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Abstract

Let (X, d, µ) be a nonhomogeneous metric measure space satisfying the so-called upper doubling and the
geometric doubling conditions. In this paper, the authors give the natural definition of the generalized
Morrey spaces on (X, d, µ), and then investigate some properties of the maximal operator, the fractional
integral operator and its commutator, and the Marcinkiewicz integral operator.
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1. Introduction

In the past ten or fifteen years, many classical results from real and harmonic analysis
on Rn have been expanded to the spaces under nondoubling measures which only
satisfy the polynomial growth condition (for example, see [2, 8, 10, 15–18, 20, 21]).
However, it is obvious that the nondoubling measure may not include the well-known
doubling condition that plays an important part in the assumption on homogeneous
type spaces in the sense of Coifman and Weiss (see [3, 4]). Thus, in order to deal
with the problem, in 2010, Hytönen in [11] introduced a new class of metric measure
spaces satisfying the so-called geometric doubling and the upper doubling conditions,
respectively (see Definitions 1.1 and 1.3 below), which are called nonhomogeneous
metric measure spaces. Since then, many authors have proved that many known results
still hold true if the underlying spaces take the place of the nonhomogeneous metric
measure spaces (see [1, 6, 12–14]).

For convenience, in this paper, we always assume that (X, d, µ) is a
nonhomogeneous metric measure space in the sense of Hytönen [11]. In this setting,
we first give a natural definition of the generalized Morrey spaces on (X, d, µ), then
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we discuss the boundedness of some classical operators, which include the maximal
operator, the fractional integral operator and the Marcinkiewicz integral operator.
Naturally, these results not only generalize and improve the known results for the case
of nondoubling measures (see [16]), but also contain the consequences in [1].

Before stating the main results of this paper, we first recall some necessary notions
and notation. The following notion of geometric doubling is well known in analysis
on metric spaces and was originally introduced by Coifman and Weiss in [3].

Definition 1.1. A metric space (X, d) is said to be geometrically doubling, if there
exists some N0 ∈ N such that, for any ball B(x, r) ⊂ X, there exists a finite ball covering
{B(xi,

r
2 )}i of B(x, r) such that the cardinality of this covering is at most N0.

Remark 1.2. Let (X, d) be a metric space. Hytönen in [11] showed that the following
statements are mutually equivalent.

(1) (X, d) is geometrically doubling.
(2) For any ε ∈ (0, 1) and ball B(x, r) ⊂ X, there exists a finite ball covering

{B(xi, εr)}i of B(x, r) such that the cardinality of this covering is at most Nε−n.
Here, and in what follows, N0 is as Definition 1.1 and n := log2 N0.

(3) For every ε ∈ (0, 1), any ball B(x, r) ⊂ X can contain at most Nε−n centers {xi}i
of disjoint balls with radius εr.

(4) There exists M ∈ N such that any ball B(x, r) ⊂ X can contain at most Nε−n

centers {xi}i of disjoint balls {B(xi,
r
4 )}Mi=1.

Now we recall the following notion of upper doubling metric measure spaces
from [11].

Definition 1.3. A metric measure space (X, d, µ) is said to be upper doubling if µ is a
Borel measure on X and there exist a dominating function λ : X × (0,∞)→ (0,∞) and
a positive constant Cλ such that, for each x ∈ X, r→ λ(x, r) is nondecreasing and, for
all x ∈ X and r ∈ (0,∞),

µ(B(x, r)) ≤ λ(x, r) ≤ Cλλ
(
x,

r
2

)
. (1.1)

Hytönen et al. pointed out in [12] that there exists a dominating function λ̃ related
to λ satisfying the property that there exists a positive constant Cλ̃ such that λ̃ ≤ λ,
Cλ̃ ≤ Cλ and

λ̃(x, r) ≤ Cλ̃λ̃(y, r), (1.2)

where x, y ∈ X and d(x, y) ≤ r. From now on, in this paper, we always assume that the
dominating function λ, as in (1.1), satisfies (1.2).

