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Resultants of Chebyshev Polynomials: the
First, Second, Third, and Fourth Kinds

Masakazu Yamagishi

Abstract. We give an explicit formula for the resultant of Chebyshev polynomials of the ûrst, second,
third, and fourth kinds. We also compute the resultant ofmodiûed cyclotomic polynomials.

1 Introduction

In [4], Jacobs, Rayes, and Trevisan obtained explicit formulas for the resultants of
Chebyshev polynomials of the ûrst and second kinds, and Louboutin gave a short
proof in [8]. As there are four (ûrst, second, third, and fourth) kinds of Chebyshev
polynomials, it is the purpose of this note to compute the resultant of two Chebyshev
polynomials of any kinds. It is intriguing tonotice that the Jacobi symbol is involved in
the result. For the proof,we use the roots of Chebyshev polynomials, basic properties
of sine and cosine values, and basic properties of the Jacobi symbol, including the
reciprocity law. When restricted to the ûrst or second kinds, our proof is diòerent
from both [4] and [8]. As an application, we also compute the resultant of modiûed
cyclotomic polynomials. Our result is a reûnement of a well-known formula due to
Diederichsen [2] (see also [1,3, 5,7,9]) for the resultants of cyclotomic polynomials.

2 Resultant of Chebyshev Polynomials

_e Chebyshev polynomials Tn ,Un ,Vn , andWn of the ûrst, second, third, and fourth
kind, respectively, are characterized by

Tn(cos θ) = cos nθ , Un(cos θ) =
sin(n + 1)θ

sin θ
,

Vn(cos θ) =
cos(n + 1/2)θ

cos θ/2
, Wn(cos θ) =

sin(n + 1/2)θ
sin θ/2

,

where n is an integer (cf. [11, 12]). _e normalized Chebyshev polynomials of the ûrst
and second kinds are deûned by Cn(x) = 2Tn(x/2), Sn(x) = Un(x/2). We adopt
Schur’s notation Sn(x) = Sn−1(x). For odd n we deûne

Vn(x) = V(n−1)/2(x/2), Wn(x) =W(n−1)/2(x/2).
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In this note, we always assume odd indices for the polynomials Vn andWn . For n ≥ 1
we have

Cn(x) = ∏
0< j<2n ,
j∶odd

(x − 2 cos
jπ
2n

) , Sn(x) = ∏
0< j<2n ,
j∶even

(x − 2 cos
jπ
2n

) ,

Vn(x) = ∏
0< j<n ,
j∶odd

(x − 2 cos
jπ
n

) , Wn(x) = ∏
0< j<n ,
j∶even

(x − 2 cos
jπ
n

) .

We will use the following identities:

Wn(−x) = (−1)nVn(x),(2.1)

Wm(Cn(x)) =
⎧⎪⎪
⎨
⎪⎪⎩

Wmn(x)/Wn(x) if n is odd,
Smn/2(x)/Sn/2(x) if n is even.

(2.2)

Let res( f , g) denote the resultant of two polynomials f and g. For the deûnition
and properties of the resultant, see [4]. In particluar, we note that

(2.3) res(g , f ) = (−1)deg( f ) deg(g) res( f , g).

In addition to those properties listed in [4], we also quote the following from [10]. If
h is a polynomial with leading coeõcient c, then

(2.4) res( f (h(x)) , g((h(x))) = cdeg( f ) deg(g) deg(h) res( f , g)deg(h) .

Let n = ∏
r
i=1 p

e i
i be the prime factorization of a positive odd integer n, and a an

integer. _e Jacobi symbol is deûned by

(2.5) (
a
n
) =

r
∏
i=1

(
a
p i

)
e i
,

where (a/p i) is the Legendre symbol. For a prime p and an integer n we write
ordp(n) = k when pk is the highest power of p dividing n.

_eorem 2.1 Let m, n be positive integers and let g = gcd(m, n).

(i) res(Cm ,Cn) =

⎧⎪⎪
⎨
⎪⎪⎩

(−1)mn/22g if ord2(m) /= ord2(n),
0 if ord2(m) = ord2(n).

