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Asymptotics of streamwise Reynolds stress in
wall turbulence
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The scaling of different features of streamwise normal stress profiles (uu)*(y™) in
turbulent wall-bounded flows is the subject of a long-running debate. Particular points
of contention are the scaling of the ‘inner’ and ‘outer’ peaks of (uu)™ at yt = 15
and y© = 0(10°), respectively, their infinite Reynolds number limit, and the rate of
logarithmic decay in the outer part of the flow. Inspired by the thought-provoking paper
of Chen & Sreenivasan (J. Fluid Mech., vol. 908, 2021, p. R3), two terms of an inner

asymptotic expansion of (uu)™ in the small parameter Re; /4 are constructed from a set
of direct numerical simulations (DNS) of channel flow. This inner expansion is for the
first time matched through an overlap layer to an outer expansion, which not only fits the
same set of channel DNS within 1.5 % of the peak stress, but also provides a good match
of laboratory data in pipes and the near-wall part of boundary layers, up to the highest
Re, values of 10°. The salient features of the new composite expansion are first, an inner

(uu)™ peak, which saturates at 11.3 and decreases as Ref_l/ *. This inner peak is followed
by a short ‘wall log law’ with a slope that becomes positive for Re; beyond O(10%), leading
up to an outer peak, followed by the logarithmic overlap layer with a negative slope going
continuously to zero for Re; — 00.

Key words: turbulent boundary layers

1. Introduction

In the following, the classical non-dimensionalization is adopted with the friction ve1001ty

= (rw/ﬂl/ 2 and the ‘inner’ or viscous length scale £ = (V/u;), where T,,, p and U
are the wall shear stress, density and dynamic viscosity, respectively, and hats identify
dimensional quantities. The resulting non-dimensional inner and outer wall-normal

coordinates are y* = $/¢ and Y = y*/Re;, respectively, with Re; = L/? the friction
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Reynolds number and L the outer length scale such as channel half-height, pipe radius
or appropriately chosen boundary layer thickness in unconfined turbulent wall layers.

The scaling of normal Reynolds stresses in turbulent boundary layers, in particular
of the streamwise component (uu)™, which is experimentally accessible with single
hot-wires, has been and remains a subject of vigorous debate. Research in this area
involves, in different proportions, data analysis and the correlation of profile characteristics
with dominant balances in the governing equations or with simplified models of typical
turbulent structures. Any complete summary of previous works on the subject goes beyond
a research paper and the reader is referred to the review articles by Marusic et al. (2010)
and Smits, McKeon & Marusic (2011) for a general introduction.

The specific topic of the present paper is the construction, believed to be the first, of a
complete composite matched asymptotic expansion (abbreviated MAE, see e.g. Kevorkian
& Cole 1981; Wilcox 1995) for the streamwise Reynolds stress (uu)™ from available
channel flow direct numerical simulations (DNS) and, at higher Re;, experimental pipe
flow profiles. Unlike the MAE for the mean velocity profile (see e.g. Monkewitz 2021),
which provides, at higher laboratory Reynolds numbers, an excellent approximation of
U™ already at leading order, the MAE of the (uu)™ profile requires at least two orders to
properly describe its substantial evolution with Re;.

One of the principal questions being currently debated is the scaling of the inner
peak height (uu);;, located at y* & 15. According to one school of thought, this
inner-scaled peak grows indefinitely with InRe;, according to Samie er al. (2018) as
3.54 + 0.646In Re; in the zero pressure gradient turbulent boundary layer (ZPG TBL).
In order to obtain a finite non-dimensional inner peak in the limit of infinite Re; with
this scaling, (uu) would have to be normalized by the product of i#; and the outer
velocity scale, as proposed by DeGraaff & Eaton (2000), for instance. However, Chauhan,
Monkewitz & Nagib (2009) have shown that this ‘mixed scaling’ does not significantly
improve the collapse of profiles at different Re;. The logarithmic scaling of the inner
peak has nevertheless gained widespread acceptance, because it corresponds to a key
prediction of the attached eddy model, originally proposed by Townsend (1976), developed
in Melbourne by Perry, Henbest & Chong (1986), among others, and recently reviewed by
Marusic & Monty (2019). Closely linked to the unlimited growth of (uu);; is the model
prediction of a universal logarithmic decay, (uu)* = 1.95 — 1.26InY in the outer region
(see e.g. Marusic et al. 2013).

Both of these model predictions have been challenged by Monkewitz & Nagib (2015)
(see also Monkewitz, Nagib & Boulanger 2017), who have shown that, for the ZPG TBL,
an unlimited growth of the inner peak (uu);; is incompatible with the Taylor expansion
of the full streamwise mean momentum equation about y* = 0. Recently, this view has
received support from Chen & Sreenivasan (2021), henceforth abbreviated CS2021, also
for streamwise homogeneous flows such as channel and pipe flows. They argued, based on
the maximum of 1/4 for the turbulent energy dissipation rate, that the infinite Reynolds
number limit of the inner peak height is finite and decreases from there as Re; V4 1t
is noted, however, that these results (or any other scalings) have not yet been formally
related to the Reynolds stress transport equations. This, and the limited variation of
Re; 1 4, (1/In Re;) and In Re; over the Re; range, where reliable streamwise normal stress
data are available, go a long way to explaining the continuing disagreement on their
scaling.

