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Abstract

In this work we study the structure of approximate solutions of variational problems with continuous
integrands / : [0, oo) x I " x I " -» I ' which belong to a complete metric space of functions. The
main result in this paper deals with the turnpike property of variational problems. To have this property
means that the approximate solutions of the problems are determined mainly by the integrand, and are
essentially independent of the choice of interval and endpoint conditions, except in regions close to the
endpoints.
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1. Introduction and main results

In this paper we analyse the structure of solutions of the variational problems

(P) fWz(0. *'<0)*-min. \^)=^z(T2) = y,Z:[TuT2y^is
JT, [an absolutely continuous (a.c.) function,

where 7", > 0, T2 > Tu x, y € W and / : [0, oo) x K" x I " -> K1 belongs to a
space of integrands described below.

Let 7, > 0, T2 > Tu x, y € W, f : [0, oo) x W x W -+ K1 be an integrand
and let 8 be a positive number. We say that an absolutely continuous (a.c.) function
u : [Tu T2] ->• K" satisfying u(Tt) = x, u(T2) = y is a ̂ -approximate solution of the
problem (P) if

I 7 f{t, u(t), u'(t))dt < I 2 f(t, z(t), z(t))dt + 8
JT, JT,
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106 Alexander J. Zaslavski [2]

for each a.c. function z : [T\, T2] —> K" satisfying z(Ti) = x, z(T2) = y.
The main results in this paper deal with the so-called turnpike property of the

variational problems (P). To have this property means, roughly speaking, that the
approximate solutions of the problems (P) are determined mainly by the integrand
(cost function), and are essentially independent of the choice of interval and endpoint
conditions, except in regions close to the endpoints.

Turnpike properties are well known in mathematical economics. The term was first
coined by Samuelson in 1948 (see [12]) where he showed that an efficient expanding
economy would spend most of the time in the vicinity of a balanced equilibrium path
(also called a von Neumann path). This property was further investigated for optimal
trajectories of models of economic dynamics (see, for example, [2,3,5-11] and the
references mentioned there). In control theory turnpike properties were studied in
[18,19] for linear control systems with convex integrands.

Denote by | • | the Euclidean norm in W. Let a > 0 be a positive constant and let
\js : [0, oo) —> [0, oo) be an increasing function such that \j/(t) —> +oo as t -*• oo.
Denote by Jt the set of all continuous functions / : [0, oo) x K" x I " ̂  R1 which
satisfy the following assumptions:

(A.i) The function / is bounded on [0, oo) x E for any bounded set E C K" x W.
(A.ii) f(t,x,u) > max{^(|jc|), I/T(|M|)|M|} -a for each (t, x, u) e [0, oo) x l " x

(A.iii) For each M, e > 0, there exist F, 8 > 0 such that

\f(t,xuu) - f(t,x2,u)\ < emax{f(t,xuu), f(t,x2,u)}

for each t e [0, oo) and each u, x\, x2 e R" which satisfy

\x,\ < M, i = 1,2, \u\ > T, | x , - J C 2 | < S .

(A.iv) For each M, e > 0, there exists 8 > 0 such that

for each t e [0, oo) and each ul,u2,xl,x2 e K" which satisfy

\Xi\,\ui\ < M, i = 1 , 2 , m a x { | A : , - J C 2 | , l « i - u2\) < &.

In [16,17] we studied the subset of the set Jt which consists of all / e
satisfying the following assumptions:

• for each (t, x) e [0, oo) x 1" the function f(t, x, •) : R" - • I 1 is convex;
• for each M, e > 0 there exist F, 8 > 0 such that

\f(t, *,, Mi) - / ( / , *2, M2)| < € max{/(r, xi, «i), / ( / , x2, M2))
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for each t G [0, oo) and each ulyu2,xux2 € K" which satisfy

l*iI < M, |M,| > T, i = 1,2, max{|jt, - X 2 | , | M , - U2\) <S

(see (A.iii)).

This subset will be denoted by ^tco.
It is easy to show that an integrand / = f(t,x,u) e C1 ([0, oo) x R" x R") belongs

to M if / satisfies assumption (A.ii), and if sup{|/(f, 0, 0)| : t G [0, oo)} < oo and
also there exists an increasing function V̂o : [0, oo) —> [0, oo) such that

df(f,x,u)
sup dx du

for each t € [0, oo) and each x, u e W.
For the set M, we consider the uniformity which is determined by the following

base:

(1.1) E(N, €, k) = ( ( / , s ) e i ' x / : \f{t, x, u) - g(t, x, u)\ < e for each
t e [0, oo) and each x, u € K" satisfying \x\,\u\ < Â
and (\f(t, x, u)\ + l)(|g(f, x, u)\ + I)"1 e [A."1, A.] for each
t e [0, oo) and each x , u e K " satisfying |JC| < A }̂,

where JV > 0,e > 0, A. > 1.
Clearly, the space M with this uniformity is metrizable (by a metric pw). It was

established in [13, Proposition 2.2] that the metric space (^#, pw) is complete. Note
that this uniformity was introduced in [16] for the subset Jtco of M. The metric pw

induces in J£ a topology.
We consider functional of the form

T2,x)=(1.2) If(TuT2,x)= f(t,x(t),x'(t))dt

where / € ^#, 0 < T\ < T2 < +oo and x : [Tu T2] —> R" is an a.c. function.
For / € M, y, z e W and numbers T\, T2 satisfying 0 < T{ < T2 we set

(1.3) Uf(TuT2, y, z) = inf [I'(T^T^x) \x : [r , , r2]->- 1" is an a.c.
function satisfying JC(TI) = y, x(T2) — z).

It is easy to see that -oo < Uf{Tu T2, y, z) < +oo for each / e 9H, each y, z G W
and all numbers Tu T2 satisfying 0 < Tx < T2.

Let / € J(. A locally absolutely continuous (a.c.) function x : [0, oo) -*• K" is
called an (f)-goodfunction if for any a.c. function y : [0, oo) -> K" there is a number
My such that

(1.4) / ' (0 , r , y) > My + If(0, T, x) for each T € (0, oo).

In [14, Proposition 1.1] we proved the following result.
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PROPOSITION 1.1. Let f e Jt and let x : [0, oo) -*• K" be a bounded a.c. function.
Then the function x is (f)-good if and only if there is M > 0 such that

/ ' (0 , T,x) < Uf(0, T,x(Q),x(T)) + M for any T > 0.

The next result will be proved in Section 3.