(ii) res(Sm ,Sn) =

⎧⎪⎪
⎨
⎪⎪⎩

(−1)(m−1)(n−1)/2 if g = 1,
0 if g > 1.

(iii) res(Vm ,Vn) = ( m
n ) .

(iv) res(Wm ,Wn) = ( n
m ) .

(v) res(Cm ,Sn) =

⎧⎪⎪
⎨
⎪⎪⎩

(−1)m(n−1)/22g−1 if ord2(m) ≥ ord2(n),
0 if ord2(m) < ord2(n).

(vi) res(Cm ,Vn) = res(Wn ,Cm) = ( 2
n/g )2(g−1)/2.

(vii) res(Sm ,Vn) = res(Wn ,Sm) = ( m
n ) .

(viii) res(Wm ,Vn) = ( 2
g )2(g−1)/2.
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Proof For positive integers n and a we introduce the following products:

S(n, a) = ∏
0< j<n

2 sin
a jπ
n
, C(n, a) = ∏

0< j<n
2 cos

a jπ
n
,

s(n, a) = ∏
0< j<n/2

2 sin
a jπ
n
, c(n, a) = ∏

0< j<n/2
2 cos

a jπ
n

.

_en we have

res(Sm ,Sn) = ∏
0< j<m

Sn(2 cos
jπ
m

) =
S(m, n)
S(m, 1)

,

res(Sm ,Cn) = ∏
0< j<m

Cn(2 cos
jπ
m

) = C(m, n),

res(Wm ,Wn) = ∏
0< j<m ,
j∶even

Wn(2 cos
jπ
m

) =
s(m, n)
s(m, 1)

,

res(Wm ,Cn) = ∏
0< j<m ,
j∶even

Cn(2 cos
jπ
m

) = c(m, 2n),

res(Wm ,Sn) = ∏
0< j<m ,
j∶even

Sn(2 cos
jπ
m

) =
s(m, 2n)
s(m, 1)

,

res(Wm ,Vn) = ∏
0< j<m ,
j∶even

Vn(2 cos
jπ
m

) =
c(m, n)
c(m, 1)

.

Note that the denominators are nonzero. For these resultants the results are immedi-
ate from Lemma 2.3. _en changing the sign of x in (iv) and using (2.1), (2.4), and
the reciprocity law of the Jacobi symbol, we obtain (iii). _is also applies to the ûrst
equalities in (vi) and (vii). Finally,

res(Cm ,Cn) = ∏
0< j<2m ,

j∶odd

Cn(2 cos
jπ
2m

) = ∏
0< j<2m ,

j∶odd

2 cos
n jπ
2m

is nonzero if and only if ord2(m) /= ord2(n). If this is the case, then

res(Cm ,Cn) =
C(2m, n)
C(m, n)

,

and (i) follows from Lemma 2.3.

Remark 2.2 In [4, 8], explicit formulas for res(Tm , Tn) and res(Um ,Un) were ob-
tained. _ey are identical to our (i) and (ii), respectively, in view of (2.4).

Lemma 2.3 Let n, a be positive integers and g = gcd(n, a).

(i) S(n, a) =
⎧⎪⎪
⎨
⎪⎪⎩

(−1)(n−1)(a−1)/2n if g = 1,
0 otherwise.
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(ii) C(n, a) =
⎧⎪⎪
⎨
⎪⎪⎩

(−1)(n−1)a/22g−1 if ord2(n) ≤ ord2(a),
0 otherwise.

(iii) If n is odd, then

s(n, a) =
⎧⎪⎪
⎨
⎪⎪⎩

( an )
√

n if a is odd,
( a/2n )

√
n if a is even.

(iv) If n is odd, then

c(n, a) =
⎧⎪⎪
⎨
⎪⎪⎩

( 2
g )2(g−1)/2 if a is odd,

( 2
n/g )2(g−1)/2 if a is even.

Proof We put n′ = n/g , a′ = a/g.
(i) If g > 1, then S(n, a) = 0, since sin(an′π/n) = 0. Suppose g = 1 and let ζN =

e2πi/N (N is a positive integer). Since 2 sin(a jπ/n) = iζ−a j2n (1 − ζa jn ), we have

S(n, a) = in−1ζ−an(n−1)/2
2n

n−1
∏
j=1

(1 − ζ j
n) = (−1)(n−1)(a−1)/2n.

