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This study investigates the transitional wake dynamics of a simultaneously pitching–
heaving airfoil in the low Reynolds number regime. The transition from Kármán to
reverse Kármán wakes and the subsequent wake deflection are known to take place
entirely in the periodic regime as the dynamic heave velocity κh (proportionally, the
amplitude-based Strouhal number StA) is gradually increased. However, further increase in
κh may result in the loss of dynamic stability of the deflected vortex street and an eventual
transition to chaos. This phenomenon has largely remained unexplored in the existing
literature. The present study attempts to fill this gap and aims to establish a dynamic
link between the near- and far-field wake transitions. It is shown that the deflected jet
undergoes a switching of deflection direction in the far-field as the near-field encounters
a quasi-periodic transition with the increase in κh. The quasi-periodic behaviour of the
near-field is seen to get interspersed with intermittent aperiodic windows, resulting in a
complete reversal of the deflection direction through flipping of the immediate vortex
couple. Eventually, the wake topology becomes fully chaotic through a series of rapid
aperiodic jet-switching. To the best of the authors’ knowledge, this is the first study that
investigates the role of this aperiodic jet-switching in ushering in chaos in the wake of a
pitch–heave flapping system. The mechanism of jet-switching and the role of leading-edge
vortex are also revealed. Flow field dynamics during these changes and the underlying
vortex interactions are analysed using nonlinear dynamical tools.

Key words: bifurcation, chaos, vortex streets

1. Introduction

Vortex dominated flow physics behind oscillating plates and airfoils in low Reynolds
number (Re) regime has been studied quite extensively in the literature. These studies
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have been inspired from the optimum lift and thrust generation capabilities observed in
different biological phyla, such as insects, birds and fishes, through an excellent interplay
between flapping wings/fins and the flow field vortices. Recent research interests in this
field also stem from the need for designing biomimetic robotic devices, such as flapping
wing microaerial vehicles (known as MAVs) and autonomous underwater vehicles (known
as AUVs) (Triantafyllou, Triantafyllou & Yue 2000; Platzer et al. 2008; Shyy et al. 2010).
The aerodynamic performance of flapping airfoils in pure pitching (Koochesfahani 1989;
Godoy-Diana, Aider & Wesfreid 2008; Schnipper 2010) and pure heaving (Jones, Dohring
& Platzer 1998; Lai & Platzer 1999; Lewin & Haj-Hariri 2003; Heathcote & Gursul 2007)
has been studied quite extensively. However, the literature on combined pitching–heaving
kinematics is relatively limited (Anderson et al. 1998; Read, Hover & Triantafyllou
2003; Von Ellenrieder, Parker & Soria 2003; Van Buren, Floryan & Smits 2019). The
present study considers a canonical pitch–heave flapping model for investigating the
transitional behaviour of the far-field wake as the flow dynamics approaches chaos.
The unsteady load generation mechanisms of flapping foils are inherently linked with
the nature of the wake interactions around them, and chaotic flow field would result
in unfavourable load conditions from the control point of view of man-made flapping
devices. It is of considerable importance to have an appropriate understanding of the
transitional flow-dynamics around flapping foils for the efficient design and development
of control algorithms for nature-inspired flapping devices to ensure their stable operations.
Furthermore, the novelty of the present study lies in filling in the gaps in the existing
literature on the transitional wake patterns of a flapping airfoil beyond the periodic regime,
which is rarely addressed in the literature from a combined viewpoint of the behaviour of
flow field vortices and nonlinear dynamics.

The existing literature categorises the flow field in a variety of trailing-wake patterns
depending on the amplitude-based Strouhal number, StA = 2fA/U∞ (Anderson et al.
1998), where A and f are the flapping amplitude and frequency, respectively, and U∞
is the free stream velocity. The dynamic heave velocity (κh), which is proportional to
StA, has also been commonly used in this regard; h (=A/c) is the non-dimensional
stroke amplitude, κ (=2πfc/U∞) is the reduced frequency and c is chord length of the
airfoil. As κh is increased to a high value (κh > 1.50), the periodicity of the wake is
gradually lost and the wake transitions to aperiodicity. This has been investigated for
heaving airfoils in a series of studies – see Lewin & Haj-Hariri (2003), Ashraf, Young
& Lai (2012), Martín-Alcántara, Fernandez-Feria & Sanmiguel-Rojas (2015) and Khalid
et al. (2018). Most of them have reported a quasi-periodic transition to chaos, though
no rigorous dynamical tests were used to establish this route. Badrinath, Bose & Sarkar
(2017) have observed the presence of an intermittency route to chaos in pure heaving
and have also established the dynamics using classical and non-classical tools based on
nonlinear dynamical theories. For a pitching airfoil as well, a quasi-periodic route to chaos
was reported at high pitch amplitudes by Zaman, Young & Lai (2017). Recently, Deng
et al. (2016) have observed chaotic flow patterns for both pure heaving and pure pitching
separately, though the authors did not comment on the nature of the transition route.

To the best of the authors’ knowledge, similar studies for a combined pitching–heaving
airfoil are hard to find, notable exceptions being the studies reported by Lentink and
his coworkers (Lentink et al. 2008, 2010). Also, very recently, Bose & Sarkar (2018)
considered a pitching–heaving case and observed a quasi-periodic transition to chaos in the
near-field patterns. Each dynamical state and the transitions were established using robust
measures from dynamical systems theories. The authors further investigated the role of
leading-edge vortices (LEVs) in triggering aperiodicity in the near-field. Nonlinear time
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series analyses were undertaken using the time histories of the aerodynamic loads, which
directly reflect the near-field behaviour. A study of the far-field dynamics in the same
parametric regime was not attempted by the authors. While the near-field holds the key
to understanding the trigger to aperiodicity, far-field patterns reveal the development
of the wake and its long term evolution. As the near-field and far-field dynamics are
related, one would also expect the far-field to lose its periodicity; however, the underlying
mechanism needs to be established. Although some interesting observations of the far-field
wake patterns, such as loss of stability of a deflected reverse Kármán wake and irregular
jet-switching, have been reported in the literature, chaos has not been reported in the
far-field wake. Furthermore, these interesting far-field patterns have not been linked to
the near-field transition behaviour. The present study investigates the transition route
to chaos in the far-field wake, the influence of the near-field on its transitions and
the spatio-temporal behaviour that leads to aperiodicity and chaos, while a dynamic
interlinking of the far-wake with the near-field interactions is sought.

Though the far-field wake in the periodic but deflected regime has been studied widely,
a few questions have remained unanswered. For example, the role of LEVs has not been
addressed. Godoy-Diana et al. (2009) have studied the mechanism of wake deflection
by modelling the self-advection and relative phase velocities of two consecutive vortex
dipoles. Zheng & Wei (2012) supported these findings and also proposed an extension
to this wake model. Recently, He & Gursul (2016) have also proposed a simplified
point-vortex-based model to investigate the criterion of symmetry breaking deflection in
the wake. Though these simplified artefacts can provide some answers to the mechanism
of wake deflection, they cannot capture the effect of the LEVs in it. The role of the LEVs
on the transition of the wake from deflected periodic to aperiodic and chaotic patterns is
also unknown. On the other hand, LEVs have been reported to provide the first trigger
for the aperiodic transition in the near-field, as reported by Bose & Sarkar (2018). The
mechanism of propagation of aperiodicity from near- to far-field and the significance of
the LEVs need further investigation. It is also of interest to explore the possible different
transitional wake patterns that would precede chaos.

Note that a deflected wake is periodic and is a stable dynamical state. It can be aligned
either in the upward or in the downward direction depending on the initial condition of
the airfoil motion and the sense of the starting vortex. However, there have been reports
of gradual switching in the deflection direction of the reverse Kármán street with time at
high κh, where it can switch completely from upward to downward and vice versa (Jones
et al. 1998; Heathcote & Gursul 2007), with the switching being independent of the initial
condition of the airfoil motion. This has been referred to as ‘jet-switching’ in the literature.
Jones et al. (1998) had experimentally observed that the direction of deflection switches
in a random fashion and is triggered by small perturbations present in the flow field. The
authors could not capture the switching in their inviscid simulations, which underlines the
role of viscous mechanisms behind it. Lewin & Haj-Hariri (2003) were the first to observe
switching through numerical simulations, using a Navier–Stokes (N–S) solver. However,
they did not comment on whether the switching occurred periodically. Heathcote & Gursul
(2007) reported the presence of jet-switching in their experiments with heaving foils in a
quiescent flow condition. They further observed a quasi-periodic pattern in switching and
reported the switching period to be at least two orders of magnitude higher than that of
flapping. The authors also commented that, due to its very slow return period, capturing
the switching numerically through high fidelity simulations is prohibitively expensive.
They further said that the time scale of switching is influenced by the amplitude and
the frequency of the flapping motion. Wei & Zheng (2014) have observed a reversal in
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the deflection angle from the near-field to the far-field. This is an important observation
as it points to the fact that switching may actually start from the far-wake and gradually
propagate to the near-field, eventually reversing the deflection direction of the entire wake.
Shinde & Arakeri (2013) observed jet-switching in their experiments with a pitching foil
in quiescent fluid, that reportedly took place in an aperiodic manner.

