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CONVERGENCE OF APPROXIMATE SOLUTIONS OF A
QUASILINEAR PARTIAL DIFFERENTIAL EQUATION

T.R. CRANNY

This article is a sequel to a paper in which a quasilinear partial differential equation
with nonlinear boundary condition was approximated using mollifiers, and the
existence of solutions to the approximating problem shown under quite general
conditions. In this paper we show that standard a priori Holder estimates ensure
the convergence of these solutions to a classical solution of the original problem.
Some partial results giving such estimates for special cases are described.

1. INTRODUCTION

As in [2], we consider the problem

Qu — a^(x,u,Du)DijU + a(x,u,Du) = 0 in fi

(1.1) Gu = g(x,u,Du) = u-q(x,Du) = 0 on dfi,

where fi C Kn is an bounded domain such that Sfi G C1'", and we assume that

a1', a G COll(fi x l x l " ) and q, qp G CllQ(dfi x Rn).

The existence of a solution to (1.1) is equivalent to the existence of a pair of

functions (U,(J}) such that

(1.2) Qu = 0 in fi

u = w on 9fi

(1.3) w - q(x, Du) = 0 on 0fi.

Using the standard freezing of coefficients to rewrite the differential operator, (1.2)

may be written in the form u — T(u,u>), allowing the full problem to be written as

(14) (I-K
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426 T.R. Cranny [2]

where it is assumed that (u,w) G Clnr(fi) x C1>p(dQ) for 0 < 7 < p < a.

We considered in [2] an approach in which degree theory is applied to equations
which in some sense approximate (1.4) by using a mollification operator to replace the
Du term in the boundary condition with a smoother approximation, denoted (Du) .

Once the existence of solutions to the approximating problems has been guaranteed (as
in [2]), the question remains: Under what circumstances do these approximate solutions
converge in the limit to a solution of the original problem? It is this question we address
here.

We assume in all that follows that the differential and boundary operators satisfy
the conditions

(1.5) 0 < A | ^ | 2 ^ a ^ ( a : ,

-gp(x,z,p)-n> x

(1.6) -gp(x,z,p)n> x\9p(x,z,p)\,

for some positive constants A, A, x, a n ( l the natural structure conditions

A ^ AAI(|2|)

where /J,, fio, fii are positive non-decreasing functions, and that there exists a positive
constant Mi such that

(1.8) (sgn z)a(x,z,0) < 0 in 0,

for \z\ > Mi.

The mollification process used is an adaptation of the standard one. Let p £

C°°(Rn,K) be a nonnegative function such that p(x) = 0 if |z| ̂  1 and J p()dx — 1.

For / G C°(f2), and rj > 0, consider the operator <pv* defined by

(1.9) (w * /)(*) = v~n [ P ( ^ 0 f{y)dy,
Jn \ V /

provided that dist(x,dQ) > r\. We call 7/ the mollification parameter, and ipv * f the
mollification of / . For the properties of the mollifier see [4] or [7].
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[3] Partial differential equations 427

For technical reasons, in [2] we used an adaptation of the standard molhfier, de-
noted by ( )v and denned by taking (f)v to be S(T),f)ipv * / , where

) (1 ) { 0 i { ( / ) (

(1.10) Sl{r,,f) = l

d= sup { f e R | ( l - « ) r ^ \\<pv * f - f]^

where Si, T, C are positive constants, A — ||/||0.fln + C + 1 and the set dCl(A) is
denned to be {(x,z,p) G dtl x R x Rn | \z\ + \p\ < A}.

2. CONVERGENCE TO A CLASSICAL SOLUTION

The following result is from [2].

THEOREM 2 . 1 . If Q and G satisfy (1.5), (1.6), (1.7) and (1.8), then for each
•q 6 (0,770) (770 some positive constant) there exists a function u 6 C2'a(f2) PI C1<a(fl)
such that ||u||0.n < Mi + 1 + diamil and

Qu = 0 in n
ley -| \

g{x,u,{Du)\ =0 on an.

This solution we denote by uv, since there is an obvious dependence upon the
mollification parameter.

The question we consider here is: Under what circumstances do these solutions to
the approximating problem (2.1) give in the hmit a classical solution of (1.1) as TJ tends
to zero? (We follow the convention of referring to the 'convergence' of the uv when in
fact we shall require only the convergence of any subsequence.) The following result
gives a sufficient condition.

THEOREM 2 . 2 . Assume for some sequence of rji \ 0 there exist uVi solving
(2.1). If there exists constants 0 < or, C < oo such that

then there exists a classical solution u of Equation (1.1).

PROOF: We denote the restriction of uv to dQ by u>v, with w defined similarly.

It suffices to show that uv — T(uv,wv) = 0 in 0 for 77 converging to zero implies that

u — T(u,w) — 0 in fi, and g(x,uv,(Duv) 1 = 0 on dfl implies g(x,u,Du) — 0 on dfl.