(ii) If ord2(n) > ord2(a), then C(n, a) = 0, since cos(a(n′/2)π/n) = 0. Suppose
ord2(n) ≤ ord2(a); in particular, n′ is odd. If g = 1, then by (i)we have S(n, a) /=
0, S(n, 2a) /= 0, and

C(n, a) = S(n, 2a)
S(n, a)

= (−1)(n−1)a/2 .

If g > 1, then

C(n, a) =
g−1
∏
k=0

n′−1
∏
j=1

2 cos
a(kn′ + j)π

n
×

g−1
∏
k=1

2 cos
a(kn′)π

n

=
g−1
∏
k=0

n′−1
∏
j=1

(−1)a
′k2 cos

a′ jπ
n′
×

g−1
∏
k=1

2(−1)a
′k

= (−1)(n−n′)a/22g−1C(n′ , a′)g ,

and we are reduced to the case g = 1.
(iii) If g > 2, then S(n, a) = 0 since sin(an′π/n) = 0. Suppose g = 1. It follows from

(i) and the identity S(n, a) = (−1)(n−1)(a−1)/2s(n, a)2 that ∣s(n, a)∣ =
√

n. By
Gauss’ Lemma, the sign of s(a, n) is equal to ( a/2n ) if a is even (cf. [6, Propo-
sition 8.1]). If a is odd, then, counting the number of odd j’s in the interval
0 < j < n/2, we see that s(n, a) = ( 2

n ) s(n, a + n), so the sign of s(n, a) is ( an ) .
(iv) If g = 1, then by (iii) we have s(n, a) /= 0 and

c(n, a) = s(n, 2a)
s(n, a)

=

⎧⎪⎪
⎨
⎪⎪⎩

1 if a is odd,
( 2

n ) if a is even.
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Suppose g > 1. We compute

c(n, a) =
(g−1)/2
∏
k=0

∏
0< j<n′/2

2 cos
a(kn′ + j)π

n

×
(g−1)/2
∏
k=1

∏
0< j<n′/2

2 cos
a(kn′ − j)π

n
×
(g−1)/2
∏
k=1

2 cos
a(kn′)π

n

=
(g−1)/2
∏
k=0

∏
0< j<n′/2

(−1)a
′k2 cos

a′ jπ
n′

×
(g−1)/2
∏
k=1

∏
0< j<n′/2

(−1)a
′k2 cos

a′ jπ
n′
×
(g−1)/2
∏
k=1

2(−1)a
′k

= ε2(g−1)/2c(n′ , a′)g ,

where ε = 1 if a′ is even, and ε = (−1)(g
2
−1)/8 = ( 2

g ) if a′ is odd. _us we are
reduced to the case g = 1.

3 Resultant of Modified Cyclotomic Polynomials

For n ≥ 3 letΨn denote theminimal polynomial of 2 cos(2π/n) overQ. _enΨn(x) ∈
Z[x] and deg(Ψn) = ϕ(n)/2. _ese arewhatwe called themodiûed cyclotomic poly-
nomials in the introduction, as we have the identity

(3.1) Ψn(x + x−1) = x−ϕ(n)/2Φn(x),

where Φn is the n-th cyclotomic polynomial. Here are some properties of Ψn . For n
odd we have

(3.2) Ψ2n(x) = Ψn(−x).

By [13, Proposition 2.5] we have

(3.3) Ψn(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∏d ∣n Wd(x)µ(n/d) if n ≡ 1 (mod 2),
∏d ∣n/2 Vd(x)µ(n/2d) if n ≡ 2 (mod 4),
∏d ∣n/2 Sd(x)µ(n/2d) if n ≡ 0 (mod 4).

Combining this with (2.2), for p a prime we have

(3.4) Ψn(Cp(x)) =
⎧⎪⎪
⎨
⎪⎪⎩

Ψpn(x)Ψn(x) if p ∤ n,
Ψpn(x) if p ∣ n.

