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Abstract

We investigate the conditions on a hedger, who overestimates the (time- and level-
dependent) volatility, to superreplicate a convex claim on several underlying assets. It is
shown that the classic Black–Scholes model is the only model, within a large class, for
which overestimation of the volatility yields the desired superreplication property. This
is in contrast to the one-dimensional case, in which it is known that overestimation of
the volatility with any time- and level-dependent model guarantees superreplication of
convex claims.
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1. Introduction

For options written on one underlying asset, it is well known that convexity of the contract
function ensures certain monotonicity properties of the option price with respect to the volatility.
For example, if the contract function is convex, then the option price is an increasing function
of the time- and level-dependent volatility – see Bergman et al. (1996), El Karoui et al. (1998),
Hobson (1998), and Janson and Tysk (2003). It is also known that a hedger who overestimates
the volatility will superreplicate a given convex claim – see El Karoui et al. (1998) and Hobson
(1998). Crucial for both the monotonicity result and for the superreplication property, is the
fact that the price of a convex claim is convex (as a function of the current stock price) at any
time before maturity – see the references given above and also Martini (1995), (1999). This
fact, however, applies in one-dimensional cases; it is easy to find examples of an option, with a
convex payoff of two underlying assets, that has a nonconvex price – see Example 2.1 below,
or Janson and Tysk (2003).

In the present article, we study convexity properties of prices of options on several underlying
assets – also see Bergenthum and Rüschendorf (2004) – and show that the only convexity-
preserving model, within a large class of standard models (to be defined below), is geometric
Brownian motion (possibly with a time-dependent volatility). Consequently, if a hedger wants
to use a standard model to superreplicate any convex claim by overestimation of the volatility
in the sense of quadratic forms, then the only model he can use is geometric Brownian motion.
Thus, there are rather few convexity-preserving models in several dimensions. It follows that
one often needs to approximate the volatility, and therefore also the option price, rather crudely
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28 E. EKSTRÖM ET AL.

when overestimating the true volatility. Another approach to the superreplication problem
is via the so-called Black–Scholes–Barenblatt equation – see, for example, Avellaneda et al.
(1995), Lyons (1995), Romagnoli andVargiolu (2000), Vargiolu (2001), and Gozzi andVargiolu
(2002a), (2002b). This equation is a fully nonlinear parabolic equation, which, for convex one-
dimensional claims, reduces to the usual Black–Scholes equation, once again illustrating the
fact that superhedging is a much simpler problem in one dimension than in several.

Janson and Tysk (2004) considered second-order parabolic differential equations of the form

∂G

∂t
= LG (1.1)

for functions G ≡ G(x, t), where the differential operator

L =
n∑

i,j=1

aij (x, t)
∂2

∂xi∂xj

+
n∑

i=1

bi(x, t)
∂

∂xi

+ c(x, t)

is elliptic. The authors found a necessary and sufficient local condition on the operator L that
guarantees that the unique solution to (1.1), satisfying appropriate growth conditions, remains
convex at every time t > 0, provided that the initial condition is convex. If L satisfies the
condition it is said to be locally convexity preserving (LCP). In the present paper we use some
of the results of Janson and Tysk (2004) to study the problem of convexity-preserving models
in finance. The results of Janson and Tysk cannot be used directly in our setting, however.
In particular, the LCP condition is not sufficient to ensure the convexity of option prices. As
a consequence, we have not been able to prove our main result (Theorem 2.3, below) using
arguments involving only PDE methods. Rather, we need to formulate the problem in terms of
the diffusion matrix β, and not in terms of the matrix ββ�, which appears in the Black–Scholes
equation.

The paper is organized as follows. In Section 2, we introduce the notion of convexity-
preserving models and also the LCP condition. Then we describe the set of models under
consideration, namely the so-called standard models, and present Theorem 2.3, which states
that, for n ≥ 2, the only standard, convexity-preserving model is geometric Brownian motion.
We also provide a simple example in which convexity of the option price is lost. In Section 3, we
show that if the hedger uses a convexity-preserving model, then overestimation of the diffusion
matrix, in the sense of quadratic forms, guarantees superreplication of convex claims.