Leaving open questions for the concluding § 5, the asymptotic sequence {1, Re?l/ 4, Sl
of CS2021 is adopted to construct, in § 2, the two-term inner asymptotic expansion of

931 A18-2


https://doi.org/10.1017/jfm.2021.924

https://doi.org/10.1017/jfm.2021.924 Published online by Cambridge University Press

Streamwise Reynolds stress

Profile Re; Reference

1 5186 Lee & Moser (2015)

2 3000 Thais, Mompean & Gatski (2013)
3 2004 Hoyas & Jiménez (2006)

4 1995 Lee & Moser (2015)

5 1000 Lee & Moser (2015)

Table 1. Channel DNS profiles used to determine the first two terms of the asymptotic expansion (2.1).

the streamwise normal stress from channel flow DNS. Analytic fits for both terms of
the near-wall asymptotic expansion are developed in Appendix A and continued to a
logarithmic overlap layer. The matching outer expansion is developed in § 3, resulting in
the first complete two-term composite expansion of (uu)™, which successfully describes
DNS and experimental (uu)™ profiles for Reynolds numbers ranging from 10° to 10°.
Close to the wall, however, discrepancies, in particular of inner peak heights, exist between
some measurements with the nano-scale thermal anemometry probe, known as NSTAP
(Vallikivi & Smits 2014), and the proposed composite profile. An explanation for these
discrepancies is proposed in Appendix B.

The short §4 is devoted to a detailed comparison between outer peak heights and
locations, obtained from the composite expansion, and available data. The concluding § 5,
finally, offers speculations on how the successful two-term expansion of (uu)™, based on
the inner asymptotic sequence {1, Ref_l/ 4, ...} proposed by CS2021, could be related to
the asymptotics of other terms in the transport equation for (uu)™. The section concludes
with a list of further comments and observations. Some supplementary materials are
available at https://doi.org/10.1017/jfm.2021.924, notably a comparison with the patched
asymptotic expansion of Marusic & Kunkel (2003) (‘patched’, because their inner and
outer expansions are not matched in an overlap layer, but patched across a fixed y™
interval).

2. The inner asymptotic expansion of (zu)* and its inner peak

The inner asymptotic expansion of the streamwise normal stress (uu)™ for large Re; is
extracted from the channel DNS of table 1 in a similar fashion as the mean velocity
expansion in Monkewitz (2021), i.e. without recourse to a model.

Generalizing the Reynolds number dependence of the gauge function in (3.1) of
Monkewitz (2021) from Re !'to @ (Rey), the first two terms of the asymptotic expansion

(uu) ps = F (V") + @ (Rer)g(yh), 2.1)

are obtained for various gauge functions @ from pairs of DNS profiles at different Re-.
A good collapse of the f and g values from different profile pairs signifies that the gauge
function @ has been properly chosen and that higher-order terms in the expansion (2.1)
are small or absent.

It turns out that @ = Re,_l/ Yand @ =1 / In Re; both produce a good collapse of the
functions f and g obtained from all possible profile pairs in table 1, with f(y™) the finite
limit of (uu)™ for Re; — oo. The choice of @ = Re; Y4 for the present paper, proposed
by CS2021, is based on the following considerations:
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(i) Arguments in favour of @ = Re; /4. the decomposition (2.1) with @ = Re; V4 is
shown in figure 1 and the collapse from different profile pairs on the fit (2.2) is
seen to be rather good up to y* of approximately 200. Furthermore, the leading
term of the Taylor expansion (2.3) of (2.2) about the wall, shown in figure 1 as
dotted lines, corresponds to an upper bound of 1/4 for the dissipation rate at the
wall, as argued by CS2021. They have furthermore argued, that the coefficient of
(y1)? in the Taylor expansion about the wall and the inner peak height (uu);;) are
strictly proportional. Without having imposed this constraint on the fit (2.2), it yields
a near perfect proportionality between (2.4) and the coefficient of ( y+)2 in (2.3),
the proportionality factor being 45(1 4 0.11/Re;). This proportionality has recently
received strong support from the extensive data analyses of Hultmark & Smits (2021)
and Smits et al. (2021), who found a ratio of 46, independent of Reynolds number.

(i1) Arguments against @ = 1/In Re;: the decomposition (2.1) with @ = 1/InRe;, on
the other hand, is shown in figure 1 of the supplementary material and is seen to
produce an equally good collapse of the f and g functions from different DNS pairs.

The Taylor expansion of (uu)® about the wall, (0.30 — 0.86/ In Re;)(yT)% + - - is
also in good agreement with Smits ez al. (2021). However, as the coefficient of (y+)?2
exceeds the limit of 1/4 inferred by CS2021, this scaling is not pursued further.

(iii)) Arguments against @ = InRe;: the choice of @ = InRe; in (2.1), finally, which
corresponds to the inner peak scaling of the attached eddy model (Marusic &
Monty 2019), produces no comparable collapse of the f and g values from different
DNS pairs of table 1, as seen in figure 2 of the supplementary material, and, of
course, (uu)?}) — 00 for Re; — oo. For the simplest case of channel flow, the
transport equation for (uu)™ (see for instance Hinze (1975), (4) and (5)) is in all
likelihood unbalanced with this scaling: based on the available profiles, notably
those of Lee & Moser (2015) at Re, = 5186, the viscous transport term DT =
(1/2)[d*(uu)t /(dyt)?] becomes negative beyond y* & 5. In the neighbourhood of
y;; &~ 15, it may be approximated by —(uu);;,( y;;,)_z. Hence, with (uu);;) scaling as
In Re,, the viscous transport term in the neighbourhood of the inner peak goes to
negative infinity for Re; — oo. For the DNS of Lee & Moser (2015) at Re; = 5186,
all the other terms of the transport equation are negative around y;,, except the
production term, which is limited to 1/4 (see e.g. Pope (2000), exercise 7.6). With
the reasonable assumption that, between Re; = 5186 and infinity, no term of the
transport equation for (uu)™ becomes positive unbounded in a neighbourhood of

y;;), the equation is clearly asymptotically unbalanced. The choice of @ = InRe; is
therefore abandoned at this point.