The following coefficient KB,S , which is analogous to Tolsa’s numbers KQ,R in [9],
was introduced [11] by Hytönen.

Definition 1.4. For all balls B ⊂ S , define

KB,S := 1 +

∫
(2S )\B

1
λ(cB, d(x, cB))

dµ(x),

where cB stands for the center of the ball B.
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Next, we recall the definition of the (α, β)-doubling property given in [11].

Definition 1.5. Let α, β > 1. A ball B ⊂ X is said to be (α, β)-doubling if µ(αB) ≤
βµ(B).

Hytönen in [11] pointed out that if a metric measure space (X, d, µ) is upper
doubling and β > Clog2 α

λ =: αν, then, for any ball B ⊂ X, there exists some j ∈ Z+ such
that α jβ is (α, β)-doubling. In addition, assume that (X, d) is geometrically doubling,
β > αn with n := log2 N0 and µ is a Borel measure on X, which is finite on bounded
sets. At the same time, Hytönen in [11] showed that for µ-almost every x ∈ X, there
are arbitrarily small (α, β)-doubling balls centered at x. Furthermore, the radii of these
balls may be chosen to be of the form α− jr for j ∈ N and any preassigned number
r ∈ (0,∞). Throughout this paper, for any α > 1 and ball B, the smallest (α, βα)-
doubling ball of the form α jB with j ∈ N is denoted by B̃α, where

βα := max {α3n, α3ν} + 30n + 30ν.

If there are no special instructions about α and β, in the latter of the paper, by a
doubling ball we always mean a (6, β6)-doubling ball and B̃6 is simply denoted by B̃.

The generalized Morrey space on (X, d, µ) is defined as follows.

Definition 1.6. Let k > 1 and 1 ≤ p < ∞. Suppose that φ : (0,∞)→ (0,∞) is an
increasing function. Then we define

Lp,φ(µ) := { f ∈ Lp
loc(µ) : ‖ f ‖Lp,φ(µ) <∞},

where

‖ f ‖Lp,φ(µ) = sup
B

( 1
φ(µ(kB))

∫
B
| f (x)|pdµ(x)

)1/p
. (1.3)

Remark 1.7. By means of a similar method to that used in the proof of [16, Proposition
1.2] and [1, Theorem 7], it is not difficult to show that the norm ‖ f ‖Lp,φ(µ) is independent
of the choice of k for k > 1.

Finally, we recall the notion of the ε-weak reverse doubling condition given in [6].

Definition 1.8. Let ε ∈ (0,∞). A dominating function λ is said to satisfy the ε-weak
reverse doubling condition if, for all s ∈ (0, 2diam(X)) and a ∈ (1, 2diam(X)/s), there
exists a number C(a) ∈ [1,∞), depending only a and X, such that,

λ(x, as) ≥ C(a)λ(x, s) x ∈ X (1.4)

and, moreover,
∞∑

k=1

1
[C(ak)]ε

<∞. (1.5)

The organization of this paper is as follows. Section 2 is devoted to the study of
the maximal operator. In Section 3, we will prove the boundedness of the fractional
integral operator and its commutator on (X,d, µ). We will establish the boundedness of
the Marcinkiewicz integral operator in Section 4. Throughout this paper, C represents
a positive constant that is independent of the main parameters, but may be different
from line to line.
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2. Maximal operator Mr,ρ

In this section, we will investigate the boundedness of the maximal operator given
by

Mr,ρ f (x) := sup
B3x

( 1
µ(ρB)

∫
B
| f (y)|rdµ(y)

)1/r
, (2.1)

where ρ > 0 and r ∈ [1,∞).
We shall need the following lemma from [1].

Lemma 2.1. Let ρ > 0, r ∈ [1,∞) and p > 1. Then the maximal operator Mr,ρ, as in
(2.1), is bounded on Lp(µ).

Now we will formulate the main result of this section.