Therefore, the existing literature is not conclusive about the regularity of jet-switching
phenomenon; whether it has any well-defined period, is slightly aperiodic (quasi-periodic)
or is completely unpredictable. One also needs to study if and how the regularity of
switching contributes towards the overall chaotic transition in the wake. Note that none
of these studies did go beyond the periodic regime and study the parametric regime of
chaos in the far-field wake. Besides, the role of LEV in providing the flow field trigger for
switching has not been investigated either. Although Heathcote & Gursul (2007) reported
the presence of LEV during jet-switching, Shinde & Arakeri (2013) witnessed switching in
the absence of any LEV generation. Also, to the best of our knowledge, the spatio-temporal
behaviour of the vortex interactions during the transition between the two stable deflected
patterns (upward and downward) of the wake has not been reported in the literature. Shinde
& Arakeri (2013) have reported the existence of a jet spread-out prior to switching, but no
information on its dynamical signature was provided. At higher κh, the mechanism of
breakdown of a jet-switched wake and the role of near-field interactions on it are also
unknown. In light of the above, the present study investigates the far-field dynamics,
starting from a parametric regime of deflected wake and jet-switching to the regime of
complete loss of periodicity. To search for the mechanisms behind this transition, as well
as to understand the role of aperiodic jet-switching behind chaos, are important objectives
of this study. Also, in the context of combined pitch–heave cases, Heathcote & Gursul
(2007) have explicitly pointed out that the existence of jet-switching is not known for
coupled pitch and heave motions, and as the addition of pitch to heave kinematics would
change the leading-edge separation characteristics, the scenario could be significantly
altered.

The primary objectives of this study can be identified as follows. (i) To establish
dynamical interlinking of near- and far-field wakes during the course of flow field
transitions, (ii) to investigate the role of aperiodic jet-switching as a precursor to chaos
in the wake of a pitching–heaving flapping system, (iii) to understand the mechanism of
jet-switching and the importance of the LEVs and other near-field interactions in triggering
it. For the first objective, the far-wake dynamics corresponding to the near-field transitions
is investigated in terms of the vorticity contours and the Lagrangian coherent structures
(LCS), identified through backward finite-time Lyapunov exponents (bFTLE) ridges. The
far-wake patterns are interlinked with the corresponding near-field flow dynamics using
an array of robust quantitative measures to uncover the overall wake dynamics. For the
second objective, different intermediate transitional far-wake patterns presaging chaos
are characterized, and following the trajectories of the consecutive couples individually,
the existence of jet-switching and the changes in switching location and frequency are
identified. Thereafter, the dynamical signatures of the intermediate far-field patterns are
investigated to establish whether jet-switching acts as a precursor to chaos in the far-wake.
It is substantiated from the present study that the frequent aperiodic bursts in the dynamical
state of intermittency lead to rapid aperiodic switching through irregular flipping of the
immediate couple at the trailing edge that translates to eventual transition to sustained
chaos. For the third objective, a thorough investigation of the near-field interactions is
carried out and the fundamental vortex interaction mechanisms are identified to highlight
the role played by the LEV.
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T = 1/f

C A

α0

Figure 1. Schematic of the prescribed pitching–heaving airfoil motion.

The remainder of this paper is organized as follows. Section 2 outlines the computational
methodologies and the flow-solver validation studies. Section 3 depicts the overall
course of transition in the wake and establishes different transitional wake patterns. The
underlying vortex interactions and the role of leading-edge separation is presented in § 4.
Finally, § 5 highlights the salient outcomes of this study.

2. Problem definition and simulation methodology

2.1. Flapping kinematics
A flapping NACA0012 airfoil with combined pitching–heaving kinematics is considered
for the present unsteady simulations and the governing kinematic equations are given by

y(t) = A sin(2πft); α(t) = α0 sin(2πft + φ). (2.1a,b)

Here, A is the heave amplitude, α0 is the pitch amplitude and f is the oscillation
frequency. Note that the phase difference between the pitch and heave motions (φ) has
been considered to be zero in the present study. A schematic of the prescribed flapping
motion is presented in figure 1. Equation (2.1a,b) can be non-dimensionalised as

ȳ(t) = h sin(κτ); ᾱ(t) = α0 sin(κτ + φ). (2.2a,b)

The corresponding non-dimensional parameters are defined as follows: reduced frequency
κ = 2πfc/U∞, non-dimensional time τ = tU∞/c, non-dimensional heaving amplitude
h = A/c and Reynolds number Re = U∞c/ν, amplitude-based Strouhal number StA =
fA/U∞ and chord-based Strouhal number Stc = fc/U∞, where c is the chord length,
U∞ is the free stream velocity and ν is the kinematic viscosity. The unsteady flow
past a simultaneously pitching–heaving wing is simulated for various h values ranging
from moderate to high value (0.5 � h � 1.25) at κ = 2, α0 = 15◦ and Re = 1000. The
chosen parameter values enable us studying the role of the leading-edge separation on the
dynamical transition in the flow field at the high amplitude and low frequency regime.

2.2. Governing equation and solver details
The flow is modelled by incompressible N–S equations and are solved in an arbitrary
Lagrangian–Eulerian-based framework (known as ALE) (Ferziger & Peric 2002),
involving a time-varying computational domain. A radial basis function (known as RBF)
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interpolation-based (Bos, Van Oudheusden & Bijl 2013) mesh motion strategy has been
used here. The N–S equations, cast into arbitrary Lagrangian–Eulerian, are given by

∇ · u = 0, (2.3)

∂u
∂t

+ [(u − um) · ∇]u = −∇p/ρ + ν∇2u. (2.4)

Here, u is the velocity of the flow, um is the grid point velocity, p and ρ are, respectively,
the fluid pressure and density.

The forced flapping simulations of a rigid airfoil are performed using an unsteady
incompressible N–S solver ‘icoDymFoam’ from an extended version of the finite-volume
based open-source computational fluid dynamics package OpenFOAM – foam-extend-3.0
(Jasak et al. 2007). The spatial and temporal discretization, used in the present solver,
are second-order accurate. A second-order implicit backward differencing scheme is used
for the temporal discretization along with a maximum Courant-number-based variable
time-stepping method. A pressure implicit with splitting of operator (known as PISO)
algorithm (Ferziger & Peric 2002) with a predictor step and three pressure correction loops
has been used to couple the pressure and velocity equations. A preconditioned conjugate
gradient (known as PCG) iterative solver is used to solve the pressure equation where
a diagonal incomplete-Cholesky (known as DIC) method is used for preconditioning.
A preconditioned bi-conjugate gradient (known as PBiCG) solver is used to solve the
pressure–velocity coupling equation and the diagonal incomplete-LU method is used for
preconditioning. The absolute error tolerance criteria for pressure and velocity are set
to 10−6.

2.3. Computational domain and boundary conditions
A circular computational domain is chosen for the present study – see the schematic of the
computational domain in figure 2(a). A zero pressure gradient and a constant free stream
are considered at the inlet; whereas a zero velocity gradient and atmospheric pressure
condition are imposed at the outlet. Besides, no-slip and zero normal pressure gradient
conditions are considered on the horizontal walls and the airfoil surface – the latter is
considered to be a moving wall.

The size of the computational domain has been chosen based on a domain independence
study to ensure that the present results are insensitive to an increase in the domain size. The
time histories of Cl and Cd at κ = 2, h = 0.6 and α0 = 15◦ have been compared for three
different domain sizes with radius = 20c (domain 1), 25c (domain 2) and 30c (domain 3) –
see figures 2(b) and 2(c). It is seen that the results, obtained using domain 1, show a
slight deviation in the ‘kink’ regions compared with those obtained using domain 2 and
domain 3. However, the time histories of both Cl and Cd, obtained using domain 2, show
an excellent match with the results of domain 3. The flow field comparisons, presented
in figure 2(d), also show a good agreement with each other. Based on these observations,
domain 2 has been chosen for further computations in the present study. It is also verified
that the results obtained using the chosen domain are not affected by the imposed pressure
boundary condition at the outlet. This is achieved through a comparison of the present
results with those obtained using a zero pressure gradient boundary condition at the outlet
(results are not presented here for the sake of brevity).