PROPOSITION 1.2. Let f e M and let for each (/, JC) € [0, oo) x R" the function
f(t, x, •) : R" -> K1 be convex. Then for each z € K" /fcere is a bounded (f)-good
function Z : [0, oo) -* R" such that Z(0) = z and that for each T > 0,

/•'(0, 7\ Z) = Uf(0, T, Z(0), Z(D).

Let / e . # . We say that / has the strong turnpike property, or briefly (STP), if
there exists a bounded a.c. function X f : [0, oo) —*• IR" which satisfies the following
condition: For each K. e > 0 there exist constants 8, L > 0 such that for each
T\ > 0, T2 > T\ + 2L and each a.c. function v : [T{, T2] —> K" which satisfies
|u(r,)|, |u(r2)| < K and I'(T,,T2, v) < f/^7,, 72, u(r,), u(72)) + <5

(i) there are r, 6 \Tt, Tt + L] and r2 € [T2 — L, T2] for which

e, / € [ T , , T 2 ] ;

(ii) if |u(7i) - XA(r,)| < 5, then r, = 7, and if |u(r2) - Xf(T2)\ < 8, then
r2 = r2.

The function Xf is called r/;e turnpike of f.
If the integrand / has the strong turnpike property, then the solutions of variational

problems with / are essentially independent of the choice of time interval and values
at the endpoints except in regions close to the endpoints of the time interval. If a
point t does not belong to these regions, then the value of a solution at / is closed
to a trajectory ('turnpike') which is defined on the infinite time interval and depends
only on / . This phenomenon has the following interpretation. If one wish to reach a
point A from a point B by a car in an optimal way, then one should turn to a turnpike,
spend most of time on it and then leave the turnpike to reach the required point.

If in the definition above condition (ii) is not assumed, then we say that the inte-
grand / has the turnpike property [14,15, 17].

In the sequel we use the following definition [4].
Let / 6 . # . We say that an a.c. function x : [0, oo) -*• W is (/)-overtaking

optimal if for each a.c. function v : [0, oo) ->• W satisfying y(0) = x(0),

Iimsup[/'(0, T,x) - / ' (0 , T,y)\ < 0.
T— -v
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Assume that / e J( and X : [0, oo) —> IK." is a bounded a.c. function. How to
verify if the integrand / has (STP) and X is its turnpike? In this paper we introduce
three properties (PI), (P2) and (P3) and show that / has (STP) if and only if /
possesses properties (PI), (P2) and (P3). Property (PI) means that all (/)-good
functions have the same asymptotic behavior while property (P2) means that X is a
unique (/)-overtaking optimal function whose value at zero is X(0). Property (P3)
means that if an a.c. function v : [0, T] —> R" is an approximate solution and T is
large enough, then there is r e [0, T] such that v(r) is close to X(T). In [14] we
establish that / has the turnpike property if and only if / possesses properties (PI)
and (P3).

The next theorem is the main result of the paper.

THEOREM 1.3. Let f € J?, for each (t, x) e [0, oo) x R" the function f(t, x, •) :
R" -> Ri be convex and let Xf : [0, oo) -+ W be a bounded a.c. function. Then f
has the strong turnpike property with Xf being the turnpike if and only if the following
three properties hold:

(PI) For each pair of (f)-good functions v\, v2 : [0, oo) -» K",

|i>i(0 - *>2(0l ->• 0 as t ->• oo.

(P2) Xf is an (f)-overtaking optimal function and if an (f)-overtaking optimal
function v : [0, oo) -> K" satisfies v(0) = Xf(0), then v = Xf.

(P3) For each K, e > 0 there exist y, I > 0 such that for each T > 0 and each
ax. function w : [T, T + I] -+ R" which satisfies \w(T)\, \w(T + l)\ < K and
If(T,T + l,w) < Uf(T,T + l,w(T),w(T + I)) + y there is x e [T,T + l]for
which \Xf(z) - V(T)\ < e.

2. Auxiliary results

We have the following result (see Berkovitz [1]).

PROPOSITION 2.1. Assume that f e Jt and f(t,x,-) : R" -*• I 1 is a convex
function for each (t, x) € R" x [0, oo). Then for each pair of numbers Tu T2 satisfying
0 < T{ < T2 and each z,, z2 e 1" there exists an a.c. function x : [Tu T2] -> IR" such
that

x(T,)=z:, i = 1,2, If(Ti,T2,x) = U'(TuT2,ZuZ2).

In [13] we analyzed the properties of (/)-good functions and established the
following results.
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PROPOSITION 2.2 ([13, Theorem 1.1]). For each h € JZ, each S e (0, 1) and each
z e W, there exists an (h)-good function Z\ : [0, oo) -*• R" satisfying z£(0) = z
such that the following assertions hold:

(1) Let f e J(, € e (0, 1), z e R" and let y : [0, oo) -*• W be an a.c. function.
Then one of the following properties holds:

(i) / / (0 , T, y) - //(0, T, Z/) -+ oo as T -*• oo;
(ii) supd/'CO, T, y) - / ' (0 , 7", Z/)| : 7 e (0, oo)} < oo a/u/

sup{|j(OI -t e [0, oo)} < oo.

(2) For each f e ^ and each positive number M, there exist a neighborhood U
of f in ^ and a number Q > 0 such that sup{|Z*(/)| : t e [0, oo)} < Q for each
g 6 U, each € € (0, 1) and each z € K" satisfying \z\ < M.
(3) For each f e ^Z and each positive number M, there exist a neighborhood U off

in yft and a number Q > 0 JMC/I that for each g & U, each z € R" satisfying \z\ < M,
each e € (0, 1), eac/i 7*, > 0, T2 > T, a«rf eac/i a.c. function y : [Tu T2] -> R"
satisfying J >- (7"i) | < M the following relation holds:

I*(Ti,T2,ZS)<Is(Ti,T2,y) + Q.

(4) For each / € ^#, e > 0, z € K", 7, > 0 and 72 > Tu

If(Tu T2, Z{) < U'(TU T2, Z{(Tt), Zf
((T2)) + e.

(5) For each f € Jt, z e l " ana1 arc integer j > 0,

Zf
fi(i) = Z/2(i) /or eacn e,, e2 e (0, 1).

Proposition 2.2 is an extension of [16, Theorem 1.1] which was established for the
space J£QO. In [16] we have shown that for each / e ^#co and z 6 R",

Zf
u = Z/2 for each e,, e2 e (0, 1)

and

Uf(Tu T2, Z{(TX), Z{{T2)) = If(Tu T2, Z/)

for each T, > 0, T2 > 7", and each e e (0, 1).

