involve allocating the most
skilled labelers to annotate the most uncertain or chal-
lenging documents, while assigning simpler tasks to less
proficient labelers. This strategy could optimize the
efficiency of the labeling process. Additionally, as we
discussed above, inaccurate predictions can introduce
bias, particularly in downstream tasks. This bias can be
exacerbated by departures from classical measurement
error, making it difficult to determine its direction.
Therefore, as recently recognized by authors such as
Knox, Lucas, and Cho (2022) and Fong and Tyler
(2021) further investigation is necessary to directly
tackle these potential biases, especially in settings such
as a poplar inference methods such as a regression
framework.39

Tuning the Value of λ

As noted above, we downweight the information from
unlabeled documents as we typically have more unla-
beled than labeled documents. Moreover, since the
labeled documents have been classified by an expert,
we want to rely more on the information they bring for
prediction.
An important practical consideration is how to select

the appropriate value of λ. One possible approach
would be to adopt popular model selection methods
(e.g., cross-validation) to choose the appropriate λ
value during the model initialization process. However,
cross-validation may not be practical when the labeled
data are scarce (or absent at the beginning of the
process). We have consistently observed across a vari-
ety of applications that very small values (e.g., 0, 0.001,
or 0.01) work the best on the corpora we used (see

Figures H.1 and H.2 in Section H.1 [Dataverse-only]).
However, more work is needed to clearly understand
the optimality criteria needed to select λ. We leave this
question for future research.

CONCLUSION

Human labeling of documents is the most labor-
intensive part of social science research that uses text
data. For automated text classification to work, a
machine classifier needs to be trained on the relation-
ship between text features and class labels, and the
labels in training data are givenmanually. In this article,
we have described a new active learning algorithm that
combines a mixture model and active learning to incor-
porate information from labeled and unlabeled docu-
ments and better select which documents to be labeled
by a human coder. Our validation and simulation stud-
ies showed that a moderate number of documents are
labeled, and the proposed algorithm performed at least
as well as state-of-the-art methods such as BERT at a
fraction of the cost. We replicated two published polit-
ical science studies to show that our algorithm lead to
the same conclusions as the original articles but needed
much fewer labeled documents. In sum, our algorithm
enables researchers to save their manual labeling
efforts without sacrificing quality.

Machine learning techniques are becoming increas-
ingly popular in political science, but the barrier to
entry remains too high for researchers without a tech-
nical background to make use of advances in the field.
As a result, there is an opportunity to democratize
access to these methods. We believe that our model
and R-package will provide applied researchers with a
tool that they can use to efficiently categorize docu-
ments in corpora of varying sizes and topics.
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To view supplementary material for this article, please
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