Proceeding with the asymptotic sequence {1, Re; 1/ 4, ...}, the functions f and g of
figure 1 need to be fitted in order to generate (uu)™ profiles for any Reynolds number. Two
features of f and g will prove to be important for the construction of the complete inner
asymptotic expansion: the expected ‘hump’ at y© = 15, and the rather clear logarithmic

region between y* A 60 and 200, with a logarithmic slope that decreases as Re; V4 from
its maximum of 0.85 at infinite Re; (figure la). For the O(1) part f, the fit My (Al),
constructed from a Padé approximant for the derivative, analogous to the construction of
the Musker mean velocity profile (Musker 1979), has been developed and is supplemented
by the ‘hump’ function H (A4). The O(Re; 1 4) part g is well fitted by the ‘corner function’
C (AS) plus a ‘hump.” Hence, the near-wall stress, up to higher-order terms (HOT), is

931 A18-4


https://doi.org/10.1017/jfm.2021.924

https://doi.org/10.1017/jfm.2021.924 Published online by Cambridge University Press

Streamwise Reynolds stress

(@ 12t

0.25 (y+)2 4

o)

Ll L Ll L

10! 100 10! 102 103 104

—60 |

—80 L \\HHL"’ L L L
107! 100 10! 102 103 104
y+
Figure 1. The O(1) (a) and O(I/Rel/ 4) (b) components of (uu)T extracted from DNS pairs of table 1: (red)
profiles 1 and 2 (—), l and 3 (---), l and 4 (---), 1 and 5 (— - —); (green) 2 and 3 (—), 2 and 4 (- - -), 2 and

5(---); (blue) 3and 5 (—), 4 and 5 (- - -). Panel (a) (black) — and — - —, O(1) part of (2.2) with and without
hump. Panel (b) (black) — and — - —, O(1 /Rel/ 4) part with and without hump; (black) - - -, logarithmic slopes
modified by £5 %.

() jp

3 4
Re_x 1074
Figure 2. Inner peak height (uu);;, vs. Re;: (red) —, -+ -, (2.4) £2 %; (black) - - -, 11.5 — 19.3Ref_1/4 of
CS2021; (black) — - -—, 3.54 + 0.646 In Re; of Samie et al. (2018). Channel DNS (e): (red) DNS of table 1,

(dark red) DNS of Bernardini, Pirozzoli & Orlandi (2014), (yellow) DNS of Lozano-Durdn & Jiménez (2014).
Pipe (#): (pink) DNS of Pirozzoli et al. (2021), (blue) Superpipe NSTAP data of Hultmark et al. (2012),
(purple) corrected and uncorrected (() CICLoPE hot-wire data of Fiorini (2017). ZPG TBL (H): (green)
Sillero, Jiménez & Moser (2013), (orange) Samie et al. (2018). Couette (A): (green) Kraheberger et al. (2018).

described by

(), = Ma(y+; 025,373, 1.7, 8.8616) + H(y+; 4, 1.3, 15)+
1

Rel/4

+ {C(yT;3.1623, —8.4,2) + H(yt; =3.7,1,13)} + HOT.  (2.2)

931 A18-5
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To go beyond O(Re; 1 4), the Reynolds number range of available DNS and their mutual
consistency are insufficient.

From (2.2) and (A3), one readily obtains the Taylor expansion of (uu)™ about the wall
as

() (v = 0) = (0.25 — 0.42Re; /) (y1)? = 0.02(1 — Re; VH(yD)* + -+ .
(2.3)

As noted above in point (i), the coefficient of (y+)2 in (2.3) fits all the b% in table 1 of
Hultmark & Smits (2021) to within less than 1 %, which is not surprising as they used
the same DNS data. The upper limit of 1/4 for the coefficient of (yJ“)2 in (2.3) is also
consistent, within uncertainty, with the value of 0.26, obtained by Monkewitz & Nagib
(2015, figure 6 and (2.19)) for the ZPG TBL.