Theorem 2.2. Let ρ > 1, 1 < r < p < ∞ and let φ : (0,∞)→ (0,∞) be an increasing
function. Suppose that Mr,ρ is as in (2.1), the mapping t 7→ φ(t)/t is almost decreasing
and there is a constant C > 0 such that

φ(t)
t
≤ C

φ(s)
s

(2.2)

for s ≥ t. Then there exists a positive constant C > 0, such that, for any f ∈ Lp,φ(µ),

‖Mr,ρ f ‖Lp,φ(µ) ≤ C‖ f ‖Lp,φ(µ).

Proof. For convenience, we assume that ρ = 2, as in (2.1), and k = 12, as in (1.3).
Let B be a fixed doubling ball. Then we only need to estimate( 1

φ(µ(12B))

∫
B
[Mr,2( f )(x)]pdµ(x)

)1/p
≤ C‖ f ‖Lp,φ(µ). (2.3)

To estimate (2.3), decompose f as

f (x) = f1(x) + f2(x),

where f1(x) := f (x)χ6B(x) and f2(x) := f (x)χX\6B(x). Write( 1
φ(µ(12B))

∫
B
[Mr,2( f )(x)]pdµ(x)

)1/p

≤

( 1
φ(µ(12B))

∫
B
[Mr,2( f1)(x)]pdµ(x)

)1/p

+

( 1
φ(µ(12B))

∫
B
[Mr,2( f2)(x)]pdµ(x)

)1/p

=: D1 + D2.

By applying Lemma 2.1, it is not difficult to obtain that

D1 ≤ C
( 1
φ(µ(12B))

∫
6B
| f (x)|pdµ(x)

)1/p
≤ C‖ f ‖Lp,φ(µ).
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Now we turn to D2. Suppose that Q is a doubling ball. For every x ∈ B, a geometric
observation shows that

Mr,2( f2)(x) = sup
x∈Q

( 1
µ(2Q)

∫
Q
| f2(y)|r dµ(y)

)1/r

≤ sup
x∈Q
B⊂Q

( 1
µ( 4

3 Q)

∫
Q
| f (y)|rdµ(y)

)1/r
. (2.4)

By the Hölder inequality, (2.2) and (2.4),

D2 ≤

(
µ(B)

φ(µ(12B))

)1/p
sup

x∈Q
B⊂Q

( 1
µ( 4

3 Q)

∫
Q
| f (y)|rdµ(y)

)1/r

≤

(
µ(B)

φ(µ(12B))

)1/p
sup

x∈Q
B⊂Q

µ
(4
3

Q
)−1/r(∫

Q
| f (y)|pdµ(y)

)1/p
µ(Q)1/r−1/p

≤C
(
µ(B)
φ(µ(B))

)1/p
sup

x∈Q
B⊂Q

(φ(µ( 4
3 Q))

µ( 4
3 Q)

)1/p
‖ f ‖Lp,φ(µ)

≤C‖ f ‖Lp,φ(µ),

which, together with D1, implies (2.3) and hence completes the proof of Theorem 2.2.
�

3. Fractional integral operator and its commutator

In 2008, Sawano obtained the boundedness of the fractional integral operator on
a generalized Morrey space with nondoubling measure in [16]. Further, in 2013, the
authors obtained the boundedness of the fractional integral operator on Morrey spaces
in metric measure spaces (see [9]). In recent years, Sawano et al. have obtained
some behaviours of the generalized fractional integral operators and the generalized
fractional maximal operators (see [5, 9], respectively). Based on these, we will
prove the boundedness of the fractional integral operator and its commutator on the
generalized Morrey space Lp,φ(µ).

Now we recall the notion of ‘Regular Bounded Mean Oscillations’ RBMO(µ) given
in [11].