The computational domain is discretized using unstructured grids. Figure 3(a) shows a
close-up view of the mesh around the airfoil. For better visualization of the boundary layer
discretization, the zoomed view of the mesh around the leading-edge and trailing-edge
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Domain 1 (R = 30c) Domain 2 (R = 25c) Domain 3 (R = 20c) Vorticity Z
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–1 × 101

5

0

–5

Figure 2. (a) Computational domain for the analysis (not to scale); domain size independence study for
(b) Cl and (c) Cd; (d) comparison of the flow field for three different domain sizes.

have been presented in figures 3(b) and 3(c), respectively. A grid independence test has
been performed by comparing the aerodynamic lift and thrust coefficients Cl and Ct,
instantaneous velocity (U/U∞) at (x/c = 2, y/c = 0) and instantaneous velocity profile
at x/c = 2, t/T = 10, using grids of different resolutions to finalize the mesh, and the
results are presented in figures 3(d), 3(e), 3( f ) and 3(g), respectively. The results with
400 grid points on the airfoil show an excellent match with those obtained using the 600
grid points mesh for all four quantities. Consequently, the mesh with 400 grid points on
the airfoil (containing 0.36 million grid points in total) is chosen for further analysis. The
quantitative values and the corresponding relative errors with respect to the chosen mesh
are presented in table 1.

2.4. Validation of the solver
The unsteady flow solver has been extensively validated both qualitatively and
quantitatively for pure heaving as well as pure pitching kinematics by comparing the
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Figure 3. (a) Close-up view of the computational grid around the airfoil; zoomed view of the mesh around
(b) the leading-edge (inset ‘A’) and (c) the trailing-edge (inset ‘B’); grid independence results for (d) Cl,
(e) Ct; ( f ) instantaneous velocity time-history at x/c = 2, y/c = 0; and (g) instantaneous velocity profile at
x/c = 2, t/T = 10. The legends in panels (d–g) indicate the number of points on the airfoil surface.

Mesh RMS value of velocity Peak lift coefficient Mean drag coefficient
Urms (m s−1) (Cl)peak (–) (Cd)mean (–)

Mesh 1 (200 points) 2.1456 (0.093 %) 11.8996 (0.571 %) −0.3910 (1.783 %)

Mesh 2 (400 points) 2.1436 11.8320 −0.3981
Mesh 3 (600 points) 2.1434 (0.009 %) 11.8457 (0.116 %) −0.4030 (1.231 %)

Table 1. Results of grid independence study (% relative error). The abbreviation RMS stands for root
mean square.
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(a) (b)

(c) (d )

Figure 4. A comparison of the vorticity contours from the present computation (a,c) with the dye flow
visualization results obtained by Jones et al. (1998) (b,d) for a heaving airfoil with kinematic parameters:
κh = 0.60, h = 0.20 (a,b) and κh = 1.50, h = 0.12 (c,d). (Permission to reproduce the experimental frames
has been obtained from the authors.)

results of present computations with experimental studies available in the literature – see
Bose & Sarkar (2018). Figure 4 presents the qualitative validation of the flow solver in
terms of a comparison of the trailing-edge wake patterns of a heaving airfoil obtained
from the present computations with results from the dye flow visualization available in
Jones et al. (1998) for two different κh values. Figures 4(a) and 4(b) show the comparison
of wake vorticity contours for κ = 3 and h = 0.2 (κh = 0.60). The present computational
results corroborate the experimental results in capturing the reverse Kármán vortex street.
A similar comparison is presented for a higher non-dimensional heave velocity case for
κ = 12.5 and h = 0.12 (κh = 1.50) in figures 4(c) and 4(d). A deflected vortex street is
observed for such high non-dimensional heave velocities (κh > 1.00). A close agreement
is seen between the computational and experimental flow patterns in this case, as well.

The present solver has also been qualitatively validated in the periodic as well as
the chaotic regime in terms of phase-averaged vorticity fields, by comparing with the
two-dimensional experimental results of Lentink et al. (2010) – see figure 5. The
comparison for the chaotic case is presented close to the onset of chaos at κh = 2.1,
with the experimental result that is available nearest to the onset. The phase-averaged
vorticity fields from the experimental results of Lentink et al. (2010) are shown in
figures 5(a) and 5(b), respectively. For the numerical simulations, the phase-averaged
vorticity contours are obtained by averaging the flow field snapshots over the same time
interval and presented in figures 5(c) and 5(d), corresponding to κh = 1.25 and 2.1,
respectively. A crisp pattern, as observed in figures 5(a) and 5(c) for κh = 1.25 (with
α0 = 0◦), results due to repeating flow-structures in the consecutive cycles, and thus is
representative of periodic dynamics. On the other hand, a blurry pattern is observed for
κh = 2.1 (with α0 = 15◦) in figures 5(b) and 5(d), indicating loss of periodicity due
to unpredictable chaotic interactions in the wake. The phase-averaged vorticity field for
κh = 2.5 (with α0 = 15◦) also shows a qualitatively similar blurry pattern, representative
of chaos (not shown here for the sake of brevity). The numerical predictions are seen to
match the experimental results qualitatively, having a reasonable agreement on the onset
of aperiodicity as well. Nevertheless, a direct one-to-one comparison cannot be made
here since the experiments were carried out with an elliptic airfoil, having 5 % relative
thickness. Note that both the studies are carried out at Re = 103.
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(a) (b)

(c) (d )

Figure 5. Phase-averaged vorticity contours at different non-dimensional heaving velocities (kh). Images in
panels (a,b) are from the soap film experiments by Lentink et al. (2010). Images in panels (c,d) are results
from the present computations. The experimental parameters are (a) κ = 1.25, h = 1, κh = 1.25, α0 = 0◦;
(b) κ = 2.094, h = 1, κh = 2.094, α0 = 15◦. The present simulation parameters are (c) κ = 1.25, h = 1,
κh = 1.25, α0 = 0◦; (d) κ = 2, h = 1.05, κh = 2.1, α0 = 15◦ (Permission has been obtained to reproduce
the experimental results from the publishers of the original work).

A quantitative validation study has been performed for a pure heaving case for high
values of κh (up to κh ∼ 1.9), where the drag coefficient (Cd) has been compared with
the experimental measurements of Cleaver, Wang & Gursul (2012) at Re = 10 000 – see
figure 6(a). Additionally, a combined pitching–heaving kinematics case has also been
used for quantitative validation, by comparing with the thrust coefficients from the recent
experimental results of Van Buren et al. (2019). The authors carried out experimental
force measurements for a teardrop airfoil for various amplitudes and frequencies in a
water tunnel at Re = 8000. Figure 6(b) shows the comparison of the time-averaged thrust
coefficients for different non-dimensional frequencies f ∗ (=fc/U∞), for α0 = 15◦ and
h = 0.25 (h0 = 20 mm). The present computational results show very good agreement
with the experimental results for both the cases.

3. Course of dynamical transition in the overall wake pattern

The parametric variation of κh has been planned in the present study in such a way
that the transition of the trailing wake from periodic reverse Kármán to chaos can be
captured. We analyse the overall behaviour in terms of the near- and far-field wakes. The
near-field is defined as the region that mainly includes the leading-edge separation and
where the interactions between the primary LEV and trailing-edge vortices (TEVs) take
place giving rise to the primary vortex couple at the trailing edge (also referred to as the
‘immediate vortex couple’ in this paper). The rest of the downstream region is termed as
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Figure 6. (a) Comparison of drag coefficient (Cd) with the experimental measurements of Cleaver et al.
(2012) for a heaving airfoil at Re = 1 × 104; (b) comparison of time-averaged thrust coefficients (C̄T ) with
the experimental measurements of Van Buren et al. (2019) for a simultaneously pitching–heaving airfoil with
α0 = 15◦, h = 0.25 (h0 = 20 mm), Re = 8 × 103.

TEV
Primary vortex

couple

Far-field
LEV

Near-field

Figure 7. Schematic representation of near- and far-field wake regions.

the far-field or far-wake. These two regions are schematically shown in figure 7. In our
recent work (Bose & Sarkar 2018), a quasi-periodic route to chaos was identified in the
near-field of a simultaneously pitching–heaving system. This transition route is revisited
here with a fresh perspective of interlinking the near-and far-wake behaviour. In order to
do so, the parametric variation of κh has been considered with a finer resolution in the
present study as compared with Bose & Sarkar (2018). The periodicity in the near-field is
lost as h is gradually increased beyond 0.80 (κh � 1.60), giving way to a quasi-periodic
transition. The quasi-periodic state, upon increasing h further, gives rise to the dynamical
state of intermittency in which multiple windows of aperiodic (chaotic) bursts appear in the
otherwise quasi-periodic state. The bursts become more frequent with increasing h and the
dynamics ultimately culminates into chaos beyond a threshold value of κh. Intermittency
is a stable dynamical state but could not be captured by Bose & Sarkar (2018) as an
extremely fine resolution of parametric variation is required in order to capture it, which is
considered in the present study. Consequently, a more detailed transition route to chaos
is presented here. The near-field behaviour gets directly reflected on the aerodynamic
loads. Hence, the load time histories are chosen to analyse the near-field dynamics

911 A31-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1030


C. Bose, S. Gupta and S. Sarkar

in detail. As will be presented later in the paper, a dynamic interlinking of the near- and
far-field behaviour can reveal that intermittency in the near-field successfully explains the
interesting transitional wake patterns observed in the far-field. Note that no investigation on
the far-field behaviour was taken up by Bose & Sarkar (2018). In this section, the existence
of four distinct dynamical states (periodic, quasi-periodic, intermittent and chaotic) is
conclusively established through nonlinear time series analyses of the drag coefficient
(Cd) using an array of tools based on dynamical systems theories, such as, phase portraits,
frequency spectra, time-frequency analyses (wavelet spectra) and recurrence plots (RPs).
The same dynamics is also observed in the lift coefficient (Cl) time histories, but are not
presented here for the sake of brevity.