PROPOSITION 2.3 ([13, Proposition 2.6]). Let f e J(, 0 < c, < c2 < oo and
let M,€ > 0. 7Yien there exists S > 0 .SHC/I that for each T\,T2 > 0 satisfying
T2 — 7"i e [ci, c2] and each y\, y2,Z\,z2 6 R" satisfying

\yil\Zi\<M, 1 = 1 ,2 , | y i - > 2 l , | Z l - Z 2 l < *

, 7"2, v, , z , ) - f / / ( r , , 7"2, y 2 , z 2 ) | <
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PROPOSITION 2.4 ([13, Theorem 1.3]). Let f e JZ and let M,, M2, c be positive
numbers. Then there exist a neighborhood ^ of f in ^t and a number S > 0 such
that for each g € <%, each Tx € [0, oo) and each T2 e [7*, + c, oo) the following
property holds: For each x, y € W satisfying |JC|, \y\ < M\ and each a.c. function
v:[Tu T2] -> W satisfying

v(Ti) = x, v(T2) = y, ls(TuT2,v)<Us(TuT2,x,y) + M2,

inequality \v(t)\ < S is valid fort € [Tu T2].

PROPOSITION 2.5 ([13, Proposition 2.4]). Let Mu e > 0, 0 < T0 < TX. Then there
exists 8 > 0 such that for each f € M, each T\ e [0, oo), T2 € [Tt + T0, T\ + Ti ], each
a.c. function x : [7,, T2] ->• K" satisfying If(Tu T2, x) < M, andeachtu t2 e [Tu T2]
which satisfy \t2 — tt\ < 8, relation \x(ti) — x(t2)\ < e holds.

PROPOSITION 2.6 ([13, Proposition 2.5]). Let f e Jt, 0 < c, < c2 < oo and
c3 > 0. Then there exists a neighborhood % of f in JZ such that the set

[U*(TuT2,zuz2):ge<%, 7, € [0, oo), 72 e [7,+c,, 7,+c2],

2 i . 2 2 € R " , \Zi\<C3, 1 = 1 ,2}

« bounded.

P R O P O S I T I O N 2 .7 . Ler 7 , > 0, T2 > 7 , a n d /ef v:[Tu T2] -+ W be a continuous

function. Assume that for each TUX2 e (T\, T2) satisfying r, < T2 the restriction ofv
to [x\, r2] is an a.c. function and

(2.1) / / ( T 1 , r2, w) = Uf(tu r2, v(r,), u(r2)).

7/ien the function v : [7i, T2] —»• K" is an a.c. function and

(2.2) / ' ( 7 i . 7,, u) = {//(71, 72, u(7,), u(72)).

PROOF. Choose

(2.3) W 0 > s u p { | u ( 0 | : r e [ 7 1 , 7 2 ] } .

By (2.1), (2.3) and Proposition 2.6 the set

{/'(r,, r2, u) : T,, r2 e (7,, 72), r2 - r, e (0, (72 - 7,)/8)}

is bounded. It follows from this fact, (A.ii) and Fatou's lemma that the integral

/•Ti

/ f(t,v(t),v'(t))dt
JT,
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is finite. Then (A.ii) implies that v' e Ll{[Tu T2]\ W) and v : [Tu T2] -*• R" is an
a.c. function.

We show that (2.2) holds. Assume the contrary. Then there is an a.c. function
u:[Tu T2] -» K" such that

(2.4) u(Ti) = v(Ti), i = l ,2, l'(TuT2,v)-If(TuT2,u)>2A

with A > 0.
It is not difficult to see that there is y e (0, (T2 - Tt)/S) such that:

(2.5) \I*(su s2, v)\ < A/64 for each s\,s2 6 [Tu Tt + y] satisfying s2 > st,

\If(si,s2, v)\ < A/64 for each sus2 e [T2 — y, T2] satisfying s2 > su

(2.6) \If(sus2,u)\ < A/64 foreach su s2 e [Tu Tx + y] satisfying s2>su

\If(si, s2, u)\ < A/64 foreach s\, s2 e [T2 — y, T2] satisfying s2 > st.

Choose a number

(2.7) M, > sup{|v(OI : / 6 [r , , T2]} + sup{|«(OI :te[Tlt T2]).

By Proposition 2.3 there is 8 > 0 such that the following property holds: For each
'i > 0, ?2 € [ti + y /16, r, + 16y] and each xux2, yu y2 e K" satisfying

(2.8) |Jc1-|,|y,-|<A/1, » = 1,2, |JC, - >>, | < 5, * = 1,2,

the inequality

(2.9) \Uf(tl,t2,xl,x2) - Uf(ti,h,yi,y2)\ < A/64

is true.
Choose numbers t\, t2 such that

(2.10) /, € ( 7 l , r , + y/4]> r2 6 [72 - y /4 , F2],

|u(7-,) - u(r,)|, |«(7,) - «(/ ,) | < <5/4,

|w(72)-u(r2)l , I« ( r 2 ) -w( / 2 ) | <«5/4.

Relations (2.11) and (2.4) imply that, for / = 1, 2,

(2.12) |«(/,-) - ii(/,.)| < |u(r,-) - v(7i-)| + |u(7:-) - u{T()\ + \u(T.) - u(t,)\ < 8/2.

Consider an a.c. function u : [tx, t2] -»• K" such that

u(t) = «(/), r € [7, + y, T2 - y], u(ti) = v(ti), i = 1, 2,
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and

(2 13) / / ( / l ' Tl + y'")- Uf{tu Tl + y ' U ( f l ) ' u{Tl + y)} + A / 1 2 8 '
lf(T2 - y, r2, «) < U'(h, T2 - y, «(r2 - y), u(r2)) + A/128.

It follows from (2.10), the choice of y (see (2.5), (2.6)) and (2.4) that

(2.14) / '(*„ f2, u) - / / ( / 1 , r2, «) = / / ( r I , r2f u) - If(Ju T2, u) - If(Tu tu v)

- lf(t2, T2, v) + If(Tu tuu) + If(t2, T2, u)

> 2A-4(A/64) > 3A/2.

In view of (2.13) and (2.1)

(2.15) If(tuh, u) - If(.h,t2, u) = If(tu r, + y, 5) - If(h, Tx + y, u)

+ If(T2 - y, t2, u) - lf(T2 - y, t2, u)

< Uf(U, Tx + y, «(/,), II(7", + y)) + A/128

T2 - y, «(T2 - y), u(r2)) + A/128

-Uf(T2-y,t2,u(T2-y),u(t2)).

It follows from (2.12), (2.7), (2.10) and the choice of S (see (2.8), (2.9)) that

fi>%^ | t / / ( /1 ,r1 + y,M(/1))M(r1 + y ) ) - [ / / ( f , , r 1 + y,v(f1),M(r1 + y) ) |<A/64,
(2.16) , ,

\Uf(T2-y,t2,u(T2-y),u(t2))-U
f(T2-y,t2,u(T2-y),v(t2))\ <A/64.