Definition 3.1. Let ν > 1. A function f ∈ L1
loc(µ) is claimed to be in the space

RBMO(µ) if there exist a positive constant C and, for any ball B ⊂ X, a number fB
such that

1
µ(νB)

∫
B
| f (x) − fB| dµ(x) ≤ C (3.1)

and, for any two balls B and R such that B ⊂ R,

| fB − fR| ≤ CKB,R. (3.2)

The infimum of the constants C satisfying (3.1) and (3.2) is defined to be the RBMO(µ)
norm of f and denoted by ‖ f ‖RBMO(µ).

https://doi.org/10.1017/S1446788716000483 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000483


[6] Generalized Morrey spaces over nonhomogeneous metric measure spaces 273

Next, we recall the definition of the fractional integral operator from [1].
For 0 < α < 1, f ∈ L∞b (µ) and x ∈ X, the fractional integral operator Iα is defined by

Iα f (x) =

∫
X

f (y)
[λ(x, d(x, y))]1−α dµ(y), (3.3)

where L∞b (µ) is the space of all L∞(µ) functions with bounded support. Let b ∈
RBMO(µ). Then the commutator of the fractional integral operator [Iα, b] is defined
by,

[Iα, b]( f )(x) := b(x)Iα( f )(x) − Iα(b f )(x). (3.4)

In [19], Sihwaningrum and Sawano proved that the fractional integral operator is
bounded on Morrey spaces in metric measure spaces. However, by applying [19,
Theorem 1.2], it is not difficult to see that the fractional integral operator on the
generalized Morrey space over (X, d, µ) is still valid. Thus, we have the following
claim.

Claim. Let 0 < α < 1, 1 < p < q <∞, 1/q = 1/p − α and φ satisfy (2.2). Suppose that
λ satisfies the ε-weak reverse doubling condition. Then Iα, as in (3.3), is bounded from
Lp,φ(µ) into Lq,φq/p

(µ).

Now we state the main theorem in this section.

Theorem 3.2. Make the same assumption as in the above Claim. Then the commutator
[Iα, b], as in (3.4), is bounded from Lp,φ(µ) into Lq,φq/p

(µ).

To prove Theorem 3.2, we need the following lemma, which was given in [6].

Lemma 3.3. Let b ∈ RBMO(µ), α ∈ (0, 1), 1 < p < 1
α

and 1
q = 1

p − α. If λ satisfies the
ε-weak reverse doubling condition for some ε ∈ (0,min{α, 1 − α, 1

q }), then [Iα, b] is
bounded from Lp(µ) into Lq(µ).

Proof of Theorem 3.2. We decompose f = f1 + f2, as in the proof of Theorem 2.2,
where f1 = fχ9B and f2 = f − f1. Then

‖[Iα, b] f ‖Lq,φq/p (µ) ≤ ‖[Iα, b] f1‖Lq,φq/p (µ) + ‖[Iα, b] f2‖Lq,φq/p (µ) =: H1 + H2.

Applying Lemma 3.3, it is not difficult to get that

H1 ≤C‖b‖RBMO(µ)
1

[φ(µ(12B))]1/p

(∫
6B
| f (x)|pdµ(x)

)1/p

≤C‖b‖RBMO(µ)‖ f ‖Lp,φ(µ).
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For x ∈ B, by the Hölder inequality, 1
q = 1

p − α, (1.4) and [7, Corollary 3.3],

|[Iα, b]( f2)(x)| ≤C
∞∑

k=1

∫
6k+1B\6k B

| f (y)|
[λ(x, d(x, y))]1−α |b(x) − b(y)| dµ(y)

≤C
∞∑

k=1

|b(x) − m6̃k+1B(b)|
∫

6k+1B

| f (y)|
[λ(x, d(x, y))]1−α dµ(y)

+ C
∞∑

k=1

∫
6k+1B

| f (y)|
[λ(x, d(x, y))]1−α |b(y) − m6̃k+1B(b)| dµ(y)

≤C
∞∑

k=1

|b(x) − m6̃k+1B(b)|
µ(6k+1B)1− 1

p

[λ(cB, 6krB)]1−α

(∫
6k+1B
| f (y)|pdµ(y)

)1/p

+ C
∞∑

k=1

1
[λ(cB, 6krB)]1−α

(∫
6k+1B
| f (y)|pdµ(y)

)1/p

×

(∫
6k+1B
|b(y) − m6̃k+1B(b)|p

′

dµ(y)
)1/p′

≤C‖ f ‖Lp,φ(µ)[λ(cB, rB)]α−1
∞∑

k=1

[‖b‖RBMO(µ) + |b(x) − m6̃k+1B(b)|]

×
µ(6k+1B)

[C(6k)]1−α

[
φ(µ(2 × 6k+1B))

µ(6k+1B)

]1/p
.