The associated far-field behaviour and the role of the near-field interactions in shaping
the far-wake dynamics is the main focus of discussion in the present section. At low
κh values (κh < 1.5), the entire flow field remains periodic. Vortex interactions in the
near-field happens in a regular fashion that result in a reverse Kármán vortex street which
subsequently becomes a stable deflected reverse Kármán wake. During the quasi-periodic
transition in the near-field, this deflected vortex street loses its stability in which its spatial
pattern is lost and switching starts from the far end of the wake. This dynamical state
is followed by a regime of intermittency in the near wake, where bursts of aperiodic
interactions in the near-field makes the wake experience switching that happens at the
trailing edge intermittently. As the intermittent aperiodic windows appear more and
more frequently, switching becomes more rampant and repeats in an aperiodic manner.
Eventually, the structure of the immediate vortex couple at the trailing-edge, responsible
for promoting an organized wake, is destroyed completely paving way to sustained chaos
in both near- and far-fields. In this section, the actual triggers in the flow field for the
above-mentioned transitions are identified, and also a connection between the near- and
far-field wake dynamics is established.

Note that the qualitative flow field and the wake patterns across all the different
dynamical states discussed in this paper are presented in terms of vorticity contours.
The vorticity range has now been kept uniform as −10 to 10 for all the presented
vorticity contours in this paper. However, for certain cases, the LCS are also presented
to augment the discussion. For example, the wake interactions become quite complicated
at high κh values as the flow field loses periodicity, identifying LCS (Haller & Yuan
2000; Haller 2015) enables better understanding about the flow physics to be achieved
in these cases, through a better visualization of the vortex structures. Hence, the LCSs
are tracked along with the vorticity contours for the important snapshots of the flow
field in different dynamical regimes to capture the intricate details of the wake patterns
and the underlying vortex interactions. Lagrangian coherent structures are identified in
terms of the bFTLE (Haller 2001) ridges. A finite-time Lyapunov exponent (FTLE) range
of 0 to 0.5 is used for all bFTLE contours. The bFTLE ridges represent the attracting
material lines in the unsteady flow field and are characteristic of the unstable manifolds
(dynamic transport barriers in the flow) that contain the information of the past. Here,
the bFTLE ridges are computed based on the Cauchy–Green tensor of the velocity
vector field using the algorithm developed by Onu, Huhn & Haller (2015). The attracting
bFTLE contours help in understanding the complex vortex interactions, especially in the
aperiodic regime, with better clarity as compared with the vorticity contours. Discussions
in the following subsections are presented for different κh values corresponding
to different dynamical states highlighting the respective behaviour of the near and
far-fields.

911 A31-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1030


Jet-switching: a precursor to chaos

20.0 22.5 25.0

0

27.5 30.0
–1.25

–1.00

–0.75

–0.50

–0.25

0

0.25

0.50(a)

(b) (c)

t/T

Cd

–0.6

–0.2

0.2
0.4 –1.0

–0.6
–0.2

0.2 0.4

–1.0

–0.6

–0.2

0.2
0.4

Cd (t)

C
d

(t
+

2
τ)

Cd (t + τ)

1

0.4

2f1

3f1
4f1 5f1

f1

0.3

0.2

0.1

0

P
S

D

Stc

2

Frequency (Hz)
3 4 5

1 2 3 4 5

Figure 8. Time series analyses of Cd at κh = 1.00 for the periodic regime: (a) time history; (b) phase
portrait; (c) frequency spectra.

3.1. κh = 1.00 and 1.40: periodic near-field and deflected reverse Kármán wakes
Figure 8(a) presents the time history of Cd at h = 0.50 (κh = 1.00) which shows a constant
amplitude regular oscillatory behaviour indicative of periodic dynamics in the near-field.
In order to reveal the system attractors, the pseudo-phase-portraits are reconstructed from
the scalar time series of Cd. The time-delay reconstruction of the pseudo-phase-space is
performed using Takens’ embedding theorem (Takens 1981). The method of time delay
involves obtaining a series of independent time-delayed vectors representing the system
dynamics from a single time series data based on an optimum time delay (say τ ) and
the minimum embedding dimension (say m) of the system. The reconstruction matrix (Y)
can be expressed as Y = [Cd(t) Cd(t + τ) Cd(t + 2τ) . . . Cd(t + (m − 1)τ )]. The value
of τ is determined using the method of mutual information (Fraser & Swinney 1986)
by calculating the average mutual information between the original and the time delayed
vectors. The required value of m is computed using the method of false neighbourhood
(Kennel, Brown & Abarbanel 1992) by checking whether the distance between two points
in the phase space is invariant with increasing dimension. Time series analysis has been
carried out on sufficiently long-time simulations (approximately 80 flapping cycles) to
establish the correct dynamical state, the first 10 cycles of which have been neglected
to ensure that the cycles with transient effects are not included in the analysis. The
reconstructed phase portrait at h = 0.50 (figure 8b) represents a closed one-dimensional
attractor characterizing the periodic nature of the dynamics. The corresponding frequency
spectra consists of a dominant frequency f 1 (double the flapping frequency) and its
superharmonics (see figure 8c), thus confirming the periodic state.

In the corresponding flow field, the periodic vortex interactions in the near-field results
in a reverse Kármán street. It is an outcome of the alternate shedding of isolated vortices
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Figure 9. Wake characteristics in the periodic regime: (a,b) symmetric reverse BvK wake at κh = 1.00;
(c,d) asymmetric deflected wake at κh = 1.40. The present colourmap of vorticity contours (with a range of
−10 to 10) has been used in the rest of the paper. (a) Vorticity contour at t/T = 60; (b) LCS (bFTLE contours)
at t/T = 60; (c) vorticity contour at t/T = 60; (d) LCS (bFTLE contours) at t/T = 60.

with opposite sense of rotation in every half-cycle. The corresponding vorticity and bFTLE
contours are shown in figures 9(a) and 9(b), respectively. Note that a reverse Kármán wake
is a signature of thrust generation by the flapping foil with zero mean lift. With increase in
κh, the spatial symmetry of the reverse Kármán wake is lost giving rise to a deflected
reverse Kármán wake at h = 0.70 (κh = 1.40). In the present case, the deflection is
observed in the downward direction – see the corresponding vorticity and bFTLE contours
in figures 9(c) and 9(d), respectively. The deflected wake remains stable at the far-field
(confirmed through a sufficiently long time history of the simulation) in this dynamical
state. It must be noted that a secondary vortex street is also formed at the same time, and
is deflected in the upward direction. It consists of a series of clockwise (CW) vortices of
much weaker strengths compared with those in the downward deflected primary vortex
street (see figure 9d). Note that the dynamical signature of the deflected reverse Kármán
wake is also periodic at κh = 1.40. The time scales related to the secondary vortex-street
are ascribed to the superharmonics of the shedding frequency of the immediate vortex
couple, which is same as the flapping frequency.

3.2. κh = 1.60: quasi-periodic near-field and switching of deflection direction at the far
end of the wake

With further increase in h, the near-field is seen to attain a quasi-periodic state through
small phase lags in the leading-edge separation behaviour from one cycle to another.
Time history of Cd showing a modulating oscillation at h = 0.80 (κh = 1.60) is indicative
of quasi-periodic behaviour and is in contrast to the previous periodic case – see
figure 10(a). The corresponding reconstructed pseudo-phase-portrait takes a toroidal shape
(figure 10b) which is indicative of a quasi-periodic attractor. Besides, the presence of two
incommensurate frequencies ( f 1 and f 2) along with the presence of other non-harmonic
frequencies, that are in linear combinations of these two, further establishes the existence
of a quasi-periodic dynamics – see figure 10(c).

In this parametric regime, the wake that remained deflected downwards during the
periodic regime gradually begins to lose its downward structure at its far end during the
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Figure 10. Time series analyses of Cd at κh = 1.60 for the quasi-periodic regime: (a) time history; (b) phase
portrait; (c) frequency spectra.