2. Convexity-preserving models

Consider a market consisting of a bank account with price process

B(t) = B(0) exp

{∫ t

0
r(u) du

}
,

where the interest rate r is an integrable, deterministic function; and n risky assets, with the
price Xi of the ith asset satisfying the stochastic differential equation

dXi = µi(X, t) dt +
n∑

j=1

βij (X, t) dWj . (2.1)

In this equation, the drift µi is some deterministic function of the current stock prices and
time, W is an n-dimensional Brownian motion, and the diffusion matrix β = (βij (x, t))ni,j=1
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is assumed to be nonsingular for all x with positive components. Note that the only source of
randomness in the diffusion matrix β is its dependence on the current stock prices. In finance,
it is natural to consider stock prices that cannot become negative. Therefore we let 0 be an
absorbing barrier, i.e. if Xi is 0 at some time, then Xi remains 0 forever.

We assume that the market is complete and arbitrage free. More precisely, given a finite
time horizon T > 0, we assume that there exists a unique probability measure P̃, equivalent to
the original measure P, such that

dXi = r(t)Xi dt +
n∑

j=1

βij (X, t) dW̃j

for some P̃-Brownian motion W̃ , i.e. B−1(t)X(t) is a local martingale up to time T under P̃.
Conditions ensuring the existence and the uniqueness of the probability measure P̃ can be found
in, for example, Karatzas and Shreve (1998). Let g : R

n+ → R be continuous and of at most
polynomial growth, where R

n+ = {x ∈ R
n : xi ≥ 0, 1 ≤ i ≤ n} and R

n+ is its interior. Standard
arbitrage theory yields that at time t , the price of the option that at time T0 ≤ T pays g(X(T0))

is F(X(t), t), where

F(x, t) = exp

{
−

∫ T0

t

r(u) du

}
Ẽx,t g(X(T0)). (2.2)

Here, Ẽx,t denotes expected value with respect to the measure P̃ and its indices indicate that
X(t) = x. Moreover, this pricing function F solves the Black–Scholes parabolic differential
equation

∂F

∂t
+ LF = 0, (2.3)

where

L = 1

2

n∑
i,j=1

aij (x, t)
∂2

∂xi∂xj

+
n∑

i=1

rxi

∂

∂xi

− r, (2.4)

with terminal condition
F(x, T0) = g(x).

In this equation, the coefficients aij ≡ aij (x, t) are the entries of the n × n matrix ββ�. Note
that the invertibility of β guarantees the parabolicity of (2.3) (since the direction of the time
variable is opposite to the customary one).

Assume that the diffusion coefficients βij are linear in xi and independent of xl , l �= i. Then,
under the measure P̃, the stock-price vector X satisfies

dXi = r(t)Xi dt + Xi

n∑
j=1

σij (t) dW̃j (2.5)

for some deterministic functions σij (t). Such a process X is called n-dimensional geometric
Brownian motion with time-dependent volatility or, simply, geometric Brownian motion. Thus,
to show that a process X defined by (2.1) is geometric Brownian motion, one has to show that
βij (x, t) = xiσij (t) for all i and j .

We will say that a model for the stock-price vector X (or the diffusion matrix β) is convexity
preserving if, for any T0 ≤ T , the price of an option with a convex payoff g(X(T0)) at T0 is
convex in X(t) at all times t prior to T0.
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Theorem 2.1. Geometric Brownian motion is convexity preserving.

Proof. Let T0 ≤ T . It is well known that if X is geometric Brownian motion as in (2.5),
then

Xi(T0) = xi exp

{∫ T0

t

(
r(u) − 1

2

n∑
j=1

σ 2
ij (u)

)
du +

n∑
j=1

∫ T0

t

σij (u) dW̃j

}
,

where xi = Xi(t). Let g : R
n+ → R be convex. At time t , the price F(X(t), t) of an option

that at time T0 pays g(X(T0)) is given by

F(x, t) = exp

{
−

∫ T0

t

r(u) du

}
Ẽx,t g(X(T0)),

which is convex in x since Xi(T0) is linear in xi and g is convex. Thus, geometric Brownian
motion is convexity preserving.

Next, we investigate which other models are convexity preserving. It turns out that if one
imposes some conditions on the diffusion matrix, then geometric Brownian motion is the only
such model. We first introduce the LCP condition.

