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1. Introduction. For A an associative algebra with identity over a field 
K, [A : K] < » , and d an integer, we define g^{d) to be the number of 
inequivalent indecomposable A-modules of degree d over K. Following (6), 
we define A to be of finite representation type if 

H g A ( d ) < oo. 

A is said to be of bounded representation type if there exists d0 such that 
£A(^) = 0 for d > d0; A is of unbounded representation type if not of bounded 
type. We shall say that A is of strongly unbounded type if g^{d) = oo for an 
infinite number of integers d. See (6) and (7) for a number of conditions 
showing algebras to be of strongly unbounded type. 

Now let A be a subalgebra of an algebra T with [T : K] < oo also. In this 
paper we give conditions under which the representation type of A can be 
related to that of T. 

To do this, we must have a process for inducing T-modules from A-modules 
and conversely. Such processes date back to Frobenius (in the case of group 
representations), have been studied extensively by D. G. Higman (4), and 
are used by Cartan and Eilenberg (2, II, § 6) under the heading "change of 
rings." We shall consider conditions on the algebra Y and the subalgebra A 
under which every indecomposable T-module is obtained from an indecom­
posable A-module or conversely. In this way we may relate their representation 
types. 

It should be noted that, unlike (2) and (4), we do not require that the 
identity of A also be the identity of T. This allows consideration of a wider 
class of subalgebras. Also, for M to be a A-module we do not require that the 
identity 1 G A act like the identity on M. By an indecomposable A-module M, 
however, we mean indecomposable and non-trivial (that is, \M ^ (0)). With 
these two assumptions, an indecomposable A-module M does have the property 
that \m = m for all m 6 M, for otherwise, a trivial direct summand could be 
split off. 

2. Algebras and subalgebras. Let M be a two-sided (associative) A-module. 
It is convenient to regard M as a left Ae-module, where A6 = A ®K A' and A' 
is anti-isomorphic to A (2, IX, §3). Thus if A is a subalgebra of T then T is a 
left Ae-module and A is a Ae-submodule of T. 
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THEOREM 1. If A is a subalgebra of Y such that Y = A + C (Ae-direct sum), 
and if A is of {strongly) unbounded type then so is Y. 

Proof. Let M be an indecomposable A-module then Y ® A M is a T-module 
(called the induced module I(M) in (4) or the covariant ^-extension of M in 
(2, II, §6)) which in turn can be considered as a A-module. By the assumptions 
on A and I\ r ® A M = (A + C) ®AM = A ®AM + C ®AM = M + C ®AM 
(A-direct sum). For the last equality we need the fact that A has an identity 
which acts as an identity on M. This follows from the indecomposability of 
M. 

We then have that Y (g) AM contains an indecomposable T-direct summand 
P(M) such that [M : K] [Y : K] > [P(M) : K] > [M : K]. To exhibit P(M), 
first decompose Y ®A M into indecomposable T-direct summands and then 
decompose each of those into indecomposable A-direct summands. By the 
Krull-Schmidt theorem (5, V, §13) one of these A-direct summands is M. 
P(M) is the T-direct summand which contains M. 

Thus if A is of unbounded type so is Y. If A has an infinité number of inde­
composable modules, (Mt) i Ç I, all of degree d over the field K, then each 
of the T-indecomposable modules P(Mt) can be isomorphic to no more than 
a finite number of P(Mf). Thus if A is of strongly unbounded representation 
type so is Y. 

In the proof of Theorem 1, we could have used the module HomA(T, M) 
(called the produced module in (4), the contra variant ^-extension of M in 
(2, II, §6)) instead of r ®A M. Under the assumptions of Theorem 1, 
HomA(r, M) = HomA(A, M) + HomA(C, M) (A-direct). If \M = M (for 
example, M indecomposable) then HomA(A, M) = M. Again using the Krull-
Schmidt Theorem, there exists a T-indecomposable module P'(M) with the 
same properties as P(M). 

There are several occasions when a subalgebra A of Y will satisfy the hypo­
theses of Theorem 1. For instance, if H is a subgroup of a finite group G, then 
the subgroup algebra A is a Ae-direct summand of the group algebra Y. The 
Ae-complement of A in Y has a i£-basis consisting of group elements not in the 
subgroup. Theorem 1 for group algebras and subgroup algebras was proved by 
Higman (3). 

Another important case where the conditions of Theorem 1 are satisfied is 
when e is an idempotent of Y and A is taken to be eYe. Here r = A + C (Peirce 
decomposition) is Ae-direct. This case was pointed out to us by Higman and is 
contained in the following: 

COROLLARY 2. If e is an idempotent of Y and eYe is of (strongly) unbounded 
type then so is Y. 

A restricted version of Corollary 2 is used in (6) and (7) in the case that 
eYe is the basic algebra of Y. 

