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Abstract

We introduce a class of polynomials which induce a permutation on the set of polynomials in one variable
of degree less than m over a finite field. We call then Am -permutation polynomials. We also give three
criteria to characterize such polynomials.
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1. Introduction

Various classes of permutation polynomials over finite fields are known [8], but very
little is known about the criteria for permutation polynomials. In some ways the most
useful criterion was first presented by Hermite [5] for finite prime fields and then
generalized by Dickson [3] to finite fields. For comparison with ours, we first state
the well-known Hermite-Dickson criterion.

THEOREM 1.1. A necessary and sufficient condition for f(x) € IF, [x] to be a
permutation polynomial is that

(1) / has exactly one root in F,;
(2) for each integer t with 1 < t < q — 2 such that t ^ 0 (mod p), the reduction

of fW (mod (xq — x)) has degree < q — 2, where p is the characteristic o/F(/.

The purpose of this paper is to introduce a class of polynomials which induce a
permutation on the set of polynomials of degree less than m over a finite field, which
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we call Am-permutation polynomials. Then we give three criteria to characterize such
polynomials, which are reduced to those known for permutation polynomials in finite
fields. Before formulating them, we give some necessary notation and definitions.

Let F, be a finite field of q elements where q is a power of a prime p, let A = F?[T]
be a polynomial ring in one variable T over F9 and k = $q(T) be the quotient field
of A. Throughout we fix an integer m > 1 once and for all. By Am we denote the set
of polynomials in A of degree less than m.

Let p : Am —• Am be an arbitrary map, then there is a unique polynomial fp e k[x]
of degree less than qm that represents p , in the sense that fp(a) = p(a) for all a € Am.
Indeed, such a polynomial is in principle given by the Lagrange interpolation formula
or by the more concise formula involving Carlitz polynomials

fp(x) = ( - l ) m 2_^ p(a)G*qm_,(x - a).

For a reference to this notation see the definition in Section 2. We say that
f(x) € k[x] is Am-invariant if f(Am) C Am, that is f(a) e Am for all a e Am,
and / is called an Am-permutation polynomial if f(Am) = Am. We are then ready to
formulate the extended Hermite-Dickson criterion for Am -permutation polynomials.

THEOREM 1.2. A necessary and sufficient condition for an Am-invariant f(x) e
k[x] to be an Am-permutation polynomial is that

(1) / has exactly one root in Am;
(2) for each integer t with 1 < / < qm — 2 such that t ^ 0 (mod p), the reduction

of fix)' (mod em(x) := f L e ^ t * ~ oc)) has degree at most qm - 2 .

It is easy to see that Theorem 1.2 coincides with Theorem 1.1 when m = 1,
since e\(x) = xq — x. As a corollary we get a necessary condition for nonlinear
A„,-permutation polynomials as in permutation polynomials over finite fields.

COROLLARY 1.3. If d > I is a divisor of qm — 1, then there is no Am-permutation
polynomial of Am of degree d.

PROOF. Suppose we have an Am -permutation polynomial of degree d dividing
qm - 1. Then deg t ( / ( ' r " l ) / < / ) = qm - 1, so part (2) of Theorem 1.2 is not satisfied
unless d = 1. •

The usefulness of Am -permutation polynomials is that they induce not only permu-
tations from Am into itself but also permutations from F,m into itself, for the latter,
since elements in Am can be viewed as an m-tuple of elements in F?. So, every single
A,,,-permutation polynomial could yield the same effectiveness as does an orthogonal
system of m permutation polynomials in multi-variables over a finite field (see [8]).
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Another potential use of Am -permutation polynomials: they may have some crypto-
graphic applications as in usual permutation polynomials [6]. Now we state two more
criteria for Am-permutation polynomials parallel to those [2, 7, 8] in finite fields.

THEOREM 1.4. A necessary and sufficient condition for an Am-invariant fix) e

k[x] to be an Am-permutation polynomial is that

(1) the reduction of f(x)qm~l (mod em{x)) has degree qm — 1;
(2) for each integer t with 1 < t < qm —2 such that t ^ 0 (mod p), the reduction

of fix)' (mod emix)) has degree at most qm — 2.