We need to generalize the Jacobi symbol to the Kronecker symbol; it is deûned by
(2.5) for any positive integer n by requiring further that

(
a
2
) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if a ≡ 0 (mod 2),
1 if a ≡ ±1 (mod 8),
−1 if a ≡ ±3 (mod 8).

We introduce one more notation. For a positive integer n let L(n) = p if n is a
power of some prime p, and L(n) = 1 otherwise. _e notation Λ(n) = log L(n) is
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o�en used in analytic number theory. We note the following identity:

(3.5) L(n) = ∏
d ∣n
dµ(n/d) .

Lemma 3.1 Let n ≥ 3.
(i) Ψn(2) = L(n).
(ii) Except for Ψ4(−2) = −2, we have

Ψn(−2) =
⎧⎪⎪
⎨
⎪⎪⎩

( −1
L(n)) if n is odd,

( −1
L(n/2))L(n/2) if n is even, n > 4.

(iii) Except for Ψ4(0) = 0,Ψ8(0) = −2, we have

Ψn(0) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

( −2
L(n)) if n ≡ 1 (mod 2),

( 2
L(n/2)) if n ≡ 2 (mod 4),

( −1
L(n/4))L(n/4) if n ≡ 0 (mod 4).

Proof _e exceptional cases are clear as Ψ4(x) = x ,Ψ8(x) = x2 − 2. For odd n the
claims follow from (3.3), (3.5), and the facts Wn(2) = n,Wn(−2) = ( −1

n ) ,Wn(0) =

( −2
n ) . _en applying (3.4) for p = 2 (so C2(x) = x2 − 2), we complete the proof.

Now we compute res(Ψm ,Ψn). In view of (2.3), we may make some additional
restrictions on m and n.

_eorem 3.2 Let m, n ≥ 3,m /= n.
(i) If m ∤ n, n ∤ m, and m is odd, then

res(Ψm ,Ψn) = (
L(n)
L(m)

) .

(ii) If m ∤ n, n ∤ m,m < n, and m, n are even, then

res(Ψm ,Ψn) = (
L(m/2)
L(n/2)

) .

(iii) If m ∣ n and m is odd, then, putting L1 = L(m), L2 = L(n/m), we have

res(Ψm ,Ψn)

Lϕ(m)/2
2

=

⎧⎪⎪
⎨
⎪⎪⎩

( L2
L1
) if L1 /= L2 ,

1 if L1 = L2 .

(iv) If m ∣ n and ord2(m) = 1, then, putting L1 = L(m/2), L2 = L(n/m), we have

res(Ψm ,Ψn)

Lϕ(m)/2
2

=

⎧⎪⎪
⎨
⎪⎪⎩

( L2
L1
) if L1 /= L2 ,

( −1
L1
) if L1 = L2 .

(v) If 4 ∣ m ∣ n, then, putting L2 = L(n/m), we have

res(Ψm ,Ψn)

Lϕ(m)/2
2

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−1 if m = 4, n = 8,
( −1

L2
) if m = 4, n /= 8,

1 otherwise.
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Proof (i) We use induction on the number of prime divisors (multiplicity taken
into account) of g = gcd(m, n).

If g = 1, then the claim follows from (3.3),_eorem 2.1, and (3.5); note that L(n) = 1
if n ≡ 2 (mod 4) and that L(n/2) = L(n) if n ≡ 0 (mod 4).

Suppose g > 1. Since the assumption implies L(n) = 1 or L(m) = 1, we have to
show that res(Ψm ,Ψn) = 1. Let p be a prime divisor of g. We have m/p ≥ 3, n/p ≥ 2
by the assumption. If n/p = 2, then by (2.3), (2.4), and (3.2) we have

res(Ψm ,Ψn) = res(Ψ2m(−x),Ψp(−x)) = res(Ψp ,Ψ2m),

whose computation will be postponed until (iii). Suppose n/p ≥ 3. By (2.4) we have