Definition 2.1. Assume that the coefficients of the differential operator L are in C3(Rn+ ×
[0, T ]). Let x ∈ R

n+ and let t ∈ [0, T ]. Then L is said to be LCP at (x, t) if

Duu(Lf )(x, t) ≥ 0

whenever u ∈ R
n \ {0}, f ∈ C∞(Rn+) is convex in a neighborhood of x, and Duuf (x) = 0.

(Here, Duu denotes differentiation twice in the u-direction.)

If G is a solution to (1.1) then the infinitesimal change of G during a short time interval
�t is approximately �t(LG). Thus, the LCP condition is intuitively the correct condition to
preserve convexity: if, at some instant, convexity is almost lost in some direction u, then the
infinitesimal change of G is convex in that direction.

Henceforth, for simplicity, we will work under the following assumption.

Hypothesis 2.1. The diffusion matrix β is in C(Rn+ × [0, T ]) ∩ C3(Rn+ × [0, T ]) and is such
that, for any vector of nonnegative initial values of the stocks, there exists a unique strong
solution X to (2.1) with absorption at 0 of the ith component Xi , for all i.

We also assume that the diffusion matrix β is such that, for any smooth terminal value g, the
function F defined by (2.2) has continuous derivatives Dk

xD
m
t F , m ∈ {0, 1}, 0 ≤ |k|+2m ≤ 4,

up to time T0. Here, Dt denotes the derivative with respect to time and Dk
x denotes derivatives

in the spatial variables as indicated by the multi-index k.

Remark 2.1. The assumption that β is C3 is unnecessarily strong – see Section 3 of Janson
and Tysk (2004). To clarify the presentation, however, we will continue to assume this.

Theorem 2.2. Let the diffusion matrix β satisfy Hypothesis 2.1, and let L be the corresponding
differential operator, as in (2.4). If β is convexity preserving then L is LCP at all points
(x0, T0) ∈ R

n+ × (0, T ).

Proof. Suppose that f ∈ C∞(Rn+) is convex in a neighborhood of some point x0 ∈ R
n+,

and suppose that Duuf (x0) = 0 for some direction u �= 0. Then, there exists a smooth convex
function g : R

n+ → R that equals f in a neighborhood of x0; for details, see Lemma 3.2 of
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Janson and Tysk (2004). Since β is convexity preserving, there exists a solution F(x, t) (defined
by (2.2)) to (2.3), which is convex in x for all t ≤ T0, with terminal condition F(x, T0) = g(x).
By assumption, Dk

xD
m
t F , m ∈ {0, 1}, 0 ≤ |k|+2m ≤ 4, exist and are continuous up to time T0.

Since DuuF(x0, t) ≥ 0 for all t ≤ T0 and DuuF(x0, T0) = 0, we have DtDuuF(x0, T0) ≤ 0.
Therefore, using (2.3),

Duu(Lf )(x0, T0) = Duu(LF)(x0, T0)

= −Duu(DtF )(x0, T0)

= −DtDuuF(x0, T0)

≥ 0.

Remark 2.2. Janson and Tysk (2004) showed that the LCP condition is both necessary and
sufficient to guarantee that an operator L defined on R

n × [0, T ] is convexity preserving.
To establish sufficiency in the present setting, we would have to add some conditions on
the boundary of R

n+ in the definition of LCP. In our analysis, however, we only use local
convexity preservation as a necessary condition, and we therefore side-step the rather technical
considerations about the appropriate LCP condition for boundary points.

We now present the class of models under consideration.

Definition 2.2. A model with a diffusion matrix β that satisfies Hypothesis 2.1 is standard if
the following conditions are satisfied:

(i) the diffusion coefficient βij is a function only of xi and t ;

(ii) the diffusion coefficients satisfy βij = 0 for xi = 0; and

(iii) for all i = 1, . . . , n and fixed times t , the volatility

√
aii(xi, t)/xi =

√
β2

i1(xi, t) + · · · + β2
in(xi, t)/xi

of the ith asset is not a monotonically increasing function of xi , unless it is constant.

Remark 2.3. Note that condition (i) does not exclude dependence between the assets. Instead,
it merely says that the volatility of the ith asset depends only on the value of that asset and
time. Note further that condition (ii) allows volatilities tending to infinity for asset values
close to 0. Condition (iii) seems to be satisfied for virtually all models of option pricing; in
fact, many models have large volatility for small values of the underlying asset, and thus the
volatility is strictly decreasing on some interval. However, without this condition, there are
other convexity-preserving models – see Bergenthum and Rüschendorf (2004) and Janson and
Tysk (2004).