THEOREM 1.5. A necessary and sufficient condition for an Am-invariant fix) e
k[x] tobean Am-permutation polynomial is that'^,aeA xifi&)) = Ofor all nontrivial
additive character x of Am.

It is a little bit surprising to see that the proofs of Theorems 1.2, 1.4 and 1.5
for m > 1 are modelled on the proofs of three theorems, for m = 1, given in [8],
together with using the Carlitz polynomials on A. In Section 2, we introduce the
Carlitz polynomials and some numbers in A and then establish three main results in
Section 3.

2. Preliminaries

Recall that q is a power of a prime p, F? is a finite field of q elements, A = F,[T]
is a polynomial ring in one variable T over F? with its quotient field k = F , ( r ) . For
an integer n > 0, we denote by An the set of polynomials in A of degree less than n.
Then it is an n-dimensional vector space over F9, so its cardinality is q".

In the 1930's, Carlitz did fundamental works for the arithmetic of A, nowadays
known as the Carlitz modules. To do so, he introduced the polynomial analogues of
classical objects such as the binomial coefficient polynomials and the factorials and
so on. We refer to [ 1, 4] for the details on these subject matters.

Let eoix) = x, Fo = Lo — 1 and for an integer n > 1, let enix) = fLe/i,.^ ~ a)>
Fn = [n][n - \]q • • • [I]9""' and Ln = [n][n - 1] • • • [1], where [n] = T'1" "- T. It is

well known that enix) is an F?-linear polynomial of degree q" with coefficients in A
since the roots An of enix) form an F^-vector space of dimension n. Moreover, Carlitz
used the Moore determinant to give an explicit expansion for enix);

,=o

The properties of the numbers Fn and Ln in A are well understood. In fact,
enia) = Fn for any monic polynomial a e A of degree n, so F, is the product of
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all monic polynomials in A of degree n and Ln is the least common multiple of all
polynomials in A of degree n.

DEFINITION 2.1. (1) Let En(x) = en(x)/Fn for any integer n > Oand E0(x) = x.
(2) For the <?-adic expansion of / > 0, given by t — a0 + ot\q + • • • + asq

s with
0 < a, < q, put

s

G,(x):=Y]Ea
n"(x), t>\; G0(x) = 1,

and
s

G*,(x) :=Y\Glq.(x), t > 1; G*0(x) = 1,

where

r* ( r , - \ E ° M ifO<a<q-l;
U"«"(X)-\E°n(x)-l if a =q-\.

Both G,(x) and G*(A:) are polynomials of degree t in &[*] and satisfy various
identities such as the binomial formula[l]. In particular, one sees that

Gar(x) = G*ar{x) = Ea
n{x), 0<a<q

and

G;._ , (JC) = (E«-\x) - IKE?" V ) - 1) • • • (Eq
nZl(x) - 1).

From the definitions, we also see that G*n_l(x) kills all elements a 6 An exclud-
ing 0 for which case G*,_,(0) = ( -1)" . We now indicate the notational difference
between the Carlitz polynomials G,(x) and G*(x) defined here and Carlitz's original
polynomial G,(x)/g, and G*(x)/g, defined in [1], where g, := I~In=o F"" ' s a n a n a "
logue of the classical factorial. Thus the leading coefficient of G,(x) and G*(x) is
\/g, respectively. In particular, we see, from the properties of Fn and Ln, that the
leading coefficient of G*._t(x) is Ln/Fn.

In the context of function field arithmetic, one of the most important results con-
cerning Carlitz polynomials is that both {G,(x)},>0 and [G*(x)},>0 form an A-basis
of the ring of all integral-valued polynomials / defined on A, by which we mean that
/ e k[x] maps A into itself (see [1]).

3. Proofs of main results

We shall here employ the Carlitz polynomials to establish the extended Hermite-
Dickson criterion for Am -permutation polynomials, and then to prove Theorems 1.4
and 1.5. To this end we begin by proving two lemmas.
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LEMMA 3 . 1 . Let fg€ k[x], we have f(a) = g(a)for all a e Am if and only if

f(x) = g(x) (modeff lW).