Relations (2.15) and (2.16) imply that

(2.17) If(ti,t2,u)- If{tx,t2,u) < A/64 + A / 6 4 + A/64 < A/16.

By (2.17) and (2.14),

If(tut2,v)- If{t\,t2,u)

= / '(*,, f2, u) - If(tu h, u) + If(tuh, «) - / /(?i, f2, 5)

> 3 A / 2 - A / 1 6 > 0,

a contradiction (see (2.1)). The obtained contradiction proves the proposition. •

In the sequel we also need the next two propositions proved in [13].

PROPOSITION 2.8 ([13, Proposition 2.8]). Let f e Jt and let 0 < cx < c2 < oo,
c3, € > 0. Then there exists a neighborhood V of f in M such that for each g & V,

each T\, T2 > 0 satisfying T2 — Tt € [c i, c2 ] and each y,z € R" satisfying \y\, \z\ < c3

the relation \Uf(Tu T2, y, z) - US(TU T2, y, z)\ < € holds.
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PROPOSITION 2.9 ([13, Proposition 2.7]). Let f e Ji, 0 < cx < c2 < oo and
D,€ > 0. Then there exists a neighborhood V of f in J% such that for each g e V,
each TUT2 > 0 satisfying T2 — Tt € [cit c2] and each ax. function x : [T\, T2] —•
K" satisfying min{I^(Tx,T2,x), Ig{Tl,T2,x)} < D the relation \lf(TuT2,x) -
Ig(TuT2,x)\ beholds.

3. Proof of Proposition 1.2

For each h e Jt, S e (0, 1) and each zeK" , let an a.c. function Z\ : [0, oo) -»• K"
be as guaranteed by Proposition 2.2.

Assume that z € W, f € J( and that for each (t, x) € [0, oo) x K" the function
f(t, x, •) : K" -»• K1 is convex.

For each integer / > 0, set

(3.1) z* = Z{(i) with € e (0, 1).

In view of Assertion (5) of Proposition 2.2, z* (« > 0) does not depend on e. By
Proposition 2.1, there exists an a.c. function Z* : [0, oo) -> W such that for each
integer / > 0,

(3.2) Z*(i) = z;, / / ( i , i + l,Z*) = t / / ( i , i + l,Z*(i),Z*(i + l)).

It follows from (3.2), (3.1) and Assertion (4) of Proposition 2.2 that for each integer
k > 1 and each e € (0, 1)

k-\ k-\

/'(O, *, Z*) = J2 / 7 ( ' . ' + !> z*) = I ] f//(''' + !' 2'*' z*+.)
/=0 i=0

= 5 ^ Uf{i, i + 1, Z/0), Z/(i + 1)) < /r(0, k,, Z/)
i=0

< Uf(0, k, Z/(0), Z/(Jfc)) + € = t/ /(0, ifc, Z*(0), Z*(*)) + e.

Since e is an arbitrary element of (0, 1) we conclude that

lf(0, k, Z*) = f/7 ,̂ k, Z*(0), Z*(Jfc))

for any integer /t > 0. This implies that /'((), T, Z*) = Ufi0, T, Z*(0), Z*(7)) for
any T > 0. By Assertion (1) of Proposition 2.2 and Proposition 1.1 the function Z*
is bounded and (/)-good. Proposition 1.2 is proved. •

https://doi.org/10.1017/S1446788700011411 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011411


[11] The turnpike result 115

4. Overtaking optimal trajectories

PROPOSITION 4.1. Let f € J( and property (PI) hold (see Theorem 1.3). Assume
that x : [0, oo) —>• K" is a bounded ax. function such that for each T > 0

(4.1) / '(0, r , x) = Uf(0, T, x(0), x(T)).

Then x is an (f)-overtaking optimal function.

PROOF. By (4.1) and Proposition 1.1, x is (/)-good. Assume that x is not an
(/)-overtaking optimal function. Then there is an a.c. function y : [0, oo) —>• W such
that

(4.2) y(0)=x(0), limsup[//(0, T,x)-If(0, T, y)} > 2e
r->oo

with some positive number e. By Proposition 2.2, there is a bounded (/)-good
function Z : [0, oo) - • R" such that Z(0) = x(0) and that for each a.c. function
v : [0, oo) ->• K" either

(4.3) lim [/'((), 7\ u ) - / / ( 0 , 7, Z)] = oo
r o o

, r, u) - / / (0, T, Z)| : r € (0, oo)} < oo,

r->oo

or

(4.4)
sup{|u(O| : t € [0, oo)} < oo.

Since the function * is (/)-good we conclude that

(4.5) supd/^O, 7, J ) - Z 7 ^ , 7, Z)| : T € (0, oo)} < oo.

Relations (4.2) and (4.5) imply that (4.3) is not valid with v — y. Thus (4.4) is true

with v = y. This implies that y is a bounded (/)-good function. In view of property

(PI)

(4.6) l im | j c ( r ) -y (OI=0 .
t—*oo

Since x, y are bounded functions we can choose a number

(4.7) A > sup{|je(O| + |y(OI : » 6 [ 0 , oo)} + 2.

In view of Proposition 2.3, there exists 8 > 0 such that for each T > 0 and each
z, e K", / = 1 , . . . , 4 satisfying

| z , | < A , i = l , . . . , 4, |z, - Z3UZ2 - Z4l < «
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the following inequality holds:

(4.8) \Uf(T, T + \,zu Zi) - Uf(T, T + l,z3, u)\ < e /8 .

It follows from (4.2) that there exists a sequence {7}}~, C (0, oo) such that, for

(4.9) 7}+, > T,+ 8, 7'(0, 7], JC) - 7/(0, 7J, y) > 3e/2.

Equality (4.6) implies that there exists a natural number j such that

(4.10) \x(Tj)-y(Tj)\<8.

Consider an a.c. function x : [0, Tj + 1] -*• R" such that

= >•(/), ( 6 [ 0 , ry-],

If(Tj, Tj+\,x)< Uf(Tj, Tj + l, y(,Tj), x(Tj + 1)) + e/8.

Relations (4.2) and (4.11) imply that

(4.12) Jc(O) = *(0), x(Tj + 1) = x(Fy + 1).