Next, the inner peak height (uu}?} aty™ & 15 is obtained from (2.2) or figure 1 as

(uu)f, = 11.3 — 17.7Re; /4, (2.4)

to be compared in figure 2 with some laboratory and computational data for channel,
pipe, ZPG TBL and Couette flows. Also included in the figure are the correlation 11.5 —

19.3Re; '/* of CS2021, which stays within 2 % of (2.4) for all Re,, and 3.54 + 0.646 In Re,
of Samie et al. (2018), which starts to deviate more than +2 % beyond a Re; of 30 000.
While most of the experimental and DNS data are within +2 % of (2.4), there are two
notable exceptions: the Couette data point of Kraheberger, Hoyas & Oberlack (2018), for
which no explanation can be offered at this time, and the Superpipe NSTAP data for
Re; > 5400. A tentative explanation for the low (uu);; values in the Superpipe is given in
Appendix B.
With (A2) and (AS) of Appendix A, the large y™ asymptote of the profile (2.2) is the
logarithmic law
(uu>$a[[(y+>>1) = Syair In y++cwall with (2.5)
Syail = 0.85 — 8.4Re; /%, Cyun = 5.251 +9.671Re; /4, (2.6)
The logarithmic asymptotes (2.5) of (uu)jv'a” for different Re; are visualized in figure 3
by the fan of straight dashed lines intersecting at y* ~ 3, and allow the completion of
the inner expansion even though they are followed by the data only over a short interval.
The logarithmic slope S,,,; of these asymptotes, negative at low Rer, is seen to become
positive at Re; ~ 10%. A short log law of (uu)™, albeit with a fixed slope, has already
been seen by Hultmark (2011, (4.3)) in the same y*-range of the Superpipe, but the role of
probe corrections remains an issue (see Appendix B). More recently, Samie et al. (2018,
figure 4) have developed a logarithmic fit of (uu)™ for the region leading up to the outer
peak, which, at Re; = 20000, is within 4 % of (2.5) over the interval 10? < y* < 103. This
establishes the relation between the change of sign of S,,,; in (2.6) and the emergence of
an outer peak in the (uu)™ profile, known for over 20 years to appear at high Re. (see, for
instance, Fernholz & Finley 1996).
To actually form such an outer peak, the wall asymptote (2.5) has to cross over to a
decay law at some yT. This cross-over location y} and the decay law beyond y}. could in

principle be extracted from DNS data in a manner similar to the determination of (uu):g all”
Due to the complexity of the expansion and the limitations of the DNS data, this has not

been possible. A first indication on the value of y} comes from figure 1, which shows that
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Figure 3. Solid lines: composite profiles of (uu)™ for Re; = 1000 (green), 1995 (blue), 5186 (red), 20250
(green), 98 190 (blue), 10° (red), 107 (green), 10° (blue), oo (red). - - -, DNS profiles 5 (green), 4 (blue) and

1 (red) of table 1. Symbols: AAA, NSTAP Superpipe profiles of Hultmark et al. (2012) at Re, = 1985, 5411,
20250 and 98 187; [J, ZPG TBL profile of Sillero et al. (2013) for Re; = 1989 (blue) and of Samie ez al. (2018)
for Re; = 14500 (orange). Note that TBL profiles have not been used for the construction of the composite
expansion and are shown for comparison only. Long grey dashes (red for Re; = o0), wall log laws (2.5) for the
11 Re.; short grey dashes (red for Re; = 00), corresponding overlap log laws (2.9) with o marking their ‘end
points’ at y* = Re.; #, intersections of wall and overlap log laws at y} (2.7); — (grey), fit (3.3) of (uu)&, with
o marking the fit at the Re; values of the profiles shown; - - -, leading term 0.25( y™)? of the Taylor expansion
about the wall; — - —, logarithmic slope of —1.26.

the channel DNS closely follows the wall log law (2.5) up to y* 2 200, implying that y}
must be larger than 200.
Turning to a straight fit of y, all the data between Re; = 103 and 10° are seen in figure 3

to be compatible with y! equal to a simple constant

V=470 and  (u) =)}, (vF) = 10.48 — 42.0Re; V4, 2.7)

wal,

with the corresponding (uu)?, following from ((2.5), (2.6)). To guide the eye, the points

(yT, (uu)T) are marked by 4 for the profiles of figure 3. It is important to note here, that

(uu) ¥ is not the outer maximum nor y, its location, but the intersection of the logarithmic

asymptote (2.5) with the asymptotic logarithmic decay law of the overlap region. As the
actual outer peak height and its location depend on the slopes of both asymptotes, and on
the manner the corner between them is smoothed, its detailed discussion is postponed to
the short § 4, after the complete composite expansion is established in § 3.

The adoption of a constant yi for all Re; means that the inner expansion, which cannot
end at a finite value of the inner coordinate, extends beyond the cross-over point y} into
the region of logarithmic decay, where it overlaps with the outer expansion. Hence, the
complete inner expansion is obtained by adding a corner function (AS5) to (uu)vt a1 Of (2.2)

()} = ()t +COyTyT, AS,2), (2.8)
931 A18-7
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and its limit for y* > y} > 1 yields the asymptotic logarithmic overlap layer, i.e. the
common part of inner and outer expansions

(), = () (yF>y5>1) = Sep[lny™ = Iny}] + (uu) F +HOT
with  S¢p = Syan + AS. 2.9)

The logarithmic slope S, of the overlap log law (2.9) must be determined by matching
to the outer expansion in § 3. At this point it can only be said that S, must be negative to
form an outer peak at large Re,. Furthermore, it must go to zero at infinite Re;, as shown
in figure 3, because (uu)™* near the wall has been shown to remain finite for all Re;. This
implies that AS is of the form AS = —0.85 + AS’, with AS’ vanishing for Re; — o0, to
compensate the O(1) contribution to S,,,; in (2.6).