The convergence in C1 (fi) of the uv to some u follows trivially by compactness. By the
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428 T.R. Cranny [4]

Intermediate Schauder estimates of [3] for the Dirichlet problem, Equation 2.2 implies

that luijl^+^n < ^ f° r s o m e constant C, giving for 5 CC H, | |w,| |2o.a.5 < Co, so

u — T(U,LJ) — 0 in fi. To show that g(x,u,Du) — 0 on dtt, it suffices to show that

(Duv)v converges to Du in C°(dQ), given that uv -> u in C1 (fi) . From the definition

of the ( )v operator, we have (using 5,, to denote S(ri,Duv))

\((Duv)v - Du\\o_ < | | (5 , - l)Vv *X?u,||OiiJ

+ \\ipj, * Duv - <pv * Du + tpv * Du - Du\\0.n

(2.3) ^ | ( 5 , - 1)| C + \\Duv - ZH||0;?T + | | ^ * Du - ;

where it should be noted that we convert back to the standard mollification process in
order to exploit the linearity lacking in the ( )v operator.

The result then follows directly from the last equation if S(r), DUV) —» 1 as T) \ 0.
To show this, we first show that \\ipv * Du^ — Duv\\0.-^ \ 0.

Hv?, * Duv - Duv\\0.^ ^ \\ipr, * Duv - yv * Du + ipv * Du - Du + Du - Du^^

(2.4) ^ yv * Du - Du||0;?T + 2 \\Du - Dun\\^,

which clearly goes to zero as r) \ 0. From (1.10) it is clear that S(r],Duv) \ 1 as

77 \ 0, ensuring that g(x,u,Du) — 0 on dil. D

THEOREM 2 . 3 . If Q and G satisfy (1.5), (1.7) and (1.8), and there exists con-

stants 0 < cr, C < 00 such that (2.2) holds, t hen tAere exists a classical solution u of

Equation (1.1) such that \\u\\i ^ < C.

PROOF: A simple compactness argument shows that the a priori estimate (2.2)
allows us to drop the assumption (1.6). The result then follows from the preceding
theorems. U

It should be noted that the desired convergence results are not a trivial consequence
of the mollification parameter tending to zero, since the function being mollified (that
is, Dun ) depends itself upon the mollification parameter. Examples of the problems
possible can be found in [1].

We mention in passing a result which uses the definition of the ( ) operator to
derive a restriction on the function tpv * uv — uv .

LEMMA 2 . 4 . There exists an rj > 0 such that for all 0 < 77 < 77, we have

(2.5) \\<Pv*Duv -Duv\\0.n<S1/2.

PROOF: If the above result does not hold, there exists a sequence of rji \ 0 such

that

(2.6) \\Vv *Duv- Duv\\0.n ^ 5 i / 2 for all T / , - \ 0.
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[5] Partial differential equations 429

It follows from Equation (1.10) that for such values of 77, S{r), DUV) = 0, implying that

(Duv) = 0. That implies that uv is a solution of Quv = 0 in fi, uv = q(x,Q) on

9fi, so uv is in fact independent of 77 for 77; \ 0. If follows from the convergence

properties of the mollifier that \\tpj, * Duv — Z>-u,||0.n \ 0 under such circumstances,

contradicting (2.6). The desired result must therefore hold. D

3. A PRIORI BOUNDS

In this section we give some partial results on the derivation of the a priori bound
(2.2). We consider boundary conditions with relatively small nonlinearities, and begin
by reformulating the problem (2.1) in the form

(3.1) Quv = 0 in Q,

g(x,uv,Duv) = <pv(x) on 50.

where tpv() = q^,{Duv)v^ - q(-,Duv).

The results which follow rely heavily on the results of Lieberman [6], and give,
for a class of PDE and nonlinear boundary condition, the desired a priori bound when
the relationship between <pv and un is sufficiently strong. Since ip^ involves gradient
terms, it is natural to expect that an estimate on HyTjIlo-gn will result from a bound
on UJJ in Clia(f2) . The first result gives the desired a priori bound if one can bound
HvJU-fln m terms of an a priori bound on uv in a Holder space 'lower' than C1+CT(f2)
(that is, C1+"-b(p) where b > 0).

THEOREM 3 . 1 . Consider the differential operators

Q(x,u,Du,D2u)d=<Ji(x,u)Diju + a(x,u)N(x,Du)

G(x,u,Du) = u — f3(x,u) • Du — e(x,u)M(x,Du)

where 0 • n > x > 0 on dCl and A = [aij],a,0,e £ C^fixlR). We assume
IIMHj , ll-ATUj ^ 1. If there exist constants 0 < b < a < 1 and constants A± and
A2 such that

KlK < At
(3.2) IKILiO < A i

and ||e||0 < E\ sufficiently small, then there exists a constant C > 0 independent oi 77
such that
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430 T.R. Cranny [6]

where p is such that b = p{2 + p)~ (1 + <r).