We can now state our main theorem.

Theorem 2.3. Let n ≥ 2. Then geometric Brownian motion (with time-dependent volatility) is
the only standard model that is convexity preserving.

Remark 2.4. From Theorem 2.3, it follows, for example, that the (standard) constant-elasticity-
of-variance (CEV) model, in which the price of the ith asset is given under P̃ by

dXi = r(t)Xi dt + σiX
γi

i dW̃i

for some nonzero parameters σi and γi , where 0 < γi < 1, is not convexity preserving.
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In line with this remark, we give an explicit example of an option with a convex contract
function but with a nonconvex price.

Example 2.1. Consider the interest-rate-free CEV model, in which the price of the ith asset,
i = 1, 2, is given under P̃ by

dXi = X
γ

i dW̃i,

where 0 < γ < 1
2 . Assume that the payoff is given by g(X1(T ), X2(T )) = (X1(T )−X2(T ))2

at time T . Then, the terminal time derivative of the option price satisfies

∂F

∂t
= −x

2γ
1

2

∂2F

∂x2
1

− x
2γ
2

2

∂2F

∂x2
2

= −x
2γ
1 − x

2γ
2 .

Thus, the terminal time derivative is convex along the diagonal x1 = x2, for example. Since
g = 0 along the diagonal, it follows that convexity is lost for times t close to T .

Before proving Theorem 2.3, we need a technical lemma.

Lemma 2.1. Let β be a C2 diffusion matrix such that βij is a function of xi alone, and such
that condition (ii) of Definition 2.2 is satisfied. Assume that there exist constants Bij such that

n∑
k=1

βik(xi)βjk(xj ) = Bijxixj (2.6)

for all i and j with i �= j . Then there exists an index l ∈ {1, . . . , n} such that (βl1, . . . , βln) =
f (xl)v for some constant vector v ∈ R

n and some function f .
If, in addition, (2.6) also holds for i = j , then β is the diffusion matrix of a geometric

Brownian motion.

Proof. Let βi = (βi1, . . . , βin) and β ′′
i = (β ′′

i1, . . . , β
′′
in) for i = 1, . . . , n. Here, the double

primes refer to differentiation with respect to the xi-variables. If β ′′
i ≡ 0 for some i, then all

of the components of βi are affine functions of xi . From Definition 2.2(ii), it follows that the
components are, in fact, linear and, thus, the lemma is true in this particular case.

Now assume that we can choose coordinates x1, . . . , xn > 0 such that β ′′
i (xi) �= 0. From

(2.6) we have
β ′′

i (xi) · βj (xj ) = 0 (2.7)

for i �= j . Since β1(x1), . . . ,βn(xn) are linearly independent (recall that the diffusion matrix
is assumed to be nonsingular), it follows from (2.7) that β ′′

1 (x1), . . . , β
′′
n(xn) are linearly

independent. Now, keeping x1, . . . , xn−1 fixed, it follows from (2.7) that, for any xn, βn(xn) is
in the orthogonal (one-dimensional) complement of β ′′

1 (x1), . . . , β
′′
n−1(xn−1). Thus, βn(xn) =

f (xn)v for some constant vector v ∈ R
n, which finishes the first part of the lemma.

Next, assume that (2.6) also holds for i = j , i.e. that aii(xi) = Biix
2
i for some positive

constants Bii . Fix x2, . . . , xn and let vi = βi (xi)/xi for i = 2, . . . , n. Then

β1(x1)

x1
· vi = B1i

for all x1. Since vi , i = 2, . . . , n, are linearly independent, it follows that

β1(x1)

x1
∈ {β1(1) + tw, t ∈ R}
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for some vector w ∈ R
n. However, since the inner product

β1(x1)

x1
· β1(x1)

x1
= B11

is constant, we find that β1(x1)/x1 is a vector of constant length. By continuity, it follows that
β1(x1)/x1 is a constant vector. Similarly, we deduce that all entries in the ith row of β are
linear in xi and, thus, the lemma follows.