3. The outer and composite expansions of (uu)*

Moving on to the outer expansion, it is written as a logarithmic part matching the common
part (2.9) for small Y and satisfying the symmetry condition on the centreline Y = 1, plus
a wake part YW(Y), which goes to zero for ¥ — 0
+ Y + +
()}, = SowsIn | Re Y | 1 — 5)| - Sowr Iny3 4+ (uu) 7 +W(Y) + HOT. (3.1

The matching of outer and inner expansions furthermore requires S,,; to be identical to
Sep in (2.9).

To obtain the logarithmic slope S, = S, the outer expansion (3.1) is evaluated at
Y = 1 and identified with the fit (3.3) of centreline stress

Re
(uu)a = S,u In ( 27) — Sout lnyj('—i—(uu)i—l—W(l) 3.2)
= 0.55 +[0.1007 + 33Re; /4171, (3.3)

As seen in figure 3, this fit reproduces the channel and Superpipe centreline data up
to Re; = 10°. At higher Re., (uu)JCFL increases to the infinite Reynolds number limit of
(uu)j[ = 10.48, such that (uu)jm becomes a simple constant throughout the channel or
pipe. Note that the fit (3.3), which relies strongly on the outer Superpipe data of Hultmark
et al. (2012), implies that differences are relatively minor between the outer expansions for
pipe and channel (see comments in § 5).

What is still missing for the determination of the outer logarithmic slope S, is the wake
function WW(Y). The fit with the requisite symmetry properties

1 3
W(Y) = Spu In [Z + Z(l - Y)21| , (3.4)

is again developed from both channel DNS and Superpipe NSTAP data, while ZPG TBLs
obviously require a different YV (Y). However, it appears from figure 3, that the TBL
overlap log law remains close to (2.9) developed for channel and pipe.

Equation (3.4), together with (3.2) and (3.3), finally allows one to determine S,,; = S
in (2.9). The resulting logarithmic slope is found to scale as

Sour =0 ln2 RetRef_l/4, 3.5

with o a weak function of Re;, varying between —0.19 and —O0.15 in the interval
Re, € [10%, 10'°]. While the Re,_l/ 4 dependence is directly related to the scaling of (uu)*

in’
931 A18-8
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Figure 4. Difference between the DNS profiles (uu)™ of table 1 ( 1-5: red, pink, violet, blue, green) and their
complete composite fit (3.6).

obtained without model assumptions, the factor In> Re, in (3.5) may depend on the details
of how Sy, has been determined. However, as long as (uu);[ remains finite, S,,; must go
to zero for Re; — oo.
With the determination of S,,;, the composite expansion

() by = (e 4 () 3, — () 1, (3.6)
is complete up to O(Re, 1/ 4). This final result is compared in figure 4 with the DNS data
of table 1, and the differences between composite expansion and DNS are seen to be at
most 1.5 % of the inner peak height (2.4). It is also noted that, in the region 0 < y* < 10,
the difference between DNS and composite expansion is principally due to an imperfect
‘hump’ function (A4). However, no improvement is pursued here, as the deviations from
DNS are barely larger than the line thickness in figure 1 and no additional insight would
be gained from a more complex H.

The composite expansion (3.6) allows a unified comparison with complete (uu)™
profiles of different origins, as well as an extrapolation of (uu)™ to truly large Re..
Figure 3 shows the close correspondence, over the entire Re, range of 10° to 10°,
between composite profiles and both DNS and several more recent high Reynolds number
laboratory data. Only the Superpipe data of Hultmark et al. (2012) are seen to progressively
fall below the composite expansion close to the wall, which is also reflected in the low
inner peak heights for the Superpipe in figure 2. An explanation for these discrepancies is
proposed in Appendix B.

Figure 3 also shows the asymptotic ‘skeleton’ of the composite expansion: the fan of
logarithmic asymptotes (2.5) of (uu)vtall (2.2) and the corresponding asymptotic overlap
log laws (2.9), together with their intersections (2.7), marked by #. The considerable
difference, at the lower Reynolds numbers, between this asymptotic logarithmic ‘skeleton’
and the composite expansion, is already noted here. Similarly, the data are seen to closely
approach the overlap log law (2.9) — the short-dashed grey lines between 4 and o in figure 3

— only beyond a Re; of approximately 10°. Below this Re;, the wake region is reached

before the condition y* >> y} is satisfied. See also the comments in the concluding § 5
and the comparison with the patched asymptotic expansion of Marusic & Kunkel (2003)
in figure 3 of the supplementary material.

4. The outer peak

The scaling of the outer peak (uu)gp and its location yJOFP have given and still give rise
to extended debates, because they are not yet accessible to DNS and in experiments
are typically seen at a wall distance where probe corrections are often an important
issue. Probably the first, clean characterization of this peak has been provided by
Samie et al. (2018) for the ZPG TBL at Re; values up to 20°000. The Reynolds number
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Figure 5. (a) Outer peak height (uu)gp vs Re;. Symbols as in figure 2, except for: green 4, pipe data point of
Morrison et al. (2004); red e, outer peak height of full composite expansion (3.6) at selected Re; values;

red —, (uu)l’ of (2.7); black - - - and —- — - — , outer peak correlations 2.82 + 0.42InRe; and 0.33 +
0.631InRe; of Pullin, Inoue & Saito (2013). (b) Corresponding outer peak locations ySP. Symbols as in
panel (a), except for: red —, yl’ = 470; blue - - -, correlation of Hultmark er al. (2012); red - - -, fit 1200 —
1900Re;0‘06; yellow — - — - — , correlation 32.66 Re(r)'27 of Samie et al. (2018, (3.3b)) for the intersection of
tangents outside of ygp,

dependence of the outer peak, observed by Samie et al. (2018), appears to clash with the
choice of a constant y} in (2.7). A close look at figure 3 shows, however, that the location
yJOFP of the actual outer peak depends strongly on the slopes of the wall and overlap log laws
(2.5) and (2.9), as well as on how the transition between the two is fitted. This sensitivity
to fitting details is comparable to the sensitivity to measurement errors in experiments (see
also Appendix B).