Further, by applying (1.1), (1.5) and (2.2),

H2 ≤C‖b‖RBMO(µ)‖ f ‖Lp,φ(µ)[λ(cB, rB)]α−1 [µ(B)]1/q

[φ(µ(12B))]1/p

×

∞∑
k=1

µ(6k+1B)
[C(6k)]1−α

[
φ(µ(2 × 6k+1B))

µ(6k+1B)

]1/p

+ C‖ f ‖Lp,φ(µ)
[λ(cB, rB)]α−1

[φ(µ(12B))]1/p

∞∑
k=1

µ(6k+1B)
[C(6k)]1−α

[
φ(µ(2 × 6k+1B))

µ(6k+1B)

]1/p

×

(∫
B
|b(x) − m6̃k+1B( f )|qdµ(x)

)1/q

≤C‖b‖RBMO(µ)‖ f ‖Lp,φ(µ)[λ(cB, rB)]α−1 [µ(B)]1/q

[µ(12B)]1/p λ(cB, rB)

×

∞∑
k=1

1 + k
[C(6k)]1−α

[ [µ(12B)]
[φ(µ(12B))]

]1/p[φ(µ(2 × 6k+1B))
µ(6k+1B)

]1/p
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≤C‖b‖RBMO(µ)‖ f ‖Lp,φ(µ)[λ(cB, rB)]α−1[λ(cB, rB)]1/q−1/pλ(cB, rB)

×

∞∑
k=1

1 + k
[C(6k)]1−α

[ [µ(12B)]
[φ(µ(12B))]

]1/p[φ(µ(2 × 6k+1B))
µ(6k+1B)

]1/p

≤C‖b‖RBMO(µ)‖ f ‖Lp,φ(µ),

where we used the fact that

|mB̃(b) − m6̃k+1B(b)| ≤ k‖b‖RBMO(µ).

Combining the estimates for H1 and H2, the proof of Theorem 3.2 is complete. �

4. Marcinkiewicz integral operator

In this section, we will discuss the boundedness of the Marcinkiewicz integral
operator. First, we recall the notion of the Marcinkiewicz integral operator (see [13]).

Definition 4.1. Let K(x, y) be a locally integrable function on (X×X) \ {(x, x) : x ∈ X}.
Assume that there exists a positive constant C such that, for all x, y ∈ X with x , y,

|K(x, y)| ≤ C
d(x, y)

λ(x, d(x, y))
(4.1)

and, for all y, y′ ∈ X,∫
d(x,y)≥2d(y,y′)

[|K(x, y) − K(x, y′)| + |K(y, x) − K(y′, x)|]
dµ(x)
d(x, y)

≤ C.

Associated with the above kernel K, the Marcinkiewicz integralM( f ) is defined by

M( f )(x) :=
(∫ ∞

0
|T [χB(x,t) f ](x)|2

dt
t3

)1/2
x ∈ X, (4.2)

where T [χB(x,t) f ](x) =
∫

d(x,y)≤t K(x, y) f (y) dµ(y) and B(x, t) := {y ∈ X : d(x, y) ≤ t}.

Theorem 4.2. Let 1 < p < ∞ and let M be as in (4.2). Suppose that φ is a function
satisfying (2.2). ThenM is bounded on Lp,φ(µ): that is, there exists a positive constant
C, such that for all f ∈ Lp,φ(µ),

‖M( f )‖Lp,φ(µ) ≤ C‖ f ‖Lp,φ(µ).

To prove the above theorem, we need the following lemma, which was given in [13].

Lemma 4.3. Suppose that M, as in (4.2), is bounded on Lp0 (µ) space for some
p0 ∈ (1,∞). ThenM is bounded on Lp(µ) spaces for all p ∈ (1,∞).

