Summer Conference, 6-8 July 2021, Nutrition in a changing world ## Peri-conceptional diet patterns and risk of gestational diabetes mellitus in **South Indian women** A. Mahendra^{1,2}, S.H. Kehoe¹, S.R. Crozier¹, K. Kumaran^{1,2}, G.V. Krishnaveni², N. Arun², Padmaja³, P. Kini⁴, U. Taskeen⁵, Chaitra⁶, K.T. Kombanda⁷, M. Johnson¹, C. Osmond¹ and C.H.D. Fall¹ ¹MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK, ²Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India, ³Department of Obstetrics and Gynaecology, Bangalore Baptist Hospital, Bangalore, India, ⁴Department of Obstetrics and Gynaecology, Cloudnine Hospital, Bangalore, India, ⁵Previously affiliated to Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India, ⁶Department of Dietetics, Cloudnine Hospital, Bangalore, India and ⁷Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, Australia Gestational diabetes mellitus (GDM) affects 20% of pregnancies in India⁽¹⁾. In Western countries healthy diet patterns characterised by wholegrains, fruits and vegetables are associated with a lower GDM risk; and unhealthy patterns (refined grains, fried and fast food, high sugar, red and processed meat) with higher risk. Evidence from low- and middle-income countries is sparse, and diet pattern-GDM associations in India have not been explored. We aimed to identify peri-conceptional diet patterns among women in Bangalore and examine their associations with GDM risk. BANGLES (BAngalore Nutrition Gestational diabetes LifEstyle Study) started in 2016, a prospective observational study in which pregnant women (n = 785) of varied socio-economic status were recruited at 5–16 weeks' gestation. Peri-conceptional diet was assessed retrospectively at recruitment, using a validated 224-item Food Frequency Questionnaire (FFQ). The 224 FFQ foods were reduced to 68 food-groups as input variables for principal component analysis to identify diet patterns. GDM was defined by a 75-gram Oral Glucose Tolerance Test (OGTT) at 24-28 weeks' gestation, applying WHO 2013 criteria. Diet pattern-GDM associations were analysed using multivariate logistic regression adjusting for 'a priori' confounders. GDM prevalence was 22%. Three standardised distinct peri-conceptional diet patterns were identified: a) High-diversity, urban (HDU), characterised by consumption of a diversity of expensive, home-cooked, processed, healthy and unhealthy foods including wholegrains, fruits, vegetables, dairy, nuts, seeds, egg, poultry, meat, fast-food and sweets was associated with older, affluent, more educated and urban women; b) Rice-fried snacks-chicken-sweets (RFCS) pattern, characterised by low diet-diversity, was associated with younger, thinner, less educated women from lower-income, rural, joint families; c) Healthy, traditional vegetarian (HTV) pattern, characterised by home-cooked, vegetarian and non-processed foods was associated with women being thinner, less educated, affluent from rural and joint families. The HDU pattern was associated with a lower GDM risk (aOR: 0.80 per SD, 95% CI: 0.64, 0.99, p = 0.04) after adjusting for confounders, not significant after correction for multiple testing. Women's BMI was the strongest risk factor for GDM and possibly partly mediated diet-GDM associations. The findings support global recommendations to encourage women to attain a healthy pre-pregnancy BMI. The HDU patternlower GDM association, although not significant, was consistent with national and global diet recommendations to increase diet diversity^(2,3&4). However, the HDU and RFCS patterns consisting of healthy and unhealthy foods may indicate low awareness and the need to invest in public education about healthy/unhealthy foods. Higher socio-economic status was positively associated with diet diversity (HDU & HTV). This highlights the need for national policies to make wholegrains, fruits, vegetables, dairy and poultry foods more affordable⁽³⁾. In the future, the construction of a healthy diet index may be useful. ## Acknowledgements We thank the study participants and staff of Bangalore Baptist and Cloudnine Hospitals for their support to the study. BANGLES was funded by the Schlumberger Foundation as a doctoral Faculty for the Future Fellowship awarded to AM. ## References - Li KT, Naik S, Alexander M, et al. (2018) Acta Diabetol 55(6), 613–625. World Health Organization (1990) WHO Technical series 797, 49–50. - Willett W, Rockström J & Loken B (2019) Lancet 393, 447–492. What India eats report (2020), Govt. of India, 2020. [Available at: https://www.nin.res.in/nutrition2020/what_india_eats.pdf]