It follows from (4.11) and (4.9) that

(4.13) / ' (O,r ; + i,jc)

= 7/(0, Tj,x)

-If(0,TJ,x)-If(Tj,Tj + \,x)

< If(0, TJty)- If(0, Tj, x) + Uf(Tj, Tj + I, y(Tj), x(Tj + 1))

+ €/8 - Uf(Tjt Tj + \,x(Tj), x(T; + 1))

Uf(Tj, Tj + l,y(Tj),x{Tj + 1))

By (4.7), (4.10) and the choice of S (see (4.8))

\Uf(Tj, Tj + l,y(Tj),x(Tj + 1)) - Uf(Tjt T, + \,x{Tj),x{Tj + 1))| < e/8.

Combined with (4.13) this inequality implies that

If(.0,Tj + 1, Jc) - / r ( 0 , Tj + l,x) < -3e/2 + f/8 + e/8 < 0.

This contradicts (4.1). The contradiction we have reached proves the proposition. •

Proposition 1.2 and Proposition 4.1 imply the following result.
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PROPOSITION 4.2. Assume that f e J£, for each (t,x) <= [0, oo) x R" the function
fit, x, •) : R" -» R1 w convex and that property (PI) toWs (see Theorem 1.3). 77ie/z
for each z e R" there exists abounded (f)-overtaking optimal function Z : [0, oo) —>
R" satisfying Z(0) = z.

PROPOSITION 4.3. Let f ^ M and assume that property (PI) /toWs (Theorem 1.3).
Assume //uzf Vi, u2 : [0, oo) —> R" are bounded a.c. functions, vt is (f)-overtaking
optimal, To > 0,

(4.14) vl(t) = v2(t), f€[O,ro]

(4.15) If(T0, r, v2) = Uf(T0, r, v2(T0), v2(r)) for each x > To.

Then v2 is an (j")-overtaking optimal function.

PROOF. Clearly vi is an (/)-good function. We will show that v2 is an (/)-good
function. Choose a number

(4.16) Mo > sup{|u,-(OI : ' e [ 0 , oo), i = 1,2}.

By Proposition 2.6 there is Mi > 0 such that

i > 0 , r 2 e [ r , + l / 8 , r , + 8 ] ,
(4.17) A#I

Let r > To + 2. Consider an a.c. function u : [0, oo) ->• R" such that

u(t) = vdt), te[O, T - 1 ] , ii(r) = U2(r),

/ / ( r - 1, r, u) < Uf(z - 1, r, v,(r - 1), u2(r)) + 1.

Relations (4.18) and (4.14) imply that

(4.19) u(T0) = v2(T0), II(T) = v2(r).

By (4.14), (4.15), (4.18) and (4.19),

(4.20) / / ( 0 , r, M) - / / ( 0 , r, u2) = 7/(T0, r, M) - If{T0, r, u2) > 0.

Inviewof (4.16M4.18),

/ / ( 0 , r, M) - If(0, T, w,) = / 7 ( T - 1, r, M) - lf(x - 1, r, u,)

- f / ^ r - l . r , u , ( r - 1 ) , U , ( T ) )

< 2 M , .
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Combined with (4.20) this relation implies that

/ ' (0 , r, Vi) < If(0, r, u) < If(0, T, Vl) + 2M,

and

lf(0, x, v2) < If(0, z, vt) + 2Mi for any r > To + 2.

Since Vi is (/)-good we conclude that v2 is an (/)-good function. By property (PI)

(4.21) H m | v 2 ( 0 - u i ( 0 l = 0 .

Since u, is (/)-overtaking optimal we have

(4.22) limsup[//(0, T, u,) - / / (0 , T, v2)] < 0.

We show that

(4.23) lim sup[If(0, T, v2) - / ' (0 , T, v{)] < 0.

Let f > 0. By Proposition 2.3 there is S > 0 such that for each t > 0, each _y, , z , e l " ,
/ = 1,2, satisfying

(4.24) |y,|, |z,| < Af0 + 1, i = 1, 2, |y,- - z,| < «5, i = 1, 2,

the following inequality holds:

(4.25) \Uf(t, t + \,yuyi)- Uf(t, t + 1, Z l , Z 2 ) | < e / 8 .

In view of (4.21), there is 7, > TQ + 4 such that

(4.26) \v2(t) - vi(t)\ < S forall / € [r,,oo).

Let T > 7"| and consider an a.c. function u; : [0, T + 1] —> R" such that

' e [0, r ] , w ( r + l ) =

If(T, T+l,w)< Uf(T, T+l, v,(T), v2(T + 1)) + e /8 .

Relations (4.14) and (4.27) imply that

(4.28) w(t) = v2(t), te[0,T0], w(T + 1) = v2(T + 1).

By (4.15) and (4.28),

(4.29) / / ( 0 , r + l , u > ) - / / ( 0 , r + l , w 2 )

T+ l,w)-If(T0,T+ l,v2) > 0 .
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It follows from (4.16), (4.26), (4.27) and the choice of S (see (4.24), (4.25)) that

(4.30) If(0, T + l,w)- If(0,T + l,vi)

= If(T, T + \,w)- If(T, T + 1, vi)

< Uf(T, T + l, u,(T), v2(T + 1)) + e/8

By (4 .29H4 .30 ) , If(0, T + 1, v2) < If(0, T + 1, w) < If(0, T+l, w,) + e / 4 for
any T > Tx. This implies (4.23). In view of (4.22) and (4.23),

(4.31) lim [If(0, T, vx) - If(0, T, v2)] = 0.
7"

[
7"->oo

Since V\ is (/)-overtaking optimal we conclude that v2 is (/)-overtaking optimal.
The proposition is proved. •

5. (STP) implies (PI), (P2) and (P3)

Assume that / € Jt, for each (t, x) € [0, oo) x K" the function f(t,x, •) :
R" -*• R1 is convex, the function / has (STP) and that a bounded a.c. function
Xf : [0, oo) -»• R" is the turnpike of / . In [14, Section 4] we showed that properties
(PI) and (P3) hold. Now we show that (P2) holds.

By Proposition 4.2 there exists an (/)-overtaking optimal function v : [0, oo) —•
K" such that u(0) = Xf(0). Let v : [0, oo) ->• K" be any (/)-overtaking optimal
function satisfying v(0) = Xf(0). In view of Proposition 2.2, v is bounded. Then it
follows from (STP) that v(t) = Xf(t), t e [0, oo).

6. Basic lemma

Assume that / e ~#, for each (t,x) e [0, oo) x R" the function f(t,x,-) :
R" - • I 1 is convex, Xf : [0, oo) -*• K" is a bounded a.c. function and assume that
properties (PI), (P2) and (P3) hold. In [14, Lemma 5.1] we proved the following
important lemma.