res(Ψm/p ,Ψn/p)
p = res(Ψm/p(Cp(x)),Ψn/p(Cp(x)),

then by (3.4) we ûnd that

(3.6) res(Ψm ,Ψn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

res(Ψm/p ,Ψn/p)
p−1

res(Ψm ,Ψn/p) res(Ψm/p ,Ψn)
, if µ = ν = 1,

res(Ψm/p ,Ψn/p)
p

res(Ψm/p ,Ψn)
, if µ = 1, ν ≥ 2,

res(Ψm/p ,Ψn/p)
p

res(Ψm ,Ψn/p)
, if µ ≥ 2, ν = 1,

res(Ψm/p ,Ψn/p)
p , if µ ≥ 2, ν ≥ 2,

where we put µ = ordp(m), ν = ordp(n). _e idea of using this identity is borrowed
from [3]. In each case, it follows from the induction hypothesis that res(Ψm ,Ψn) = 1.

(ii) _e casem = 4 is immediate from Lemma 3.1, since res(Ψ4 ,Ψn) = Ψn(0). We
suppose that m ≥ 6 and use the identity (3.6), which is valid also for p = 2.

_e case ord2(m) = ord2(n) = 1. By (2.3),(3.6), and (i) we have

res(Ψm ,Ψn) = (−1)ϕ(m/2)ϕ(n/2)/4(
L(n/2)
L(m/2)

) .

Since we have ϕ(k) ≡ L(k) − 1 (mod 4), if k ≥ 3 is odd, we have

res(Ψm ,Ψn) = (
L(m/2)
L(n/2)

)

by the reciprocity law.

_e case ord2(m) = 1, ord2(n) ≥ 2. Similarly, we have

res(Ψm ,Ψn) = (
L(n)

L(m/2)
) .

We have either L(n) = L(n/2) = 1 or L(n) = L(n/2) = 2, so, in any case,

(
L(n)

L(m/2)
) = (

L(m/2)
L(n/2)

) .

_e case ord2(m) ≥ 2, ord2(n) = 1. Similarly, we have

res(Ψm ,Ψn) = (−1)ϕ(m)ϕ(n/2)/4(
L(m)

L(n/2)
) .
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Since we have 4 ∣ ϕ(m), 2 ∣ ϕ(n/2), and L(m) = L(m/2), we are done.

_e case ord2(m) ≥ 2, ord2(n) ≥ 2. Similarly, we have res(Ψm ,Ψn) = 1. Since at least
one of m/2, n/2 is not a prime power, we are done.

(iii) We use induction on the number of prime divisors (multiplicity taken into
account) of m. Let p be a prime divisor of m.

_e case m = p. If n = 2p, then by _eorem 2.1 we have

res(Ψm ,Ψn) = res(Wp ,Vp) = (
2
p
)2(p−1)/2 ,

as desired. Suppose n/p ≥ 3. First we compute

res(Ψp ,Ψn/p(Cp)) =
(p−1)/2
∏
j=1

Ψn/p(Cp(2 cos
2 jπ
p

)) = Ψn/p(2)(p−1)/2 ,

so that by Lemma 3.1 we have

(3.7) res(Ψp ,Ψn/p(Cp)) = L(n/p)ϕ(p)/2 .

Now, if ordp(n) = 1, then we have

res(Ψp ,Ψn) =
res(Ψp ,Ψn/p(Cp))

res(Ψp ,Ψn/p)
= (

L(n/p)
L(p)

)L(n/p)ϕ(p)/2

by (i) and (3.7). If ordp(n) ≥ 2, then we have

res(Ψp ,Ψn) = res(Ψp ,Ψn/p(Cp)) = L(n/p)ϕ(p)/2 .

Since either L(n/m) = 1 or L(n/m) = L(m) = p holds, we are done.

_e case ordp(m) = 1,m > p. In this case L(m) = 1, so we have to show that
res(Ψm ,Ψn) = L(n/m)ϕ(m)/2. First suppose ordp(n) = 1. By (3.6) and the induc-
tion hypothesis we have

res(Ψm/p ,Ψn/p) = ±L(n/m)ϕ(m/p)/2 , res(Ψm/p ,Ψn) = 1.