Proof of Theorem 2.3. Assume that β is a standard diffusion matrix, which is convexity
preserving, and let L be the corresponding differential operator appearing in the Black–Scholes
equation (2.3). We suppress the time variable t in the calculations below. First, choose two
components xi and xj . For a fixed s, let f (xi, xj ) = 1

2 (sxi − xj )
2. Then f is constant along

the lines xj = sxi + xi,0, where xi,0 is a constant. If u = ei + sej (where ei and ej are unit
vectors in the i- and j -directions, respectively) then, since L is LCP by Theorem 2.2, it follows
that

0 ≤ 2Duu(Lf )

= (∂2
xi

+ 2s∂xi
∂xj

+ s2∂2
xj

)

( n∑
i,j=1

aij

∂2f

∂xi∂xj

+ 2r

n∑
i=1

xi

∂f

∂xi

− 2rf

)

= (∂2
xi

+ 2s∂xi
∂xj

+ s2∂2
xj

)(s2aii − 2saij + ajj + 2rxifxi
+ 2rxjfxj

− 2rf )

= −2s3∂2
xj

aij + s2(∂2
xi

aii − 4∂xi
∂xj

aij + ∂2
xj

ajj ) − 2s∂2
xi

aij .

Since s is arbitrary, we find that
∂2
xj

aij = ∂2
xi

aij = 0

and, so, aij = Bijxixj + B1xi + B2xj + B3. The condition (ii) guarantees that aij (xi, xj )

vanishes for xi = 0 and for xj = 0, from which it follows that B1 = B2 = B3 = 0. Hence,
aij = Bijxixj for i �= j .

It remains to show that the same holds for the diagonal elements aii . Using the first part
of Lemma 2.1, we may assume that, say, βn(xn) = f (xn)v for some constant vector v ∈ R

n.
Now choose a row βi , i ∈ {1, . . . , n − 1}, in the diffusion matrix and consider the 2 × 2 matrix
block

Ain =
(

aii ain

ani ann

)
=

(
aii(xi) Binxixn

Binxixn ann(xn)

)
.

Since L is LCP, the operator corresponding to Ain must be LCP for equations in the spatial
variables xi and xn. There are two different cases to consider. First, assume that Bin = 0. Then

Ain =
(

g2(xi) 0
0 h2(xn)

)
,

where g and h are some positive functions. From Example 5.3 of Janson and Tysk (2004), we
see that, in order to have a convexity-preserving operator, we must have

g(xi)g
′′(xi) + h(xn)h

′′(xn) ≥ 0

for all xi and xn. Hence, at least one of g and h is convex. Let this function be g. Then, by
Definition 2.2(ii), we conclude that g(0) = 0 and, from condition (iii), the function g is seen
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to be linear, using the fact that g(xi)/xi = [aii(xi, t)]1/2/xi is increasing, since g is a convex
function vanishing at 0. Therefore, the above inequality has only one term, so h is also convex
and linear, by the same argument. Hence, aii(xi) = C2

1x2
i and ann(xn) = C2

2x2
n for some

constants C1 and C2.
Next, if Bin �= 0 then

ain(xi, xn) = Binxixn = βi (xi) · βn(xn) = f (xn)(βi (xi) · v)

for some constant vector v. It follows that βn(xn) = xnu for some constant vector u ∈ R
n.

Therefore,

Ain =
(

g2(xi) + D2x2
i DExixn

DExixn E2x2
n

)

for some nonzero constants D and E and some function g, which is strictly positive for xi > 0.
From Corollary 5.2 of Janson and Tysk (2004), it follows that

Duu

√
b2aii(xi) − 2abDExixn + a2E2x2

n ≥ 0

for all directions u = aei + ben. Direct calculations show that

Duu

√
b2aii(xi) − 2abDExixn + a2E2x2

n

= a2b2(b2aii(xi) − 2abDExixn + a2E2x2
n)−3/2

× ((b(D − E)g(xi) − (bDxi − aExn)g
′(xi))

2

+ (b2g2(xi) + (bDxi − aExn)
2)g(xi)g

′′(xi)).