The evolutions of the outer peak height (uu)gp and location y“OLP with Re;, obtained
from the present composite expansion (3.6), are shown in figure 5; (uu)gp, which is always
below (uu);r (2.7), s seen in panel (a) to be fully consistent with other experimental data,
as well as with the outer peak correlations 2.82 + 0.42In Re; and 0.33 4 0.63 In Re; of
Pullin et al. (2013), up to Re; values well above 100.

Panel (b) shows the location yJOFP vs Re;. In this panel, the uncertainty of the
experimental points is large and could be as high as 100 % at the lower Re; values.
Up to Re, = 10° the outer peak locations for both the data and the present composite
expansion are seen to be compatible with the correlation o Re%%” of Hultmark et al.
(2012). Samie et al. (2018, (3.3b)), on the other hand, give a correlation of 32.66Re(r)'27
for the intersection of two logarithmic tangents to the data, which is located outside
of the outer peak, and provides an upper bound on y“OLP. Together with the outer peak
location of the present composite expansion, which is well fitted by the ad hoc correlation
yJOFP = 1200 — 1900Re;0'06, the outer peak is firmly placed in the inner asymptotic region,
meaning that, in terms of the usual intermediate or overlap variable n = y* /Rei/ 2, the
outer peak approaches = 0 in the limit of Re; — oo.

5. Discussion and outlook
In conclusion, the first complete composite profile of (uu)™, based on the inner asymptotic

sequence {1, Ret_l/ 4, ...} proposed by CS2021, provides a rather satisfactory description
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of DNS and experimental (uu)™ profiles for Reynolds numbers between 103 and 10°, as
seen in figure 3. What is curious, however, is that CS2021 and Smits et al. (2021) fully

agree on the proportionality between the inner peak height (uu);;) and the coefficient

of (y™)? in the Taylor expansion of (uu)™ about the wall and even on the value of
their ratio, while completely disagreeing on the Reynolds number scaling of the two

quantities. Furthermore, the Rer_l/ 4 scale, or any other scale, apart from Re, I does not
appear naturally in the Reynolds stress transport equation for (uu)*. What is particularly
intriguing is that the exact production term for channel flow, P+ = (dU" /dy*)(1 —

dU* Jdy* — y* /Re,), does not vary as Rez /*, but has an inner asymptotic expansion
of the form Py (y©) + Re; P (y") + - - - (see Monkewitz 2021).

If the correct expansion parameter was indeed (1/Re;), clearly more than two terms
would be required in the inner expansion of (uu)t for a good approximation at the
Reynolds numbers of the DNS data in table 1, that is

N
()™ 2 f(yT) + GNRe T = F G + Y ha(yHRe" (5.1)
n=1
This is illustrated for the inner peak height in figure 6(a), which is figure 2 replotted
against Re; !, with the addition of the relatively simple fit

—1300 —15000 1.75 10*
(uu) = 7.6+ 1.9exp< 2 ) +exp< R ) =105 - ——+ O(Re;?),

er ér er
(5.2)

and its two-term Taylor expansion. This fit is seen to describe the Reynolds number
dependence of all the (uu);;, data included in figure 2 as well as the other correlations,

and its two-term Taylor expansion provides an excellent fit for Re; < 2.10*. Figure 6(b)
shows that the fit (5.2) divided by 46 is again an excellent match for the coefficient of
(y™)? in the Taylor expansion about the wall. However, one immediately notices that this
coefficient only reaches 0.228 instead of the 0.25 inferred by CS2021. This discrepancy
may well be due to the simplifying assumptions of CS2021. Actually, the ratio between the
production at y;;, ~ 15 and the turbulent transport at the wall in the DNS 1 of table 1 is
1.12, tantalizingly close to the ratio 0.25/0.228 = 1.10. Finally, the fact that the first two
terms of the Taylor expansion in (5.2) require a Re, in excess of 10* to provide a good
approximation of the full exponential fit is reminiscent of the behaviour of the indicator
function &+ = y*(dU* /dy™) in figure 12 of Monkewitz (2021), which starts to reach the
correct log-law plateau only for Reynolds numbers around 10°.

Beyond these speculations on scaling, which require more thought, the features of the
(uu)™ profiles, shown in figure 3, call for the following comments and conclusions:

(1) The analysis of the channel DNS profiles of table 1 in § 2 has demonstrated, that
the structure of the inner asymptotic expansion of (uu)™ does not change between
the wall and y* & 200, and supports the somewhat complex argument of CS2021
that (uu)™ remains finite in the limit of infinite Reynolds number. It has furthermore
demonstrated that the coefficient of (y*)? in the Taylor expansion of (uu)™ about
the wall and the inner peak height (uu);; at y* & 15 are proportional, or nearly so,
which has been fully confirmed by the data analyses of Hultmark & Smits (2021)
and Smits et al. (2021).