PROOF. The result follows from the division algorithm on polynomial rings over
any fields. For completeness sake, we here follow the proof for finite fields given
in [8]. By the division algorithm, we write f(x) — g(x) = h(x)em(x) + r(x) with
h,r e k[x] anddegx r < qm. Then we see that f(a) = g{a) for all a e Am if and only
if r(a) = 0 for all a e Am, and then the latter condition is equivalent to r = 0. •

LEMMA 3.2. Let a0, a\, . . . , aqm_x be elements of Am, then the following are equiv-
alent:

(1) a0, a\,..., aqm_x are distinct.

PROOF. (1) o (2): To show this equivalence, for fixed i with 0 < i < qm - 1,
consider the polynomial Xt(x) '•= (— l)mG*m_,(A; — a,-). Then it is easy to see that x<
is the characteristic polynomial function at a, 6 Am, that is, Xi (ai) = 1 a n d X, (ft) = 0
for any b e Am with b ^ a,. With these characteristic polynomials we form the
polynomial

</'"-! q"'-\

X(x) = J2 X,W = ( -Dm Yl <V,_,(JC -a,-)-
/=0 i=0

Using the binomial formula [1] for G*(x), rewrite it as follows

qm-\qm-\

X(x) = (-1)" J^ ]T G^.jMGjix)
i=0 j=0

, = 0 i = 0

We see that x(x) m a P s each element of Am into 1 if and only if {a0 a,»-i} = Am.

Since degr(x) < qm', Lemma 3.1 shows that x(x) maps each element of Am into 1 if
and only if x(x) = 1, which is equivalent to saying (-1)'" £Xo"' ^q»-i->(a ') = 0
unless 7 = 0 for which case we get £*"" ' G*,,.,^,-) = (-1)"' .
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(2) o (3): For / written in g-adic form as in the Definition 2.1 (2), write

I \X) = (^0 yX) ~ "ao{,q-\)> ' ' " \\J s \x) ~ 0as(q-l)),

where Stj is the Kronecker delta. Expanding out the right hand side of the previous
equation, we get

G*(x) = G,(x) +
i=0

where C-" e {-1,0, 1}. Thus the transition matrix of [G*(x) : 0 < i < t] to
[G,(x) : 0 < i < t] is a lower triangular matrix with diagonal entries all 1, so the
above equivalence follows from invertibility of the transition matrix.

The equivalence of (3) and (4) easily follows by writing x' = H L o ^ ' ^ ' W and
G,(x) = ] r ' = o d ,"y for each 1 < / < qm - 1. In case of t — qm - 1, we compare the
leading coefficients of two polynomials on both sides in two respective equations and
get the desired result. •

We remark that Lemma 3.2 is an extension of [7, Lemma 1] to Am, so that parts (2),
(3) and (4) coincide for AM = 1 and that it is useful to the characterization for non-
polynomial Am-permutation functions in a future work. The following is immediate
from Lemma 3.2 but we give an alternate proof by computing the logarithmic derivative
of em(x) in two ways.

E fo 0 < t < qm - 1;

a' — {

PROOF. We first compute

1

'-<*> ^Ax~a) -tC l-ax~i

aeAm ;=0

Using the explicit expansion of em(x), we again compute the logarithmic derivative
of em(x). For simplicity, write em{x) = Y17=oc>xq' with Q = (— \)m~'Fm/FiLm_i

q'
and calculate

4 £ U - i ^ = coi*
em(x) em(x)
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Equating coefficients of terms of degree t + 1 in two resulting formal power series
in x~l, we get the desired result. •

PROOF OF THEOREM 1.2. Suppose that an ^-invariant / e k[x] is an Am-
permutation polynomial. Then part (1) is trivially true. To show part (2) write
fix)' = h,(x)em(x) + rt(x) with h,(x), r,(x) € k[x], where r,(x) = £ * ^ ' b^x'.
Then we see, by Corollary 3.3, that

i = 0

Since / is an Am -permutation polynomial, J2aeAm / ( « ) ' — 0 f° r e a c h 1 < t < qm — 2,
hence b^l_l = 0 for 1 < t < qm — 2.

Conversely, suppose (1) and (2) hold. It is then easy to see from (1) that

a)) = ( - D m .