LEMMA 6.1. For each € > 0, there exist To > 0, 8Q > 0 such that the following
property holds: IfT\> To, T2 > T\ + 1 and if an a.c. function u : [T\,T2] —> R"
satisfies, for i — 1,2,

,, T2, «(r , ) , ii(r2)) + <50,

then \u(t) - Xf(t)\ < €,fort € [T,, T2\
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Now we prove our basic lemma.

LEMMA 6.2 (Basic Lemma). Let e > 0. Then there exists S > 0 such that for each
T\ > 0, T2 > T] + 1 and each a.c. function v : [Tt, T2] —> K" satisfying

(6.1)

/or i = l,2, the following inequality holds:

(6.2) | X / ( 0 - v ( 0 l < € , te[TuT2].

PROOF. By Lemma 6.1, there exist r0, 50 € (0, e/16) such that the following
property holds:

(P4) If T, > T0, T2 > Ti + 1 and an a.c. function v : [Tu T2] ->• K" satisfies

\v(Ti)-Xf(T,)\ <80,i = 1,2, and I'(T,,T2,v) < Uf(Tt, T2, v ( r , ) , v(T2)) + So,

then \v(t) - Xf(t)\ < e,t e [T,,T2].

We may assume without loss of generality that <50 < 1. Choose

(6.3) Mo > 4 + sup{|A7(f)l :t 6 [0, oo)}.

By Proposition 2.4 there exists a number M\ > 1 such that for each T{ > 0, T2 >
7", + 8"1 and each a.c. function v:[Tu T2] -+ R" satisfying (i = 1, 2)

(6.4) \v(T,)\ < M o + 4 and If(Tu T2, v) < Uf{Tu T2, v(T{), v(T2)) + 4

the following inequality holds:

(6.5) \v(t)\<Mu te[TitT2].

In view of property (P3), there exist 5, e (0, min{l, 80}) and Li > 0 such that the
following property holds:

(P5) For each T > 0 and each a.c. function v : [T, T + L,] —*• K" which satisfies

/ ' ( 7 \ r + Ll t v) < Uf(T, T + Li,v(T), v(T + Lt))

there is r e [T, T + L\\ for which

(6.7) |X7(r) - U(T)| < So.
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Consider a sequence {8,-}™, c (0, 1) such that

(6.8) &i<2-l8i-t, i = 2 , 3 , . . .

Assume that the lemma is wrong. Then for each natural number i there exist Tn > 0,
Ta > Tn + 1, an a.c. function u, : [Tn, Ti2] -*• K" such that

lf(Tn, Ti2, Vi) < U'(Tiu Ti2, Vi(Tn), u,-(r/

and /, e [7}i, ri2] for which

(6.10) \Xf(ti)-vi(fi)\>€.

Let i be a natural number. It follows from property (P4), (6.9), (6.10), (6.8) and (6.5)
that

(6.11) 7 ,̂ < r0.

By (6.9), (6.8), (6.3) and the choice of Mx (see (6.4), (6.5)),

(6.12) \Vi(T)\<Mu te[TlUTl2\.

We show that t, < r0 + Lx + 2. Assume the contrary. Then

(6.13) ti > TO + L | + 2 .

Consider the restriction of Vj to the interval

(6.14) [ f 1 - - L 1 - l , r l - - l ] c ( r 0 + l , o o ) .

Property (P5), (6.14), (6.12), (6.9) and (6.8) imply that there is

(6.15) t € [ t t - L i - l , r , - l ]

such that

(6.16) \Xf(t)-v,(t)\<80.

By (6.15) and (6.13), i > r0 + 1, Ti2 — i > 1. It follows from these inequalities,
(6.16), (6.9), (6.8) and property (P4) that M O - Xf(t)\ < e , ( 6 [i, Ti2]. Combined
with (6.15) this inequality implies that |w,(?/) — X/(?,)| < e, a contradiction. The
contradiction we have reached proves that

(6.17) t/ < TO + L | + 2 .
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Extracting if it is necessary a subsequence and re-indexing we may assume without
loss of generality that there exist

ft = lim Tn e [0, r0], t = lim r, e [f,, r0 + L, + 2],
(6.18)

72 = lim Ti2 € [f, oo]
i—KX>

(see (6.11), (6.17)).
It follows from (A.ii), (6.9), (6.12) and Proposition 2.6 that for each r, e (f1,, f2),

r2 € (fi, f2) the sequence {//(ri, r2, u,)}°^, is bounded.
By lower semicontinuity results [1], we may assume that there exists a function

v : (f\, f2) -*• K" such that the following property holds:

(P6) For each X\ € {f\,f2), r2 G ( t i , ^ ) , the function v is a.c. on [ri,r2],
Vj(t) —*• v(t) as / -*• oo uniformly in / e [ri, r2], v\ -> v' as i —>• oo weakly in
L'([T|, r2]; R"), and / / ( T 1 , T2, 0) < liminf,^^ lf{xu r2, u,-).

We show that Xf(ft) = Hm,^f+ i)(/). Let A > 0. By Proposition 2.5, Proposition 2.6,
(6.9) and (6.12) there is y e (0, 1/8) such that the following properties hold: For each
integer / > 1 and each tut2 e [Tn, Ti2] satisfying |?i — t2\ < 4y we have

(6.19) |w,-(fi)-

For each t\,t2 € [0, oo) satisfying \t\ — t2\ < 4y, we have

(6.20) |X/(f.)-*/(f2)l<A.

Let r e (T|, r, + y). Then for all sufficiently large natural numbers /

(6.21) Tn < T < f, + y < Tn +2y

and in view of the choice of y

(6.22) M O - u . - W O I ^ A .

It follows from (6.21), (6.22) and (6.9) that for all sufficiently large natural numbers /

(6.23) M r ) - Xf(Tn)\ < M r ) - v,(Tn)\ + \v,(Tn) - Xf(Tn)\ < A+ 5,,

By the choice of y, (6.20) and (6.18) for all sufficiently large natural numbers i,

Combined with (6.23) this inequality implies that for all sufficiently large natural
numbers i

\Vi(T)-Xf(f,)\ < M r ) -Xf(Tn\ + \Xf(Tn) - Xf(fi)\ < A + 8.+A.
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Thus by (P6) and (6.8)

\V(T) - Xf(fi)\ = .lira |U,-(T) - X/(f , ) | < lira 2A + S, = 2A.
i-»oo i-»oo

We have shown that for each r <E (f,, f, + K), |T)(T) - X/(f , ) | < 2A. Since A is an
arbitrary positive number we conclude that

(6.24) Xf(fi) = lim v(z).

Analogously we can show that if T2 < oo, then

(6.25) Xf(f2) = lim v(t).
r-f.