Proof of Theorem 4.2. For a fixed doubling ball B, f ∈ Lp,φ(µ), let f (x) = f1(x) +

f2(x), where f1(x) = fχ6B(x). Write

‖M( f )‖Lp,φ(µ) ≤ ‖M( f1)‖Lp,φ(µ) + ‖M( f2)‖Lp,φ(µ) =: I + II.
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By the Lp(µ)-boundedness ofM, it is not difficult to get

I ≤ C
( 1
φ(µ(12B))

∫
6B
| f (x)|pdµ(x)

)1/p
≤ C‖ f ‖Lp,φ(µ).

For II. Denote the center and radius of B by cB and rB, respectively. Decompose

M( f2)(x) ≤
(∫ d(cB,y)+rB

0
|T [χB(x,t) f2](x)|2

dt
t3

)1/2

+

(∫ ∞

d(cB,y)+rB

|T [χB(x,t) f2](x)|2
dt
t3

)1/2

=: II1 + II2.

From (1.1) and (1.2), we deduce that, for any ball B, y < kB with k ∈ (1,∞) and x ∈ B,

λ(cB, d(y, cB)) ∼ λ(y, d(y, cB)) ∼ λ(x, d(x, y)),

which, together with the Hölder inequality and (4.1), gives

II1 ≤C
∫
X

d(x, y)
λ(x, d(x, y))

| f2(y)|
(∫ d(cB,y)+rB

d(x,y)

dt
t3

)1/2
dµ(y)

≤C
∫
X

d(x, y)
λ(x, d(x, y))

| f2(y)|
( rB

[d(x, y)]3

)1/2
dµ(y)

≤C
∞∑

k=1

∫
6k+1B\6k B

r1/2
B | f (y)|

[d(cB, y)]1/2λ(cB, d(cB, y))
dµ(y)

≤C
∞∑

k=1

6−k/2 1
λ(cB, 6krB)

∫
6k+1B
| f (y)| dµ(y)

≤C
∞∑

k=1

6−k/2
[
φ(µ(2 × 6k+1B))
µ(2 × 6k+1B)

]1/p
‖ f ‖Lp,φ(µ).

By means of a similar method to that used in the proof of II1,

II2 ≤C
∫
X\6B

1
λ(cB, d(cB, y))

| f (y)| dµ(y)

≤C
∞∑

k=1

1
λ(cB, 6krB)

∫
2k+1B
| f (y)| dµ(y)

≤C
∞∑

k=1

µ(6k+1B)1−1/p

λ(cB, 6krB)
φ(µ(2 × 6k+1B))1/p‖ f ‖Lp,φ(µ)

≤C
∞∑

k=1

[
φ(µ(2 × 6k+1B))
µ(2 × 6k+1B)

]1/p
‖ f ‖Lp,φ(µ).
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Combining the estimates for II1 and II2,

M( f2)(x) ≤ C‖ f ‖Lp,φ(µ)

∞∑
k=1

(6−k/2 + 1)
[
φ(µ(2 × 6k+1B))
µ(2 × 6k+1B)

]1/p
.

Using this and (2.2), we can conclude that

II≤C‖ f ‖Lp,φ(µ)

∞∑
k=1

6−k/2
(
µ(12B)
φ(µ(12B))

)1/p[φ(µ(2 × 6k+1B))
µ(2 × 6k+1B)

]1/p

≤C‖ f ‖Lp,φ(µ).

Thus, we have completed the proof of Theorem 4.2. �
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homogènes’, Lecture Notes in Mathematics, 242 (Springer, Berlin; New York, 1971).

[4] R. R. Coifman and G. Weiss, ‘Extensions of Hardy spaces and their use in analysis’, Bull. Amer.
Math. Soc. 83 (1977), 569–645.

[5] Eridani, H. Gunawan, E. Nakai and Y. Sawano, ‘Characterizations for the generalized fractional
integral operators on Morrey spaces’, Math. Inequal. Appl. 17 (2014), 761–777.