15th flapping cycle. The vorticity contours, presented in figure 11, show the corresponding
wake patterns at different flapping cycles. Initially, the wake is deflected completely
downward (figure 11a) until at the 15th cycle a switch in its deflection direction is
noticed at the far end of the wake (see figure 11b). The vortex street still remains
deflected downward near the trailing-edge and as a result, it takes an arc-like shape.
To understand this transition better, the individual motion paths of three consecutive
trailing-edge couples, namely the C13, C14 and C15 which are formed at the start of the
13th, 14th and 15th cycles, respectively, are tracked – see figure 12. It is seen that C13
follows a straight downward deflected path until it gets dissipated in the far-field; C14
initially traverses in the downward direction but gradually switches its direction at the
far end of the wake during the 15th cycle; C15 undergoes a similar switching behaviour.
However, the latter’s path is different with a higher upward deflection angle compared
with C14 at the far end. The subsequent primary couples continue to switch the deflection
direction in a similar fashion at the far end but with small deviations in their upward
deflection angles. After that, the wake remains stable in its switched state with an arc shape
and no further switch in the deflection direction is observed. This has been confirmed
by running the simulations through long time windows (carried out until t/T = 70). The
overall mechanism of the formation of the immediate vortex couple at the trailing-edge
remains very similar in each cycle with only minor deviations. These deviations are the
result of small phase lags in the separation behaviour of the LEVs and the subsequent
near-field interactions, from one cycle to another, that show up as quasi-periodic dynamics
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(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

Figure 11. The change in the deflection pattern of a downward deflected wake at the far end of the wake during
different flapping cycles at κh = 1.60 with t/T = 10, 15, 20, 25, 30, 35, 40, 45, 50 in panels (a–i), respectively.
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Figure 12. Comparison of motion trajectories of three consecutive primary vortex couples (C13, C14 and C15)
during far-end switching of the wake at κh = 1.60.

in the near-field behaviour and the load patterns. The detailed analysis of the emergence
of quasi-periodic trigger and the underlying role of LEV was discussed in Bose & Sarkar
(2018).

As a result, the arc-shaped wake shows minor deviation from one cycle to another, and
the wakes stay in each other’s neighbourhood – see figure 13(a–h). A superposition of
the centrelines of the wake for different flapping cycles (15th–50th), shown in figure 13(i),
reveals that the path line of these couples are not unique and the upward deflection angle of
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Figure 13. (a–h) The shape of the wake at κh = 1.60 for different flapping cycles (15th–50th);
(i) superposition of the centrelines of the spatial shapes of the wake for different flapping cycles (15th–50th) at
κh = 1.60 showing the quasi-periodic signature.

Secondary vortex street Transition in the secondary vortex street

Far-wake switching in the primary vortex streetPrimary vortex street

(a) (b)

Figure 14. The bFTLE contours at κh = 1.60 with (a) t/T = 10, (b) t/T = 20. The colourmap of bFTLE
contour is same as that of figure 9.

the vortex street in the far-end changes slightly from one cycle to another. This highlights
the quasi-periodic tendency present in the wake deflection behaviour.

Figures 14(a) and 14(b) present the LCS (in terms of bFTLE contours) of the deflected
patterns before and after the far-end switching, respectively. Note that an organized
secondary vortex street consisting of a series of CW vortex pairs is observed, while
the primary wake is deflected downward – this is shown at t/T = 10, in figure 14(a).
Minor deviations in the near-field interactions between the LEV and the TEV, owing to
quasi-periodicity, are seen to propagate through the secondary vortex street in terms of a
phase lag in the formation of consecutive vortex pairs. For a better understanding, one
such typical sequence of interactions is presented in figure 15. Although the far-wake
switching (FWS) is first observed in the 15th cycle, the gradual propagation of the
underlying quasi-periodic trigger starts at an earlier flapping cycle, hence, the chronology
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Figure 15. A typical sequence of near-field interactions in the 12th cycle affecting the formation of a CW
vortex pair in the secondary vortex street.

of vortex interactions during the 12th cycle is presented in figure 15. The quasi-periodic
trigger, that emerged from the leading-edge shedding and the subsequent LEV–TEV
interactions, gets propagated in the far-wake through the forward motion of the immediate
vortex couple, as well as through a series of interactions among the secondary vortex
structures generated in the near-field. As the immediate vortex couple C ′ moves forward
with the free stream, the trailing-edge vortex filament entailed with the vortex couple
gets strained and eventually gets split into small isolated CW vortices – SV1 and SV2
– in the near-wake due to the stronger CW counterparts of C ′ – see figure 15(b,c). As
can be seen from figure 15(c), the motion of SV1 is initially governed by the resultant
velocity induced by the previously existing same-sense secondary vortex SV0, as well
as the opposite-sense TEV, and is inversely proportional to their corresponding normal
distances r1 and r2, respectively. The opposite-sense TEV tries to form a couple with
SV1, whereas, same-sense SV0 applies a CW rotational velocity on it. Subsequently,
another LEV is shed as a vortex couple C ′′, which becomes another influencing factor. The
anticlockwise (ACW) component of C ′′ undergoes a partial merging with the TEV and
the CW counterpart interacts with SV1 – see figure 15( f ). Eventually, SV1 moves with its
resultant velocity and participate in forming the secondary vortex street with the existing
array of CW vortex pairs. Therefore, the formation of the secondary vortex street indirectly
depends on the LEV–TEV interactions. It is worthwhile to mention that this chronology of
events changes by a small margin in every flapping cycle due to quasi-periodicity, which
in turn changes the resultant velocity of the secondary vortices. Consequently, a phase
lag is induced in the formation of subsequent vortex pairs, which eventually results in
multiple merging among the vortex pairs in the secondary vortex-street. This leads to a
gradual destruction of the secondary vortex-street, which can be seen from the sequence
of interactions during 10 consecutive cycles from t/T = 10 to t/T = 20, presented in
figure 16. As a result, a region of disturbance is created in the far end of the wake that

911 A31-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1030


Jet-switching: a precursor to chaos

(a) (b)

(c) (d )

(e) ( f )

(g) (h )

(i) ( j)

(k)

0 0.1 0.2 0.3 0.4 0.5

Figure 16. Transition in the secondary vortex street at κh = 1.60. Here t/T = 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20 in panels (a–k), respectively.

influences the vortex couples to switch their deflection direction in that region. This can
be considered as one of the mechanisms of FWS.

Wei & Zheng (2014) also observed a similar far-end switching for a heaving airfoil
at a regime of high reduced frequency (k = 20) and a small amplitude (h = 0.06).
However, the quasi-periodic signature of the switching phenomenon and the presence
of the secondary vortex street and the associated transitions were not observed by the
authors. A vortex interaction mechanism in the far-wake, termed as ‘opposite vortex
pairing process’, characterized by exchange of partners among consecutive couples, was
said to be responsible for the far-end switching. The authors further reported that, as the
distance between consecutive couples decreases while the distance between the opposite
sense partners in each couple increases, a more favourable condition for this mechanism
to take place is created. However, this observation seems to be applicable only for the high
frequency and low amplitude cases where the distance between couples are less, and wake
formation is primarily a trailing-edge phenomenon without much contribution from the
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LEVs. In fact, well-formed LEVs are either absent (Wei & Zheng 2014; Shinde & Arakeri
2013) or are mostly dissipated by their interactions with the subsequent nascent LEVs
(Lewin & Haj-Hariri 2003) for these high frequency and low amplitude cases. The present
study does not fall under this parametric range and no such opposite vortex pairing process
has been observed here. Rather, the primary trigger for the far-end switching comes from
the minor deviations in the quasi-periodic near-field interactions between the LEV and
the TEV that is propagated through the transition in the secondary vortex street. To the
best of the authors’ knowledge, this kind of quasi-periodic switching in the wake of a
pitching–heaving system is being reported for the first time in the present study.

3.3. κh = 1.66: appearance of intermittency and switching of the immediate vortex
couple

As the value of h is further increased to h = 0.83 (κh = 1.66), the quasi-periodic signature
starts to get interspersed with irregular windows of chaos. Such temporal patterns of
response are reported as intermittency in the nonlinear dynamics literature (Hilborn
2000), in which the system irregularly switches between two different attractors or
dynamical states. In this case, the switch happens between the state of quasi-periodicity
and chaos. The sporadic bursts of aperiodic windows are expected to become longer as
the parameter value (h) increases gradually. The intermittent aperiodic windows appear
due to the stronger perturbations coming from the leading-edge separation resulting in
nonlinear interactions among the near-field flow-structures. The time history of Cd at
h = 0.83, presented in figure 17(a), shows a typical intermittent state where the insets
‘A1’, ‘B1’, ‘C1’ and ‘D1’ denote the sporadic aperiodic windows. A better understanding
of the temporal evolution of the frequency content is possible from the scalogram
obtained through the wavelet analysis using the Morlet wavelet function (Grossmann,
Kronland-Martinet & Morlet 1990) – see figure 17(b). Sporadic bursts of broadband
frequencies that correspond to the aperiodic windows are clearly seen from the wavelet
spectra – see inlet sections ‘A1’, ‘B1’, ‘C1’ and ‘D1’ in figure 17(b). The time history and
the wavelet spectra of Cd at a higher h of 0.85 (κh = 1.70), presented in figures 17(c) and
17(d), respectively, show that such aperiodic windows (‘A2’, ‘B2’, ‘C2’ and ‘D2’ in this
case) are significantly longer and more frequent than that of the previous case (h = 0.83).
As h increases further and reaches a threshold, the entire time window turns aperiodic and
the response becomes completely chaotic.