We set 0(f,) = Xf(fx) and if f2 < oo, then 0(f2) = X/(f2)- It follows from (P6),
(6.9), (6.8) and Proposition 2.3 that for each 5,, S2 e (f,, f2) satisfying 5, < 52

If(Si,S2,v) <\imMIf(S\,S2,v,)

< liminf[t//(S,, 52, u,-(S,), u,-(S2)) + «,-]
I—•OO

= liminf f//(SI, 52, u,-(Si), u,-(52)) = f//(51, S2, 0(S,), u(52))
[-+CXJ

and

(6.26) 7^(5,, S2, v) = Uf(Su S2, 0(5,), u(S2)).

By (P6), (6.12), (6.24) and (6.25), 0 is bounded. It follows from Proposition 2.7, (P6)
and (6.24)-(6.26) that 0 is a.c. function on [f,, r) for each real r < f2 and that the
following properties hold:

(6.27) If(fu r, 0) = U'(fi, r, 0(7,), 0(r))

for each r 6 (f,, f2] if f2 < oo; and equality (6.27) holds for each x > f, if f2 = oo.
We will show that v(t) ^ Xf{t). It follows from Proposition 2.6 that there is

M2 > 0 such that

* , > 0 , * 2 €[5 , + 8 - U + 8 ] , \ + 4 < M

x,y e IR", |JC|, |y| < Af, + 2 j(6.28) su

Relations (6.28), (6.12) and (6.9) imply that the following property holds:

(P7) For each integer i > l,each.S|, s2 £ [7/i. Ti2\ satisfying s2 e [s,+8"', 5|+8],
2, v.) < M2.
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In view of property (P2), Proposition 2.6 and (6.3),

(6.29) sup[If(s\,s2,Xf) :s,>0,s2€ [s, + 8 " ' , 5 , + 8 ] } < oo.

By (P7), (6.29) and Proposition 2.5, there exists a positive number

y < m i n { l , f 2 - f , J / 3 2

such that the following properties hold:

(P8) For each sus2 > 0 satisfying |s, - s2\ < y, \Xf(si) - Xf(s2)\ < e/64.
(P9) For each integer i > 1, each slt s2 e [Tn, Ti2] satisfying \st — s2\ < y,

Let i be a natural number. We show that tt — Tn > y. Assume the contrary. Then
U — Tn < y and by properties (P8) and (P9)

\Xf(t,) - Xf(Tn)\, \Vi(ti) - Vi(Tn)\ < t/64.

Combining with (6.9), these inequalities imply that

\Xf0i) - v,(/,)| < \Xf{u) - Xf(Tn)\ + \Xf(Tti) - v ^

< e/64 + Si + e/64 < e/32 + <50 < e/32 + e/16

<e/2,

This inequality contradicts (6.10). The obtained contradiction proves that

(6.30) t, -Tn>y.

Analogously we can show that

(6.31) Ti2-ti>Y-

It follows from (6.30), (6.31), (6.17), (6.18) and property (P6) that

\im\v,(ti)-v(t,)\=0.
i->00

Combined with (6.18) this equality implies that

(6.32) \imv,(ti) = d(t).
i—*oc

By (6.18), l i m , ^ Xf{t,) = Xf(J). Combined with (6.32) and (6.10) this equality
implies that

(6.33) |ii(f) - X,(t)\ = lim !«,•(/,•) - Xf(t,)\ > e.
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Thus

(6.34) v(i) £ Xf(t).

There are two cases: (1) f2 = oo; (2) f2 < oo. Assume that f2 < oo. Then (6.27)
holds for each r e (f,, f2). By Proposition 2.7, v : [f,, f2] - • 1" is an a.c. function
and

(6.35) If(fu fi, v) = Uf{fu f2, 0(f,), Hf2)).

We have Xf{fi) = 0(f,), i = 1,2. Define an a.c. function u : [0, oo) -+ R" by

t 6[0 ,OO)\( f , , f 2 ) ,

f e (r,, r2).

Clearly M is well defined. By property (P2) and (6.35), v is (/)-overtaking optimal.
On the other hand, u(0) = X/(0)andM(f) = v(t) ^ Xf{t). This contradicts property
(P2). Thus case (2) does not hold and f2 = oo.

For each t > 0 satisfying t < Tit set v(t) = Xf(t). Now (6.27) holds for each
T > f\. It follows from this fact, the boundedness of v, the equality v(T\) = Xf(f\)
and Proposition 4.3 that v is (/)-overtaking optimal. Now (6.34) contradicts property
(P2). The obtained contradiction proves the lemma. •

7. Proof of Theorem 1.3

In this section we prove the following theorem which is an extension of Theorem 1.3.

THEOREM 7.1. Let f e Jt, for each (t, x) e [0, oo) x M." the function f(t, x, •) :
R" —> K1 is convex and let X/ : [0, oo) -> R" be a bounded a.c. function. Assume
that properties (P1)-(P3) from Theorem 1.3 hold.

Then for each K, e > 0 there exist 8, L > 0 and a neighborhood 9/ of f in Jt
such that the following property holds: For each j e f , each T{ > 0, T2 > 7, + 2L
and each a.c. function v : [T\, T2] —*• R" which satisfies

(7.1) \v(Tt)\, \v(T2)\ < K, Is(Ti,T2,v)<UHTl,T2,v(Tl),v(T2)) + 8,

thereexistxx € [Tu Tt + L], x2 € [T2-L, T2]suchthat\v(t)-Xf(t)\ < €, t € [T,, r2].
Moreover, if\v(T{) - Xf(Tx)\ < S, then T, = Tu and if\v(T2) - Xf(T2)\ < S, then
T2 = r2 )
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PROOF. Let K, € > 0. By Lemma 6.2 there exist <50 6 (0, 1) such that the following
property holds:

(Cl) If 7, > 0, 72 > 7, + 1 and if an a.c. function v : [7,, 72] -)• R" satisfies

v(T.) - xf(Tt)\ <s0, i = i, 2, /'(r,, r2, u) < u'w,, T2, w(r,), u(r2» + <$0,

then
By Proposition 2.4, there exist a number

(7.2) A/o > K + 2 + sup{|X/(f)l : ' € [0, oo)}

and a neighborhood *&o of / in M such that the following property holds:
(C2) For each g € ô> each T\ > 0, 72 > T, + 1 and each a.c. function u :

[T\, T2] ->• K" which satisfies

})l < AT + 2 + sup{|X/(r)| : r € [0, oo)}, i = 1, 2,

, Ti, w) < £/'(7"It T2, v(Ti), v(T2))+4

the inequality |u(f)| < Mo holds for all t € [7,, r2].
In view of property (P3), there exist <5i € (0,60), L{ > 0 such that the following

property holds:
(C3) For each T > 0 and each a.c. function iu : [T, T + L}] —*• R" which satisfies