[6] X. Fu, D. Yang and W. Yuan, ‘Generalized fractional integrals and their commutators over non-
homogeneous metric measure spaces’, Taiwanese J. Math. 18 (2014), 509–557.

[7] X. Fu, D. Yang and W Yuan, ‘Boundedness on Orlicz spaces for multilinear commutators
of Calderón-Zygmund operators on non-homogeneous spaces’, Taiwanese J. Math. 16 (2012),
2203–2238.

[8] J. Garcı́a-Cuerva and A. E. Gatto, “Boundedness properties of fractional integral operators
associated to non-doubling measures’, Studia Math. 162 (2004), 245–261.

[9] D. I. Hakim, E. Nakai and Y. Sawano, ‘Generalized fractional maximal operators and vector-
valued inequalities on generalized Orlicz–Morrey spaces’, Rev. Mat. Complut. 29 (2016), 59–90.

[10] G. Hu, H. Lin and D. Yang, ‘Marcinkiewicz integrals with non-doubling measures’, Integr. Equat.
Oper. Th. 58 (2007), 205–238.

[11] T. Hytönen, “A framework for non-homogeneous analysis on metric spaces, and RBMO space of
Tolsa’, Publ. Mat. 54 (2010), 485–504.

[12] T. Hytönen, Da. Yang and Do. Yang, ‘The Hardy space H1 on non-homogeneous metric measure
spaces’, Math. Proc. Cambridge Philos. Soc. 153 (2012), 9–31.

[13] H. Lin and D. Yang, ‘Equivalent boundedness of Marcinkiewicz on non-homogeneous metric
measure spaces’, Sci. China Math. 57 (2014), 123–144.

[14] G. Lu and S. Tao, ‘Estimates for parameter Littlewood–Paley g∗κ functions on non-homogeneous
metric measure spaces’, J. Funct. Spaces Appl. 2016 (2016), 1–12.

[15] G. Lu and J. Zhou, ‘Estimates for fractional type Marcinkiewicz integrals with non-doubling
measures’, J. Inequal. Appl. 2014 (2014), 1–14.

[16] Y. Sawano, ‘Generalized Morrey spaces for non-doubling measures’, NoDEA Nonlinear
Differential Equations Appl. 15 (2008), 413–425.

[17] Y. Sawano and H. Tanaka, ‘Morrey spaces for non-doubling measures’, Acta Math. Sinica 21
(2005), 1535–1544.

https://doi.org/10.1017/S1446788716000483 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000483


278 G. Lu and S. Tao [11]

[18] Y. Sawano and H. Tanaka, ‘Sharp maximal inequalities and commutators on Morrey spaces with
non-doubling measures’, Taiwanese J. Math. 11 (2007), 1091–1112.

[19] I. Sihwaningrum and Y. Sawano, ‘Weak and strong type estimates for fractional integral operators
on Morrey spaces over metric measure spaces’, Eurasian Math. J. 4 (2013), 76–81.

[20] X. Tolsa, ‘The space H1 for nondoubling measures in terms of a grand maximal operator’, Trans.
Amer. Math. Soc. 355 (2003), 315–348.

[21] X. Tolsa, ‘Littlewood–Paley theory and the T (1) theorem with non-doubling measures’, Adv. Math.
164 (2001), 57–116.

GUANGHUI LU, College of Mathematics and Statistics,
Northwest Normal University, 967 Anning East Road,
Lanzhou 730070, PR China
e-mail: lghwmm1989@126.com

SHUANGPING TAO, College of Mathematics and Statistics,
Northwest Normal University, 967 Anning East Road,
Lanzhou 730070, PR China
e-mail: taosp@nwnu.edu.cn

https://doi.org/10.1017/S1446788716000483 Published online by Cambridge University Press

mailto:lghwmm1989@126.com
mailto:taosp@nwnu.edu.cn
https://doi.org/10.1017/S1446788716000483

	Introduction
	Maximal operator Mr,
	Fractional integral operator and its commutator
	Marcinkiewicz integral operator
	References