(ii) The detailed analysis of the transport equation for (uu)™ in §2 has shown that
the unlimited growth of (uu);; with In Re,, predicted by the attached eddy model

931 A18-11


https://doi.org/10.1017/jfm.2021.924

https://doi.org/10.1017/jfm.2021.924 Published online by Cambridge University Press

PA. Monkewitz

(@) -—
11 A
B *
S & o
< 9*00 +» SO .\:‘\A
L { ]
7 1
()
ol 025
P
b \
o 0201 o— ]
[5) L
o
O 0.15 x
0 51074 103
1/Re,

Figure 6. (a) Inner peak height (uu)?;, vs (1/Re;) with same data as in figure 2. Lines: (red) —, (2.4); (wide
grey) —, (5.2); (grey) - - -, two-term Taylor expansion of ‘grey’ fit; <—, lower end of the range of the atmospheric

inner peak data of Metzger & Klewicki (2001) at Re; = 8. 10°. (b) Coefficient of ( y+)2 in the Taylor expansion

of (uu)* about the wall: (red) e, DNS data 1, 4 and 5 of table 1; (red)

, (2.3); (wide grey) —, (5.2) divided

by 46; (grey) - - -, two-term Taylor expansion 0.228 — 380/Re; of ‘grey’ fit.

(iii)

(iv)

v)

(vi)

(Marusic & Monty 2019) is very unlikely. The possibility of an unlimited growth
of the outer peak with Re, appears equally unlikely, considering that the cross-over
location y ! from the wall log law (2.5) to the overlap log law not only scales on inner
units, but remains constant over the Re; range where laboratory data are available,
as seen in figure 3.

As discussed in § 4, the present composite profiles in figure 3 also match, within the
considerable uncertainty, the height and location of distinct outer peaks reported
in the literature, with the notable exception of some NSTAP data discussed in
Appendix B.

With both inner and outer peaks of (uu)t finite, a simple geometric
argument, already brought up by Monkewitz & Nagib (2015), rules out the
Reynolds-independent slope of the overlap log law in the attached eddy model (see
figure 3 in § 2 of the supplementary material). Due to its relatively simple structure,
it appears nevertheless useful, if parameters are adapted to the Reynolds number
range under consideration.

The switch over from the wall log law to the asymptotic overlap log law at a fixed
value of yf = 470 is reminiscent of the change of logarithmic slope from 1/0.398
to 1/0.42 at y© = 624, found by Monkewitz (2021) in the mean velocity profile
and tentatively interpreted as an opposite wall effect. A connection between the two
observations is conceivable, but the mechanism remains to be elucidated.

Also open is the question whether the (uu)™* composite expansion developed here is
universal or not, excluding of course the wake region in ZPG TBLs. For the near-wall
region in figure 1, the present expansion relies entirely on channel DNS, while at
the higher Re., the outer part of the Superpipe profiles of Hultmark er al. (2012)
has helped guide the expansion. The close correspondence in figure 3 between the
channel DNS and Superpipe profiles for Re; of 1985 and 5411 suggests that the
differences between channel and pipe are small. It would, however, be surprising
if there were no differences at all, at least in the outer (uu)* expansion, as there
are strong indications (Monkewitz 2021) that the outer mean velocity expansions, in
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particular the Karmdn ‘constants’, are different for channel and pipe. In ZPG TBLs,
finally, (uu)™ also appears to remain close to channel and pipe, up to and including
the overlap layer. However, the present asymptotic expansion underestimates the
inner peak heights in the atmospheric data of Metzger & Klewicki (2001), indicated
in figure 6(a) by an arrow, but no attempt has been made here to untangle the possible
reasons.

(vii) Finally, it must be reiterated that determining the slopes of log laws, which are
inherently asymptotic laws, by fitting tangents to finite Reynolds number data is
hazardous. As illustrated in figure 3, only at the highest NSTAP Re, of around 10°
does the overlap log law start to go through the data! This is the same conclusion
as the one reached by Monkewitz (2021, figure 12) and Spalart & Abe (2021, see
their extrapolation in figure 3b), who found that the mean velocity indicator function
yT(dU™ /dy™) starts to reach the correct log-law plateau only beyond a Re; of
around 10°. Up to such high Re,, the development of proper asymptotic expansions
is indispensable.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2021.924.
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Appendix A. The fit for the near-wall (uu)* profile and other fits

Inspired by the methodology of Musker (1979) for the mean velocity fit, the O(1) part
of the inner (near-wall) (uu)™ Reynolds stress profile is approximated analytically by
the integral of dM>/dy™ = 2poy™[p1 + p2(y)?1lp1 + p3(y)* + (yH)*1 ™!, where the
subscript 2’ indicates that the leading term of the Taylor expansion of M around y+ = 0
is o« (y1)2. The result of the integration is

Po(2p1 — pap3) p3+2(yH)?
Ma(y"; po, p1.p2, p3) = T arctan—2
4py — D3 4pq — D3
p3(y")? (y+)4}
+ b
P1 P1

with the parameters py - - - p3 determined by the boundary conditions. For large y*, M
asymptotes to the log law

pP3
— arctan ————
Va1 = p3

(A)

pop2
+ 2

1n|:1+

T
Ma(y" > 1) = 2 @In(") = In(p)} + -2 § 7 — aretan <=2,
4py — p3 Va1 —p3
(A2)
and near the wall it has the Taylor expansion
po(p2 — 2p3)
Mo(yt — 0) =po(yH)* + T(W‘ o (A3)
931 A18-13
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Like the original mean velocity Musker profile, the profile (A1) misses a ‘hump’ centred
around y© = 0(10). As in Monkewitz (2021), it is modelled by the ‘hump’ function of
Nagib & Chauhan (2008)

H(y"; hy, ha, h3) = hy expl—ha In*(yT /h3)]. (A4)

Finally, the smooth transition between two logarithmic laws with different slopes in a
variable 7 is fitted by the corner function

m
' _c n 0 for n <« ne¢
C(’?» 77(," c, m) - m hl |:1 + (nc) } - { C[]n 77 - ln nc] for 77 >> 77(3 (AS)

with the rounding of the corner at 1. governed by the parameter m.