Since m ∤ (n/p), (n/p) ∤ m, and L(m) = 1, we have res(Ψm ,Ψn/p) = 1 by (i). _us
we have res(Ψm ,Ψn) = L(n/m)ϕ(m)/2. We next suppose ordp(n) ≥ 2, and use (3.6)
and the induction hypothesis. If L2 = 1, then L(n/(m/p)) = 1, so res(Ψm ,Ψn) = 1.
Otherwise, L2 = L(n/(m/p)) = p, so

res(Ψm ,Ψn) = ((
p

L(m/p)
) pϕ(m/p)/2)

p−1
= pϕ(m)/2 .

_e case ordp(m) ≥ 2. By equation (3.6) and the induction hypothesis, and noting
that L(m/p) = L(m), we obtain the desired result.

(iv) _e case ord2(n) = 1.
By (2.4) and (3.2) we have

res(Ψm ,Ψn) = (−1)ϕ(m)ϕ(n)/4 res(Ψm/2 ,Ψn/2).

We could use (3.6) for p = 2 to deduce this. As is easily seen, we have

(−1)ϕ(m)ϕ(n)/4 =

⎧⎪⎪
⎨
⎪⎪⎩

1 if L1 /= L2 ,
( −1

L1
) if L1 = L2 ,
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so the claim follows from (iii).

_e case ord2(n) ≥ 2. We use equation (3.6) for p = 2 and (iii). If L2 = 1, then
L(n/(m/2)) = 1, so res(Ψm ,Ψn) = 1. Otherwise, L2 = L(n/(m/2)) = 2 and L1 /= L2,
so

res(Ψm ,Ψn) = (
2
L1

)2ϕ(m/2)/2 .

(v) _is is immediate from Lemma 3.1 if m = 4. Otherwise, using (3.6) for p = 2
and induction, we complete the proof.

Corollary 3.3 ([1–3, 5,7,9]) If 3 ≤ m < n, then

res(Φm ,Φn) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if m ∤ n,
L(n/m)ϕ(m) if m ∣ n.

Proof Let ζ = e2πi/m . By (3.1) we have

res(Ψm ,Ψn)
2 = ∏

j∈(Z/m)×
Ψn(ζ j + ζ− j) = ∏

j∈(Z/m)×
(ζ j)−ϕ(n)/2Φn(ζ j) = res(Φm ,Φn),

since∑ j∈(Z/m)× j ≡ 0 (mod m). So the claim follows from _eorem 3.2.
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[9] H. Lüneburg, Resultanten von Kreisteilungspolynomen. Arch. Math. (Basel) 42(1984), no. 2,
139–144. http://dx.doi.org/10.1007/BF01772933

[10] J. H. McKay and S. S. S. Wang, A chain rule for the resultant of two polynomials. Arch. Math.
(Basel) 53(1989), no. 4, 347–351. http://dx.doi.org/10.1007/BF01195214

[11] J. C. Mason and D. C. Handscomb, Chebyshev polynomials. Chapman & Hall/CRC, Boca Raton,
FL, 2003.

[12] T. J. Rivlin, Chebyshev polynomials. From approximation theory to algebra and number theory.
Second ed., Pure and AppliedMathematics (New York), JohnWiley& Sons, Inc.,New York, 1990.

[13] M. Yamagishi, A note on Chebyshev polynomials, cyclotomic polynomials and twin primes. J.
Number _eory 133(2013), no. 7, 2455–2463. http://dx.doi.org/10.1016/j.jnt.2013.01.008

Department ofMathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi 466-
8555, Japan
e-mail: yamagishi.masakazu@nitech.ac.jp

https://doi.org/10.4153/CMB-2015-002-8 Published online by Cambridge University Press

http://dx.doi.org/10.1090/S0002-9939-1970-0251010-X
http://dx.doi.org/10.1007/BF02940768
http://dx.doi.org/10.1216/RMJ-2012-42-5-1461
http://dx.doi.org/10.4153/CMB-2011-013-1
http://dx.doi.org/10.1090/S0002-9904-1930-04939-3
http://dx.doi.org/10.4153/CMB-2012-002-1
http://dx.doi.org/10.1007/BF01772933
http://dx.doi.org/10.1007/BF01195214
http://dx.doi.org/10.1016/j.jnt.2013.01.008
mailto:yamagishi.masakazu@nitech.ac.jp
https://doi.org/10.4153/CMB-2015-002-8