The reconstructed pseudo-phase-portraits and the frequency spectra for the intermittent
state at h = 0.85 (κh = 1.70) are presented in figures 17(e) and 17( f ), respectively. The
appearance of small regions of aperiodic evolution of the trajectory in the otherwise
toroidal phase portrait is clear. However, these characteristics of intermittency are not
captured in the frequency spectra as it reflects an average quasi-periodic behaviour of
the system. The existence of intermittency can be conclusively established using RPs
(Eckmann & Ruelle 1985; Marwan et al. 2007). The changes in the dynamical signature
of a system are revealed very easily through the visual representation of RPs. Also, RPs
bring out meaningful results even from relatively short time data unlike the conventional
time series tools which require sufficiently long time histories for the convergence of
the respective algorithms. Recurrence plots are constructed from a binary recurrence
matrix, Ri,j = Θ(ε − ||xi − xj||); i, j = 1, 2, 3..N, for a phase space with N points. Here,
xi is a point in the ‘d’-dimensional phase space, Θ is the Heaviside step function,
ε is a predefined threshold and || · || indicates the L2 norm. The graphical representation
of RPs are sensitive to the threshold ε; an optimal value of ε needs to be chosen to
represent the dynamics accurately. In the present calculations, ε is chosen to be 10 %
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Figure 17. Time series analyses of Cd at κh = 1.66 and κh = 1.70: intermittent dynamics; the aperiodic
window is marked as ‘Z’. (a) Time history of drag coefficient (Cd) at κh = 1.66. (b) Wavelet spectra of drag
coefficient (Cd) at κh = 1.66. (c) Time history of drag coefficient (Cd) at κh = 1.70. (d) Wavelet spectra of
drag coefficient (Cd) at κh = 1.70. (e) Phase portrait of Cd at κh = 1.70. ( f ) Frequency spectra of Cd at
κh = 1.70.
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Figure 18. RP of Cd at κh = 1.70.

of the diameter of the reconstructed phase space. The diameter refers to the distance
between the two farthest points in the phase space. Ri,j is considered to be zero if the
distance between the two points xi and xj in the phase space is greater than ε, or else it
is equal to unity. The RP contains black and white points corresponding to the ones and
zeros of the recurrence matrix, respectively. The RP for the Cd time history at h = 0.85
(κh = 1.70) is presented in figure 18, which clearly reflects the intermittent transition
through alternative windows with different characteristics over the main diagonal. There
are sporadic aperiodic windows over the main diagonal (one such is marked as ‘Z’)
consisting of mostly small broken lines. This is indicative of the non-recurrent signature
corresponding to the aperiodic dynamics and is in contrast to the periodic signature, which
comprises of equidistant solid diagonal lines parallel to the primary diagonal.

The most important outcome of intermittency on the flow field is the switching of
the immediate vortex couple at the trailing-edge which is triggered by the aperiodic
bursts. During these bursts, the wake goes through an aperiodic breakdown resulting in
spontaneous and arbitrary movements of vortex couples in different directions before
reorganizing itself into a fully deflected pattern of the opposite direction. As discussed
before, in the quasi-periodic state (κh = 1.60), the near-field disturbances are propagated
mainly through the secondary vortex street in terms of minor deviations in its pairing
process and these disturbances deflect the wake at its far end giving it an arc shape.
The intermittent transition does not, however, follow the same mechanism. Instead, the
aperiodic interactions during the intermittent chaotic bursts provide quick and strong
disturbance at the region immediately close to the body (trailing-edge) which flips the
deflection direction of the immediate couple. This eventually makes the whole wake follow
the same flipped direction and a fully reversed (upward or downward) wake is obtained.
However, when the aperiodic window ends, far-end switching slowly starts to take place
after experiencing the expected quasi-periodic trigger from the near-field giving rise to
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(b)Wake pattern : ‘D’ type(a) (c) Wake pattern : ‘A’ typeWake pattern : ‘FWS-DU’ type

(d) (e)

Wake pattern : ‘U’ type Wake pattern : ‘FWS-UD’ type

Figure 19. Vorticity contours corresponding to different transitional wake patterns at κh = 1.66:
(a) downward deflected (D); (b) far-wake switched downward at the near-field and upward at the far-field
(FWS-DU); (c) aperiodic (A); (d) upward deflected (U) and (e) far-wake switched upward at the near-field and
downward at the far-field (FWS-UD). Here t/T = 30, 32, 35, 42, 65 in panels (a–e), respectively.

an arc-shaped wake. The next aperiodic burst flips the immediate couple again and the
whole wake follows that signature and thus the process continues. To summarize, four
different wake patterns are observed at different flapping cycles in the dynamical state
of intermittency – see figure 19. Figure 19(a) is indicative of a downward deflected wake
pattern D at t/T = 30. A concave and a convex arc-shaped far-wake switched wake – FWS
DU and FWS UD – are observed at t/T = 32 and 65, respectively; see figures 19(b) and
19(c). Figures 19(d) and 19(e) present an aperiodic A and an upward deflected U wake
pattern, respectively, at t/T = 35 and 42. Therefore, the jet-switching phenomenon does
not take place directly from the D to the U wake and vice versa, rather, it is associated
with different intermediate transitional wake patterns (FWS and A). For example, a D
wake undergoes a complete reversal of its deflection direction that results in a U wake,
after evolving through FWS DU and A wakes in the process. Subsequently, the U wake
transitions back to a D wake through the sequence of FWS UD and A patterns.

Figure 20 connects the spatial transitions that take place in the far-wake in terms of the
occurrence of these four wake-patterns. The figure shows that the direction flipping of the
immediate couple, accompanied by intermediate FWS and A wake patterns, happens in
an irregular fashion. This observation is in contrast with Heathcote & Gursul (2007) who
reported a quasi-periodic pattern in their observed gradual switching of the deflected jet.
Note that Heathcote & Gursul (2007) only reported D and U wakes and transitions between
them. Far-wake switching was not observed in their study. Moreover, the authors did
not analyse this immediate couple switching phenomenon from a dynamical perspective
either, as has been carried out in the present study with an objective of establishing the
overall transition route. It is also observed that FWS wakes can evolve into A patterns
during the aperiodic bursts, only if the aperiodic window is long enough to flip the
immediate couple. One such window is marked as ‘C1’ in the drag time-history in
figure 17(a). In this case, the organization of the entire wake breaks down to an A
pattern (figure 19c) before reorganizing itself into the U wake (figure 19d). Conversely, the
immediate couple switching may not take place if the aperiodic bursts are short, such as
‘A1’ (around t/T = 15), ‘B1’ (around t/T = 22) or ‘D1’ (around t/T = 48) as marked in
figure 17(a). In these cases, the aperiodic perturbations in the near-field are not sufficiently
strong due to their short presence to flip the immediate couple and the wake regains the
FWS pattern after a small windows of aperiodicity (A) – see figure 20.
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Figure 20. Different transitional wake patterns versus number of flapping cycles: U, upward deflected, A,
aperiodic and D, downward deflected. The numbers over the boxes denote the duration in terms of the number of
flapping cycles (κh = 1.66); ‘A1’, ‘B1’, ‘C1’, ‘D1’ are windows of aperiodic bursts as marked in figure 17(a).

To understand how the A pattern kicks in, the motion paths of the immediate couples
are followed between t/T = 32 to t/T = 35, where the wake follows an FWS pattern
just before the start of aperiodic window ‘C1’. The main vortex couples are C32, C33,
C34 and C35, formed as the immediate couples at the start of 32nd, 33rd, 34th and 35th
cycles, respectively. The vortex couple C32 initially follows a downward path in the 32nd
cycle, however, gradually switching upwards in the far end (at approximately 9c from the
trailing-edge) during the 33rd cycle – see figure 21. The upward deflection angle is seen
to be small in this case. The vortex couple C33 also undergoes a similar upward switching
in the far-field, but at a relatively closer distance from the trailing-edge (at approximately
5c from the trailing-edge) and the deflection angle is also higher. The vortex couple C34
follows a downward deflected path throughout, which destroys the organization of the
prevailing FWS pattern. The next couple C35 undergoes an upward switching at the far
end (at approximately 3c from the trailing-edge). This chain of events is presented here
as an example of the transition of an FWS pattern, which is facilitated by the arbitrary
movement of the primary couple at the start of the aperiodic burst. This is followed by the
switching of the immediate couple in the subsequent cycles.