Here,

b2aii − 2abDExixn + a2E2x2
n = b2g2(xi) + (bDxi − aExn)

2 > 0

if b �= 0 and xi > 0. We claim that

g′′(xi) ≥ 0 (2.8)

for all xi . Indeed, for a given xi and xn, let K1 = Exng
′(xi) and K2 = (D − E)g(xi) −

Dxig
′(xi). Then we know that

(K1a + K2b)2 + (b2g2(xi) + (bDxi − aExn)
2)g(xi)g

′′(xi) ≥ 0

for all a, b �= 0. If K1 and K2 both are 0, then (2.8) follows immediately, while, if K1 and
K2 are both nonzero, then a, b �= 0 can be chosen such that K1a + K2b = 0 and, thus,
(2.8) follows. If K1 = 0, K2 �= 0, and g(xi)g

′′(xi) < 0, then having b = 1 and a very
large yields a contradiction, from which (2.8) follows – the case K1 �= 0 = K2 is similar.
Considering the inequality (2.8) together with conditions (ii) and (iii) of Definition 2.2, we find
that aii(xi) = C2x2

i for some constant C.
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Remark 2.5. Theorem 2.3 tells us that, in order to ensure the preservation of convexity,
regardless of the (convex) contract function, geometric Brownian motion should be used to
model the asset prices. However, given a particular convex claim, it can of course be the case
that other models also guarantee convex option prices. For example, if the contract function is
g(x1, x2) = g1(x1) + g2(x2), where g1 and g2 are both convex, then all models with diagonal
diffusion matrices satisfying condition (i) of Definition 2.2 are convexity preserving. The
reason for this is that such a claim is the sum of two one-dimensional claims, both of which
have convex prices.

3. Superreplication of convex claims

Assume that an option-writer believes that the diffusion matrix β is as in (2.1), whereas the
true stock-price vector X̃ evolves according to

dX̃i = µ̃i(X̃, t) dt +
n∑

j=1

β̃ij (X̃, t) dWj

for some functions µ̃i and β̃ij . He will then (incorrectly) price an option on the stocks according
to (2.2), where X is a diffusion with diffusion matrix β. Moreover, if he tries to replicate the
option with the hedging strategy suggested by his model, he will form a self-financing portfolio
that has initial value F(X(0), 0) and is such that, at each instant t , it contains ∂F (X̃(t), t)/∂xi

shares of the ith asset (with the remaining amount invested in the bank account). In this section,
we provide conditions under which the terminal value of the hedger’s portfolio exceeds the
option payoff g(X(T0)) almost surely.

Given two diffusion matrices β and β̃, we say that β dominates β̃ if

A(x, t) = β(x, t)β�(x, t) ≥ β̃(x, t)β̃�(x, t) = Ã(x, t),

as quadratic forms, for all x and t .

Theorem 3.1. Assume that a hedger overestimates the volatility, i.e. he uses a diffusion matrix
β that dominates the true diffusion matrix β̃. Moreover, assume that β is convexity preserving.
Then, the hedger will superreplicate any convex claim written on X. A hedger who underesti-
mates the volatility, i.e. uses a β dominated by β̃, will, in the same circumstances, subreplicate
such a claim.

Theorem 3.1 is proved along the same lines as in the one-dimensional case – see, for example,
El Karoui et al. (1998). For the reader’s convenience, we give the proof here.

Proof. Let g : R
n+ → R be a convex contract function, and define F as in (2.2). Since

β is convexity preserving, F(x, t) is convex in x for all t ∈ [0, T0]. The value V (t) of the
self-financing portfolio with ∂F (X̃(t), t)/∂xi shares of the ith asset and initial value V (0) =
F(X̃(0), 0) has the dynamics

dV = r

(
V (t) −

n∑
i=1

X̃i(t)
∂F

∂xi

(X̃(t), t)

)
dt +

n∑
i=1

∂F

∂xi

(X̃(t), t) dX̃i(t).
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Consider the process Y (t) := V (t) − F(X̃(t), t). From Itô’s formula, it follows that