PROOF: Let A denote an upper bound on ||.4||0 j + ||a||0 x + \W\\ + ||e||0 j , and

let m, n be two distinct values of 77. The function

Y - um - un,

is a solution of the hnear problem

(3.4) <*^*.«m „
Y — (3(x,um) • DY = if) on dQ,

where

(3.5)

fd= [al:I(x,un) - at3(x,um)] DijUn + [a(x,un)-a(x,um)]N(x,Dun)

+ a{x,um) \N{x, Dun) - N{x,Dum)}

i> = <pm - fn + [e(x,um) - e(x,un)]M(x,Dun) + [M(x,Dum) - M{x, Dun)]e(x,um)

+ Dun-[/3(x,um)-l3(x,un)}.

Under the above assumptions, the intermediate Schauder estimates of [6] apply,
giving

(3-6) \Y\2+P;n < 6 \\f\p + \W\*;on) 1

where C = C(A,Ai,cr,p, $7). Now

(3.7) + I [a(x,un)-Z(x,um)]N(x,Dun) \^_~a)

+ I a{x,um)[N(x,Dun) - N(x,Dum)] \(*~a) .

By a simple result in [3] we have, (since b < p)
(3.8)

where

Id = max j | U n | 2 | + , |um | 2 | p : n }
f3 9)

tr def
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[7] Partial differential equations 431

and e{m,n) = e(m,n, A, Ai) is such that e(m,n) \ 0 as m,n \ 0, and Co depends
only on A and A\ . This choice of intermediate norm is used since

The result concerning K2 follows similarly. Similar arguments give

(3.11) \f\%a)^e(m,n)K1+C3K2.

By assumption, we have

(3.12) \\<pm - ^ n | | a ; f l n ^ A2 (|«m|2-i,1+a-6) + \»n\;$+"-b) + 2) ^ 2A2 (K2

so arguments similar to those used above give

(3.13) HV-L ^ [ei + e(m,n)}K, + C(K2 + 1).

It follows from (3.6),(3.11), and (3.13) that

(3.14) l ^ + ^ n * < C([^i + e(m,»)]^i + ^ ( ^ 2 + 1))-

Noting that

(3.15)

for <o = P (2 + p)"1 , it follows from the interpolation inequalities for intermediate norms
that for any r > 0 there exists a constant C(T) < 00, determined only by r,p,cr and
fi such that

K2<C(T)\\u\\0.a+TK1.

Using this in (3.14), we obtain for sufficiently small T

where B < 1 and Cj = Ci(A,Ai,A2,cr,p,Q).
The desired a priori bound then follows as in [5]. U

REMARK. The assumption that there exists a constant Ai such that |u,|j.p < Ai

follows from the structure conditions (1.7) by the interior estimates of [8].

The next result is similar, but avoids the problem of deriving a bound on HVijĤ .flfj

from an estimate on uv in a space of the form C1+a~ (Ctj , using instead the more

natural space C1'a(JT). The result, however, requires that the constant relating the

two be sufficiently small.
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432 T.R. Cranny [8]

THEOREM 3 . 2 . Consider the differential operators

Q(x,u,Du,D2u)d=aii(x,u)Diju+'5.(x,u)N(x,Du)

G(x,u,Du) —u — 0(x,u) • Du — e(x,u)M(x,Du),

as in the previous result. If there exist constants 0<b<p<a<a^l such that

b = p(2 + p)~ (1 + cr), and constants DQ < 1, Ai and A2 such that

KliS < *
(3.17) K U ; n < ^ i

where C is the constant from (3.6), and ||e||0 < £i(£>o) is sufficiently small, t h e n tiere
exists a constant C > 0 independent of r] such that

PROOF: The proof proceeds as before, using the constant 6 and Ki,K2, except
that (3.12) is replaced with

(3.19) \\ipm - tpn\\ Fa,BQ < DoC'1 ( l ^^ | - ^ + ^ + K n l " ^ ) + 2A2,

giving in place of (3.14),

lYlli1^ < C ([ei + e{rn,n)} Kx + C, (K2 + 1) + 2A2)
f3 20)

+ D0(\^\;$+<T) + \um\;£+°)).

Let Si > 0 be sufficiently small that £>0 < (1 - #i)2 (1 + ^ I ) " 1 • We claim now
that l^l^-f^fi >s bounded independently of rj. If not, by freezing n and allowing m.

to increase, we may choose m,n such that |«nl2+p;n < ^i luml2+p;n > Siy

This gives, redefining
(3.21)

; n

+ Ct(K2 + 1)) + J^J ( K l ^ +

C([ei + eim^n))^ + C4(K2 + 1)) + (1 - S^2

C([£l + eim^jKr + CA(K2 + 1)) + ( ! - « , )
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[9] Partial differential equations 433

giving

(3.22)
f C4(#2 + 1))

•e{m,n)]K1+ C5(K2 + l),

where Cs = Cs(A,Ai, A2,a,p,f2) and £i and e(m,n) are rescaled in the obvious way.
Again we have

+<rn,n))K1 + C5(K2(3.23)

where C6 = C 6 (A,^ i , i42,o-,/),fi) and B < 1.

As before, this suffices to give the desired a priori estimate.
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