If(T, T + Li,w)< Uf(T, T + Lu w(T), w(T + L,)) + Su

there is r € [T, T + Z.,] for which \Xf(x) - w(r)\ < So.
Proposition 2.8 implies that there exists a neighborhood ^ of / in ^ such that

the following property holds:
(C4) For each 7, > 0, T2 e [7, + LU Tx + 8(L, + l)],eachg e%,eachx,y e K"

satisfying |JC|, \y\ < Mo + 4, |£/*(7,, 72,x, y) - f/^(7,, T2,x, y)\ < 5,/32.
By Proposition 2.6, there exists a number Mi > 0 such that

It follows from Proposition 2.9 that there exists a neighborhood ^ 2 of / in M such
that the following property holds:

(C5) For each 7, > 0, 72 € [7, + L,, 7, + 8(L, + 1)], each g € ^ 2 and each a.c.
function u : [7,, 72] ->• R" satisfying

, 72, v), /*(7,, 72, v)) < M, + 8,
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the inequality \If(T\, T2, v) - Ig(Tu T2, v)\ < 5,/32 holds.
Define

(7.4) ^ = f o n f , n <%2,

choose a positive number 8 < min{e, 80, 8i}/32 and set

(7.5) L = 8 + 6L,.

Assume that g e %, 7, > 0, T2 > 7, + 2L and an a.c. function v : [Tu T2] -* R"
satisfies (i = 1, 2)

(7.6) |u(r,)|<tf and Is(TuT2,v)<Us(T),T2,v(T]),v(T2)) +

By (7.6), (7.4) and property (C2),

(7.7) \v(t)\<M0, te[TuT2}.

Let

(7.8) si,s2e[Ti,T2], s2 - s, e [Lu 8(L, + 1)].

It follows from (7.7), (7.4) and property (C4) that

(7.9) \U*(sus2, v(sx), v(s2)) - Uf(si, *2, v(si), v(s2))\ < <5,/32.

Relations (7.3), (7.7) and (7.8) imply that Uf(sus2, u(*i), v(s2)) < A/,. Combined
with (7.9) this inequality implies that Ug(s\, s2, v(si), v(s2)) < M\ + 8J32. In view
of this inequality and (7.6),

(7.10) I'(s,,s2, v) < Ug(su s2, u(5,), v{s2)) + 8 < M, + 8J32 + 8.

By (7.10), (7.8), (7.4) and property (C5), \If(sus2, v) - /*(«,, s2, v)\ < <5,/32. It
follows from this inequality, (7.10), (7.9) and the choice of 8 that

If(si,s2tv) < Ig(s,,s2,v) + 8^32 < Us(slt s2, v(si), v(s2)) + 8 + 8J32

< Uf(sus2, v{sx), v(s2)) + St/32 + 8 + Si/32

and

(7.11) If(si, s2, v) < Uf(Si,s2, v(Si), v{s2)) + 35,/32.

We have shown that the following property holds:
(C6) Inequality (7.11) is valid for each s\, s2 satisfying (7.8).
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Assume that

(7.12) T € r j 1 + j , , + l , r 2 - L , - 1 ] .

Relations (7.12) and (7.5) imply that r - l - L , , r + l+L, e [TUT2]. By property (C6)

(7.13) If(x-l-LUT-l,v)

< Uf(r - 1 - L,, r - 1, u(r - 1 - L,), v(r - 1)) + 3S,/32,

(7.14) / ' ( r + l , r + l + Luv)

< Uf(x + l, r + 1 + L,, u(r + 1), W(T + 1 + Z.,)) + 3S,/32.

It follows from (7.13), (7.14), (7.7) and property (C3) that there exist

(7.15) f, € [r - 1 - /.,, r - 1], t2 e [T + 1, x + 1 + Z.,]

such that

(7.16) \Xf(t,)-v(t,)\<80, i = l,2.

Property (C6) implies that

/ / ( r - 1 - L , , r + 1 +Luv)

< f//(r - 1 - Z,,, r + 1 + Lu v(z - 1 - L,), u(r + 1 + Z.,)) + 35,/32.

Together with (7.15) this inequality implies that

(7.17) I'(h, h, v) < Uf(tu t2, u(r,), u(/2)) + 35,/32.

It follows from (7.15)-(7.17) and property (Cl) that \v(t) - X/(OI < < , ( £ [fi, f2]
and

(7.18) \v(z)-Xf{x)\<€.

We have shown that the following property holds:
(C7) Inequality (7.18) is true for each r e [T, + Lx + 1, T2 - L, - 1]. (Note that

[r, + Z., T2 - L] C [7, + Z., + 1, 72 - L, - 1].)
Assume that

(7.19) |w(T,) - XyCT,)! < 5.

Let r = 7i + L| + 1. We have shown that there is

(7.20) f z e t r , + L, + l , r 1 + Z,1 + l +
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such that

(7.21) \Xf(t2)-v(t2)\<80

(see (7.15), (7.16)).
By property (C6),

If(Tu r, + 2L, + 2, v) < Uf(Tu Tx + 2L, + 2, v(Tt), v{T, + 2L, + 2)) + 3S,/2.

Together with (7.20) this inequality implies that

(7.22) If{Tu t2, v) < Uf(Tu h, w(r,), v(t2)) + 3<5,/2.

It follows from (7.19H7.22) and property (Cl) that \v(t) - Xf(t)\ < e, t € [7,, r2]
(note that [7^, Ti + Z,! + 1] c [7i, ?2])- Together with property (C7) this implies that
(7.18) is true for each r belonging to the interval [TUT2 — Lx — 1] which contains
[TUT2-L].

Assume that

(7.23) \v{T2) - Xf(T2)\ < 8.

Let r = T2 - L, - 1. We have shown (see (7.15), (7.16)) that there is

(7.24) r, € [ r 2 - L 1 - 2 - L , , r 2 - L , - 2 ]

such that

(7.25) \Xv(ti) ~ v(ti)\ < So.

By (7.24) and Property (C6),

(7.26) lf{tu T2, v) < Uf(tu T2, v(/,), v(T2)) + 35,/2.

It follows from (7.23)-(7.26) and property (Cl) that \v(t) - Xf(t)\ < € for any t in
the interval [t\, T2] which contains [T2-L{—2, T2]. Together with property (C7) this
implies that (7.18) is true for each T in the interval [Tt + L\ + 1, T2] which contains
[Tt + L, T2\. This completes the proof of theorem. •
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