dY = dV − ∂F

∂t
(X̃(t), t) dt −

n∑
i=1

∂F

∂xi

(X̃(t), t) dX̃i

− 1

2

n∑
i=1

n∑
j=1

ãij (X̃(t), t)
∂2F

∂xi∂xj

(X̃(t), t) dt

= rV (t) dt − ∂F

∂t
(X̃(t), t) dt − r

n∑
i=1

X̃i(t)
∂F

∂xi

(X̃(t), t) dt

− 1

2

n∑
i=1

n∑
j=1

ãij (X̃(t), t)
∂2F

∂xi∂xj

(X̃(t), t) dt

= r(V (t) − F(X̃(t), t)) dt

+ 1

2

n∑
i=1

n∑
j=1

(aij (X̃(t), t) − ãij (X̃(t), t))
∂2F

∂xi∂xj

(X̃(t), t) dt

= rY (t) dt + 1

2

n∑
i=1

n∑
j=1

(aij (X̃(t), t) − ãij (X̃(t), t))
∂2F

∂xi∂xj

(X̃(t), t) dt,

where we have used the fact that F solves the Black–Scholes equation (2.3) with diffusion
matrix β. Now, assume that the hedger overestimates the volatility, i.e. that β(x, t) dominates
β̃(x, t) for all x and t . Then, since F is convex, the last double sum is nonnegative. Thus,
Y (0) = 0 and Y (T0) ≥ 0. It follows that the final value V (T0) of the hedger’s portfolio satisfies
V (T0) ≥ F(X̃(T0), T0) = g(X̃(T0)), meaning that the hedger superreplicates. The case of
underestimation of the volatility is similar.

Theorems 2.3 and 3.1 show that if a hedger wants to be sure to superreplicate a convex claim
on several underlying assets, then he should overestimate the true diffusion matrix β̃ with a
diffusion matrix β such that βij (x, t) = xiσij (t) for some functions σij (t). Note that there is
no assumption that the true diffusion matrix be LCP; what matters is that the hedger should
use a model that is LCP. Actually, it is not even essential that the true diffusion matrix β̃ be a
function of time and the current stock prices: the theorem is also true in the case that β̃ is some
adapted process dominated by β(X̃(t), t) for all t , almost surely. This is, of course, in analogy
with the one-dimensional case – see El Karoui et al. (1998).

Remark 3.1. By considering anAmerican option as the limit of a sequence of European options
(for the one-dimensional case, see El Karoui et al. (1998) or Ekström (2004)) it is clear that
a model that gives convex European option prices also gives convex American option prices.
For American claims, an option-writer must be sure that the value V of his hedging portfolio
at each instant t satisfies V (t) ≥ g(X̃(t)). It can be shown that this is indeed the case if the
option-writer overestimates the diffusion matrix with a convexity-preserving model.

Remark 3.2. Janson and Tysk (2004) showed that if A ≥ Ã, as quadratic forms, and if either
A or Ã is convexity preserving, then the corresponding solutions F and F̃ satisfy the inequality
F(x, t) ≥ F̃ (x, t) for all x and t . Thus, if one knows that the true diffusion matrix can
be bounded both above and below by some diffusion matrices corresponding to geometric
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Brownian motions, then one also has upper and lower bounds for the price of an option. This
can also be seen as a consequence of Theorem 3.1.

It is also possible to formulate a converse to Theorem 3.1: if the hedger overestimates
the volatility but uses a model that is not convexity preserving, then he cannot be sure to
superreplicate. Rather than formulating this as a general theorem, we end this article with
an example showing that preservation of convexity is indeed essential for the superreplication
property to hold.

Example 3.1. Assume that r = 0 and that a diffusion matrix β and a convex payoff function
are specified so that the second derivative DuuF of the option price F is strictly negative in
some direction u ∈ R

n \ {0} at some point (x0, t0). Consider the two diffusion matrices β1 and
β2 defined by

β1(x, t) =
{

β(x, t) if t0 < t ≤ T ,
0 if t ≤ t0,

and

β2(x, t) =
{

β(x, t) if t0 < t ≤ T ,
α if t ≤ t0,

where α is some constant matrix such that

∑
i,j

aij

∂2F

∂xi∂xj

< 0

with (aij ) = αα�. It follows that β2 dominates β1. Moreover, if F (i) is the option price when
the diffusion matrix is given by βi , then

∂F (2)

∂t
= −

∑
i,j

aij

∂2F

∂xi∂xj

> 0 = ∂F (1)

∂t

at the point (x0, t0). Consequently, the price F (2) is smaller than F (1) at some times prior to
t0. Thus the superreplication property cannot hold if convexity is being lost.

Alternatively, to avoid degenerate diffusion matrices, one might add α to the diffusion matrix
β for all times prior to t0, to arrive at a similar result.
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