Appendix B. Survey of the effect of wall proximity on NSTAP measurements

The debate on whether near-wall statistics in turbulent wall-bounded flows are universal
or not depends crucially on experimental data at high Reynolds numbers. Focussing
on the streamwise Reynolds stress, the problem is exemplified by the discrepancies
between measured inner peak heights (uu);} in figure 2. Of particular interest is the
marked difference between the CICLoPE data of Fiorini (2017) and the Superpipe data
of Hultmark et al. (2012), both corrected for spatial probe averaging. Since the corrections
(shown in the figure for the CICLoPE data) are rather large and the probes very different
(standard hot-wire vs NSTAP, described in Vallikivi & Smits 2014), it has not yet been
possible to explain the origin of the discrepancy.

To advance the discussion, the NSTAP measurements in two different ZPG TBL
facilities are compared, one in the Melbourne wind tunnel at atmospheric pressure by
Samie et al. (2018) and the other in the pressurized Princeton facility by Vallikivi et al.
(2015) (available from https://smits.princeton.edu). The comparison is shown in figure 7
and reveals a significant difference between the two (uu)™ data sets below a y* of the
order of 10?. Looking for corresponding differences of operating parameters in the two
set-ups, the physical wall distance of the sensing element is the most conspicuous. In
the pressurized Princeton facility, a wall distance of 300 wm corresponds to y* of 90
and more, indicated in figure 7 by vertical dashed lines for the three Re; values. In the
Melbourne tunnel, the same 300 wm correspond to y™ < 17 for the similar Re, values of
Samie et al. (2018). Lacking any other credible candidates, an explanation based on the
difference between length scales D /i, is proposed.

The fact that the 300 pm wall distance, below which the discrepancies emerge, is much
larger than the NSTAP sensing element, which is a ‘flat plate’ of roughly 0.1 pm thickness
and 1 pwm chord, suggests that the ‘culprit’ may be the NSTAP silicon support structure,
with overall dimensions of 4 x 2.1 mm and a thickness increasing downstream to 0.5 mm.
The difference between the (uu)™ of Samie et al. (2018) and those of Vallikivi et al. (2015)
in figure 7 is seen to reach about one for y* in the range of 20-30. In the same region, the
mean velocities of Vallikivi et al. (2015) are clearly above the DNS profile of Sillero et al.
(2013), again with a difference of order unity, while those of Samie et al. (2018), not shown
in the figure for clarity, are slightly below the DNS. This behaviour suggests a blockage
effect of the NSTAP probe body when the volume between the two wedge shaped silicon
sensor supports is progressively closed off by the wall, leading at the sensor location to a
mean flow acceleration at the expense of turbulence intensity.

For comparison, the deviation of the Superpipe NSTAP data of Hultmark et al. (2012)
from the composite profile (3.6) is shown in figure 8 and the similarity with the deviations
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Figure 7. Comparison of NSTAP profiles of (uu)™ and U™ in different ZPG TBL facilities. Solid lines: (uu)™
of Samie ez al. (2018) at Re; = 10 000 (blue), 14 500 (green) and 20 000 (red); vertical solid lines: y* locations
corresponding to a wall distance of 300 pwm. Symbols: (uu)™ of Vallikivi, Hultmark & Smits (2015) at Re, =
8260 (blue A), 14 700 (green 4) and 25 000 (red e) and corresponding U™ profiles (open symbols); vertical
dashed lines: y™ locations corresponding to wall distance of 300 um. x: local minimum and outer maximum
of (uu)™ from figure 43 of Fernholz & Finley (1996) for Re; = 18 000 (Res = 57 720); - - -, U™ profile of
Sillero et al. (2013) for Re; = 1989; —, (1/0.384) In Re; + 4.17.

) canh
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Figure 8. Difference between the composite expansion (3.6) and eight Superpipe NSTAP profiles of (uu)™
(Hultmark et al. 2012), from Re; = 98187 to 1985 (available from https://smits.princeton.edu); colour
sequence red, pink, violet, light blue, light green, dark green, orange, brown. Vertical - - -, y* values
corresponding to 300 pm wall distance for each Re.

between the Princeton and Melbourne ZPG TBL data, shown in figure 7, is obvious.
This supports the idea that the (uu)™ profiles in pipes, ZPG TBLs and most probably
channels are very similar, possibly even identical, well into the overlap region beyond y}
(# in figure 3). However, it should be noted that the NSTAP pipe data in figure 8 are
being compared with a composite expansion developed mainly on lower Reynolds number
channel DNS and that the suspected origin of the discrepancy — near-wall blockage by the
NSTAP silicon probe support, likely also dependent on its angle of attack — will have to
be tested experimentally.
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