We also see from (2) and Corollary 3.3 that for 1 < t < qm - 2 such that t ^ 0
(mod p),

Using

we get Y,aeAm(f(a)Y = 0 for 0 < t < qm - 2 since the case t = 0 is trivially
true. Hence J2azAm

 G*(/(«)) = 0 for 0 < r < gm - 2. Therefore, it follows from
Lemma 3.2 that / is an Am-permutation polynomial. D

PROOF OF THEOREM 1.4. Suppose that an Am-invariant f(x) e k[x] is an
Am-permutation polynomial. It suffices then to show part (1) since part (2) fol-
lows from Theorem 1.2. Using the same notation as in the proof of Theorem 1.2, we
get

which equals {—\)mFm/Lm by Corollary 3.3, and so we are done.
Conversely, suppose (1) and (2) hold. Then as in the proof of Theorem 1.2 we see

that (2) implies that £ f(a)' = OforO < t < qm-2, hence £ , G*(f(a)) = 0
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for 0 < t < qm - 2. On the other hand, (1) implies J2a^Am / (« )*"" ' ^ °> hence we
see that J2aeAm G*m_](f(a)) ^ 0. Now consider the function

X(x) =

Indeed, x(x) = 12aeAm Xfw- We then know that x is a nonzero constant polynomial.
The argument in the proof of Lemma 3.2 gives that x(P) = 0 for some /3 € Am unless
an Am-invariant / is an Am-permutation polynomial, which leads to a contradiction.

•

PROOF OF THEOREM 1.5. Before proceeding to prove Theorem 1.5, we note that Am

is an additive abelian group of order qm, so that the general theory in [9] of characters
is carried over to the group Am. For now Am denotes the group of additive characters
on Am with a trivial character xo as the identity element.

If f(x) € k[x] is an Am-permutation polynomial, then for a nontrivial additive
character x of Am we have Y,aeAm x(/(«)) = J2aeAm X(«) = ° b v the orthogonality
formula for characters.

Conversely, assuming that YlatA X(/(<*)) = 0 f° r all nontrivial additive char-
acter x of Am, we denote by Nf(b) the number of solutions in Am of the equation
f(x) = b for any b e Am. Then we can easily derive Nf(b) as follows:

= i E E *(f(a) - v = -L E E
aeAm X€A,,,

\ E *w E
Thus / is an Am -permutation polynomial, as desired. •

Finally, we close this paper by giving some nontrivial examples of Am -permutation
polynomials.

EXAMPLE 1. Take A = F 2 U] and m = 3. Then

A3 = {0, 1, T, T + 1, T\ T2 + 1, T2 + T, T2 + T + 1}.

Consider the polynomial f(x) e k[x] given by

f(x) = T2Gb{x) + TGs(x) + G4(x) + T2G2(x) + (T + 1)G,(JC) + G0(x).

One can use the formula in the introduction and definitions in Section 2 to check that /
induces a permutation on AT, corresponding to (0 1 T T + l) . It also induces a
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permutation on F̂  given by (000) i-> (100) h+ (010) H» (110) i->- (000) with the
remaining vectors fixed.

Consider the polynomial f{x) given by

f(x) = (73 + T2 + T)G6(x) + (T3 + T2 + l)G5(x) + T2(T2 + T + l)G4(x)

+ (T2 + l)Gi(x) + (T2 + T + l)G0(x).

It is then checked that / induces a permutation on A3 corresponding to

(0 T2 + T + l)(l T T2).

It also induces a permutation on f\ given by

(000) «+ (111), (100) M> (010) h^ (001) M- (100)

with the remaining vectors fixed.

EXAMPLE 2. Take A = ¥3[T] and m = 2. Then

A2 = {0, 1, 2 , T, T + 1, T + 2 , 2T, 2T+l,2T + 2\.

Consider the polynomial f(x) e k[x] given by

It is then checked that / induces a permutation on A3 corresponding to (0 1 2).
It is now easy to see that the polynomial induces a permutation on F3 given by
(00) i-+ (10) (->• (20) i-)- (00) with the remaining vectors fixed.

Consider the polynomial f(x) given by

= 2T'G6(x) + 2T2G4(x) + 2T2Gi(x) + 2TG2(x)

Then / induces a permutation on A2 corresponding to

(0 1 2 T T + l T + 2 2T 2T + I 2T + 2 ) .

It also induces a permutation on F3 given by

(00) (-»• (10) h^ (20) i-)- (01) Y-+ (11) h^ (21) h+ (02)

h^ (12) 1-^ (22) h+ (00).
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