Figure 22(a–c) presents the LCSs of the U, A and D wakes at t/T = 30, 35 and 42,
respectively. The corresponding temporal as well as spatial evolution of the velocity
profiles are presented in figure 23. Figures 23(a), 23(c) and 23(e) present the velocity
contours during D (t/T = 30), A (t/T = 35) and U (t/T = 42) wake patterns, respectively.
The spatial evolution of the velocity magnitude profiles (solid lines) and streamwise
velocity profiles (dotted lines) corresponding to these three wake patterns are presented
in figures 23(b), 23(d) and 23( f ), respectively, for the strategic locations marked in the
velocity contours. At t/T = 30, the locus of the maxima of the velocity profiles is seen
to move downwards at the far-field, representing the D wake. However, at t/T = 35, the
profiles get scattered as their distance from the trailing-edge increases. This characterizes
the spatial aperiodicity in the A wake. At t/T = 42, the locus of the maxima of the velocity
profiles is seen to move upward. This shows the reorganization of the wake into a U
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Figure 21. Comparison of motion trajectories of three consecutive primary vortex couples (C13, C14 and C15)
during far-end switching of the wake at κh = 1.60.

(c)

(a) (b)

Figure 22. The bFTLE contours at κh = 1.66. Here (a) D is the wake at t/T = 30; (b) the A wake at
t/T = 35; (c) the U wake at t/T = 42. The colourmap of bFTLE contour is same as that of figure 9.

wake after the aperiodic burst. In order to show the temporal behaviour at a fixed spatial
location, the velocity magnitude as well as the streamwise velocity profiles are plotted for
five consecutive cycles from t/T = 34 to t/T = 38 at x/c = 7 and are shown in figure 24.
Despite having the same spatial location, both the profiles mark significant differences
in their patterns from one cycle to another. This temporal behaviour of the flow field
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Figure 23. Vorticity contours and spatial evolution of velocity profiles during the regime of intermittency
at κh = 1.66. In panels (b), (d) and ( f ) the solid lines refer to velocity magnitude profile and dotted lines
refer to streamwise velocity profile. Panels (a– f ) give the velocity contours at t/T = 30, 30, 35, 35, 42, 42,
respectively.

directly reflects the effect of the aperiodic time windows during the dynamical state of
intermittency.

The direction flipping of the immediate couple becomes more frequent at higher κh
values as the frequency of aperiodic bursts increases. As a result, the far-wake does not
get sufficient time to recover itself from the aperiodic state and eventually the whole
wake becomes aperiodic. Similar increase in switching frequency was also reported by
Heathcote & Gursul (2007), for a pure heaving case. However, as mentioned earlier, the
presence of FWS wakes or the underlying dynamical state of intermittency which brings
out the varied wake patterns in the far-field was not observed in their study. The authors
mentioned that this switching period of D to U to D was observed to be two orders of
magnitude higher than the heaving period. The present study shows that a full reversal
from D to U (through FWS and A) can happen within 40 cycles. Figure 25(a) presents
the variation of the period-averaged lift coefficients (〈Cl〉) over different flapping cycles. It
is observed that its sign changes from negative to positive at approximately t/T = 40,
indicating the switching of the immediate vortex couple from D to U. Note that the
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Figure 24. Comparison of velocity magnitude (a) and streamwise velocity profiles (b) at x/c = 7 in four
consecutive cycles from t/T = 34 to t/T = 38.
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Figure 25. (a) Variation of period-averaged lift coefficient (〈Cl〉); (b) p.d.f. of the instantaneous lift
coefficient (Cl).

dominant leading-edge separation at Re = 103 for the present pitching–heaving case could
be a possible reason for advancing the switching phenomenon, as compared with the
experimental results of Heathcote & Gursul (2007). It is also believed that the near-field
disturbances accelerate the flipping of the immediate couple during the aperiodic bursts.
Furthermore, the most probable states of the Cl values are estimated through its probability
distribution function (p.d.f.) and is presented in figure 25(b). Among the three dominant
peaks, the peaks on either sides of Cl = 0 can, respectively, be attributed to the D and U
modes of the wake in the pre- and post-jet-switching regime, confirming the bistability of
the wake (Cadot, Evrard & Pastur 2015). The peak about zero primarily corresponds to the
mean Cl value.

3.4. κh = 2.50: sustained chaos
As κh is further increased (h � 1.00, κh � 2.1), the flow field attains a chaotic state
through the frequent aperiodic windows. The Cd time history is observed to be completely
irregular at h = 1.25 (κh = 2.50) – see figure 26(a). This chaotic state is represented by
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Figure 26. Time series analyses of Cd time history at κh = 2.50. (a) Time history; (b) phase portrait;
(c) frequency spectra.

a volume in the state space with densely filled trajectories indicating the presence of a
strange attractor in the phase space (figure 26b) and a broadband frequency spectrum
(figure 26c). In this regime, the near-field interactions become significantly complex
giving rise to spontaneous formation of fast-moving vortex couples. The free movement
of the vortex couples and their collisions with other isolated vortices or other couples
result in various fundamental vortex interactions (Leweke, Le Dizès & Williamson 2016)
which eventually turn the flow field completely chaotic and sustain it. Rapid aperiodic
jet-switching is seen to act as a precursor to the chaotic flow dynamics. Two typical
snapshots of the vorticity contours and LCS corresponding to the chaotic flow topology at
t/T = 25 and t/T = 30 are presented in figure 27. It is evident that there is no correlation
between them as the flow field has become completely unpredictable in this regime.

The dynamical signature of the various transitional far-wake patterns during the
jet-switching phenomenon has been conclusively established in this section. The
intermittency in the near-field has been manifested to be the key reason behind the
immediate couple switching at the trailing-edge for the first time. Finally, it has been
substantiated that the aperiodic jet-switching acts as a precursor to sustained chaos in
the flow field. The next section focuses on the underlying vortex interaction mechanisms
through which these dynamical transitions, especially switching of the immediate couple
at the trailing-edge takes place, leading to an eventual complete breakdown of the
organization of the wake.

4. Mechanism of direction flipping of the immediate couple at the trailing-edge: role
of LEV

The unsteady separation of LEVs is one of the governing factors that decides the nature
of near-field interactions. It has been established that the first trigger to aperiodicity in
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(a) (b)

(c) (d )

Figure 27. Chaotic flow topology at κh = 2.50. (a) Vorticity contour at t/T = 12; (b) bFTLE contours at
t/T = 12; (c) vorticity contour at t/T = 25; (d) bFTLE contours at t/T = 25. The colourmap of bFTLE contour
is same as that of figure 9.

the near-field emerges from the discrepancy of the leading-edge separation. The shedding
frequency of the LEV becomes incommensurate to the flapping frequency and gives
rise to the quasi-periodic trigger; refer to the supplementary data available at https://doi.
org/10.1017/jfm.2020.1030 for the detailed analysis carried out to identify the source of
quasi-periodicity. Subsequently, the diverse interactions among LEV, TEV and the other
main near-field vortex structures propagate this aperiodic trigger, leading to qualitative
changes in the dynamics of the wake. There exist a number of fundamental vortex
interaction mechanisms in two dimensions, such as partial and complete merging, vortex
splitting and shredding, collisions of vortex couples, exchange of partners, etc. that
manifest the change in the flow dynamics. The detailed definitions of these mechanisms
can be found in Leweke et al. (2016). The LEV–TEV interactions lead to the formation
of a strong vortex couple at the trailing-edge in every flapping cycle which becomes
the primary unit of an organized wake. This section examines the near-field behaviour
that is responsible for the flipping of this immediate couple in the intermittency regime
(κh = 1.66), in terms of various fundamental vortex interactions; refer to ‘Movie1’ and
‘Movie2’ for the animated view of the underlying vortex interactions behind jet-switching
and the role of LEV in triggering it, respectively. Detailed discussions are presented in the
following to present the chronology of events that take place during the dynamical state of
intermittency, in which a downward deflected couple at the trailing-edge can transition to
an upward deflected couple through a window of aperiodic interactions. This phenomenon
has been earlier referred to as the ‘direction flipping of the immediate couple’ in § 3.3.

All the flow field plots presented in this section belong to the regime of intermittency.
The bFTLE contours for three consecutive flapping cycles (from 33rd to 35th) showing the
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Figure 28. Vortex interaction mechanisms during 33rd to 35th cycles that underlie the immediate couple
switching at κh = 1.66. The present colourmap has also been used in figures 29 and 30.

near-field interactions are presented in figure 28. These cycles are chosen to demonstrate
the change in the deflection direction of the immediate couple from downward to upward
through an in-between aperiodic phase. The flapping cycles are presented from their
up-strokes to down-strokes. During the up-stroke, the primary ACW LEV ‘1’ grows and
subsequently forms couple ‘C2’ at the trailing-edge (figure 28a,c). At the same time, an
ACW TEV ‘3’ sheds in the wake and two CW isolated vortices ‘4’ and ‘5’ are formed due
to the rolling up of the trailing vortex filament from the primary couple of the previous
cycle ‘C1’ (figure 28b). In the down-stroke, ‘C2’ traverses in an ACW circular arc and
undergoes partial merging with ‘5’ and ‘3’, respectively (figure 28d,e). On the other hand,
CW LEV ‘6’ and CW TEV ‘7’ shed and undergo partial merging to form an isolated CW
vortex that interacts with the ACW component of ‘C2’ giving way to another primary
vortex couple ‘C3’ (like ‘C1’) at the end of 33rd cycle (t/T = 34) (figure 28 f ). Note that
‘C3’ is deflected downwards at the trailing-edge.

During the up-stroke of the next cycle (35th), another ACW LEV ‘8’ grows, convects
over the lower surface of the airfoil like ‘1’ (figure 28g–i). However, due to near-field
disturbances, the location of its reattachment gets altered. A part of it is seen to
circumnavigate the trailing-edge feeding the vortex filament connected with the TEV
and the remaining part forms a weaker couple ‘C5’ (figure 28j). Therefore, the strength
and the trajectory of this couple get significantly altered as compared with ‘C2’ of the
previous cycle. Now ‘C5’ traverses in the ACW direction following a different circular
arc with a significantly higher radius than that of ‘C2’ (figure 28k–m). As a result, ‘C5’
cannot come in the neighbourhood of the TEV shed in the next half-cycle as it did in the
previous cycle, and the formation of the primary couple at the trailing-edge gets disrupted.
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Notably, the trigger comes from the discrepancy in the LEV separation which in turn
alters the subsequent interactions in terms of the formation of ‘C5’. On the other hand, the
ACW TEV ‘9’ sheds and forms couple ‘C4’ with the existing CW ‘5’ (figure 28i). Next
‘C4’ advects upwards due to its self-induced velocity and the connecting vortex filament
splits into two ACW vortices ‘12’ and ‘13’ (figure 28j,k). At the same time, CW LEV ‘11’
evolves and convects over the upper surface and sheds from the trailing-edge (figure 28j–l).
A CW TEV ‘14’ also sheds in the wake (figure 28l). The movements of these vortex
structures are followed in the next cycle.

In the next cycle (35th), this aperiodic trigger is propagated further to the far-field
through the self-induced movements of the generated vortex couples ‘C4’ and ‘C5’ and
their subsequent interactions, thus destroying the organization of the wake. During the
up-stroke, ‘11’ and ‘14’ undergo partial merging resulting in a CW isolated vortex ‘18’
(figure 28m–p). On the other hand, an ACW LEV ‘15’ grows, convects over the lower
surface of the airfoil and sheds from the trailing-edge (figure 28m–o). Subsequently, it
undergoes partial merging with the newly shed TEV and gains strength and forms an ACW
vortex ‘17’ (figure 28p). Thus, the first couple of an upward deflected vortex street ‘C6’ is
formed with ‘17’ and ‘18’ as the ACW and CW counterparts (figure 28p–r). The aperiodic
window of near-field interactions ends by paving the way for an upward-deflected vortex
couple through the flipping of its deflection direction at the trailing-edge. From the next
cycle onwards, the primary vortex couple generated at the trailing-edge in every cycle is
seen to have an upward self-induced velocity under the influence of ‘C6’ and the wake
gradually starts to organize itself into the U pattern in the subsequent flapping cycles
until the next transition happens. Until then (from t/T = 36 up to t/T = 40), the far-wake
remain disordered as an ‘A’ wake.

The detailed flow mechanism of formation of the upward deflected primary vortex
couple during the 38th cycle is presented in figure 29. The ACW LEV ‘19’ forms a couple
‘C9’ with the CW secondary structure ‘20’ at the trailing-edge. The ACW component of
‘C9’ subsequently undergoes a partial merging with the same-signed TEV ‘21’ and the
weaker CW counterpart gets eventually shredded, thus forming the ACW counterpart of
the upward-deflected primary couple ‘C10’ (similar to ‘C7’). On the other hand, the CW
component of the couple ‘C8’, formed from the contribution of the primary CW LEV and
the secondary ACW vortex structure in the previous half-cycle, undergoes partial merging
with the same-signed TEV and its ACW component eventually gets shredded. Thus, ‘C8’
gets transformed into a CW isolated vortex which constitutes the CW component of the
primary couple ‘C10’.

As κh increases, the frequency of such sporadic aperiodic bursts also increases resulting
in more frequent switching of the immediate couple at the trailing-edge. As a result, the
stay period of the wake in either of U or D patterns gradually decreases and eventually,
the wake reaches a chaotic state (h � 1.00, κh � 2.1, α0 = 15◦) where the wake pattern
becomes completely unpredictable and uncorrelated in the consecutive flapping cycles. In
order to examine the implication of the leading-edge separation on the aperiodic transition
during the dynamical state of chaos, the leading-edge behaviour at h = 1.25 is compared
for three consecutive flapping cycles (11th to 13th) in figure 30. It is seen that the separation
pattern gets significantly altered from one cycle to another. Thus, the aperiodic trigger can
be attributed to this discrepancy in the leading-edge behaviour in the chaotic regime.

Once the aperiodicity is triggered in the near-field by the irregular leading-edge
separation, it starts to propagate downstream primarily through the near-field interactions
resulting in spontaneous vortex couples irregularly moving in the upward and downward
directions. The instantaneous bFTLE contours of the flow fields at h = 1.25 during
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Figure 29. Vortex interaction mechanism behind the formation of the upward deflected wake during 38th
cycle.
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Figure 30. Comparison of the near-field flow-interactions in the three consecutive flapping cycles
(11th–13th) in the chaotic regime at κh = 2.50.

911 A31-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
30

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1030


Jet-switching: a precursor to chaos

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j) (k) (l)

(m)

Figure 31. The bFTLE contours of the chaotic wake during 11th–13th cycles at κh = 2.50. Panels (a–m)
with t/T = 11, 11.25, 11.50, 11.75, 12, 12.25, 12.50, 12.75, 13, 13.25, 13.50, 13.75, 14.00, respectively. The
colourmap of bFTLE contour is same as that of figure 16.

the 11th–13th cycles are presented in figure 31. Chaos is sustained in the far-field by
these fast-moving couples and their subsequent inelastic collisions (Leweke et al. 2016)
with other flow structures in the wake. As a result, the width of the wake increases
significantly. It is noteworthy that the same chain of events is never seen to repeat in the
consecutive cycles, making the flow patterns completely erratic in nature. The fundamental
vortex interactions such as vortex merging, vortex splitting, vortex shredding, collision of
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couples, partner exchange (Leweke et al. 2016), are seen to occur spontaneously at different
locations of the wake one after another in quick succession without having any regularity
in their occurrence. It is important to note that the underlying vortex interactions in the
near-field responsible for the switching of the immediate couple and the mechanism of
jet-switching that have been discussed in the present section are important ingredients of
the route to chaos in the far-field. Moreover, the present study uncovers the role of LEV
in triggering the jet-switching phenomenon in the dynamical regime of intermittency.
It further establishes that rapid irregular jet-switching gives way to sustained chaos by
making the near-field completely aperiodic – refer to ‘Movie3’ and ‘Movie4’ for the
animated view of the underlying vortex interactions behind the chaotic transition and the
role of LEV plays, respectively.

5. Concluding remarks

In the present study, the transitional dynamics of the far-wake behind a simultaneously
pitching–heaving airfoil has been investigated. The near-field is observed to undergo a
chaotic transition through quasi-periodic and intermittent states with an increase in κh.
This study establishes the dynamic interlinking of the near- and far-field wakes during
the overall course of transition to chaos in the flow field. The corresponding dynamical
signatures of the far-wake are investigated in terms of various transitional wake patterns.
It has been observed that the propagation of the near-field quasi-periodic trigger forces
a switching of the far-wake in its deflection direction. Further increase in κh results in
an intermittent dynamical state that lies between quasi-periodicity and chaos. During the
state of intermittency, a jet-switching or flipping phenomenon of the immediate couple
at the trailing-edge takes place. The mechanism of this flipping and the essential role of
leading-edge separation behind it are also explained through a detailed analysis of the
near-field vortex interactions. A variety of qualitatively different wake patterns in this
regime are observed. Finally, the unsteady flow field attains a completely chaotic state
through more frequent aperiodic switching among different transitional wake patterns at
high κh values. To the best of the authors’ knowledge, the role of underlying intermittent
dynamics behind the flipping of the immediate couple at the trailing-edge has not been
reported in the literature so far. Also, the presence of jet-switching has been conclusively
established as a precursor to chaos in the wake of a pitching–heaving airfoil for the first
time in this paper. Isolating the spatio-temporal characteristics of the flow field, such as by
using a modal decomposition of the unsteady flow field, may provide a deeper insight into
the dynamical bifurcations and route to chaos. This direction of study is presently being
pursued by the authors.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2020.1030.
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