Higman also noted that the condition T = A + C(Ae-direct sum) of 
Theorem 1 is equivalent to the condition eYe = A + eCe (Ae-direct sum) 
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where e is the identity of A. When these conditions hold and A is of (strongly) 
unbounded type then both eTe and V are also of (strongly) unbounded type 
by Theorem 1. 

Theorem 1 is also applicable to the tensor product of two algebras. 

COROLLARY 3. If Y = A 0 ^ 2 , and either A or 2 is of {strongly) unbounded 
type then so is Y. 

Proof. We need only note that A ®jK: 1 = A is a subalgebra of T and 
n 

r = X) k®KcLi 
i 

(Ae-direct sum) where (at) is a i£-basis for 2 and a\ = 1 in S. 
Now suppose that the subalgebra is of finite (bounded) type. We consider 

conditions under which the containing algebra is also of finite (bounded) type. 
The following theorem gives one such condition. 

THEOREM 4. If A has an identity e and Ye ®AeY = Y + C (Ye-direct sum) 
then if A is of finite (bounded) type so is Y. 

Proof. Let M be an indecomposable T-module, YM = M. Consider M as a 
A-module and form the T-module Ye ®AM. Then Ye ® A M = Ye ® A eM = 
Ye ®A (er ® r M) = (Ye <g)A eY) ® r M = (T + C) ® r M = M + C ® r M 
all as T-modules. The first equality results from the following: Ye ® A Af0 = (0) 
where M0 is the A-sub-module of M annihilated by e and Ye ®A M = 
Te ® eAf + Te ® A M"0. The other equalities follow from distributivity and 
associativity of the tensor product and from the assumptions of the theorem. 

Thus, under the assumptions of the theorem, we have shown that every 
indecomposable T-module M appears as a direct summand of a module of the 
form Ye ®A eM, where eM is a A-module (on which e acts as identity). 
Further, if eM = eM' + eM" (A-direct sum) then Ye ®AeM = Ye ®KeM' + 
Ye ®Ae7kf// (T-direct sum). Hence every indecomposable T-module appears as 
a direct summand of some Ye ® A M where M is an indecomposable A-module. 
Note also that [Te ®A M" : K] < [Ye : K] [M : K] Thus if A is of finite 
(bounded) type so is Y. 

The above proof could have been altered to use the module 

HomA(Ye,eM) instead of Ye ®A eM. 

The conditions of Theorem 4 are difficult to apply because the structure of 
the re-module Ye ®A eY is complicated. We do, however, make use of this 
condition in the following: 

THEOREM 5. If S is a separable algebra over the field K, then A and A ® x S 
are of the same representation type. 

Proof. By corollary 3, if A is of (strongly) unbounded type so is A ®# S, 
regardless of 2. 
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If A is of finite (bounded) type, we apply the condition of Theorem 4. Note 
that here the identity of A ® 1 = A is also the identity of A ®K 2. From 
(2, IX, 7.10), a necessary and sufficient condition that 2 be separable is that 
the exact sequence 

( 0 ) - > C ^ 2 ® , S ' A 2 ^ ( 0 ) 
split, where p(a ® /3') = a/3. This means that the 2e-module 2 ®K 2 (which 
is 2e-isomorphic to 2 ®K 2') can be written as a 2e-direct sum 2 + C. Now 
tensor-multiply over K the Ae-module A = A ® A A with 2 ®K 2 = 2 + C 
to obtain the Ae ®K 2e-modules 

(A ®A A) ®K 2 0 * 2 = A ®* 2 + A ®K C. 

But Ae 0 ^ 2 e = Te, the left hand side of the above equation is Te-isomorphic 
with (A ®K 2) <g)A (A ®K 2) or V ®A T, and the right hand side is Te-iso-
morphic with T + A ®K C. The condition of Theorem 4 is satisfied and T is 
of finite (bounded) type. 

3. Fields. In the following we consider the representation type of the 
tensor product of two fields. Algebras obtained in this way are commutative. 
In (6), it is shown that for A a commutative i£-algebra, [A : K] < oo , where 
N is the radical of A and A/N is a direct sum of fields isomorphic to K, A is of 
finite type if and only if A is the direct sum of ideals At where A* = K[X]/(XH), 
X an indeterminant over K. If K is infinite and A is not of finite type then A 
is of strongly unbounded type. 

In the following, the degree of any containing field over the base field is 
always finite. 

LEMMA 1. If J is a field purely inseparable over the field.K and J cannot be 
obtained from K by the adjunction of a single element then J ®K J is of strongly 
unbounded type. If J — K(a) then J ®K J is of finite type. 

Proof. In either case we have the mapping p : J ®K J —> J, p(a ® /3) = afi 
which gives rise to the exact sequence 

The ideal N, generated by elements of the form n = a ® 1 — 1 ® a, is the 
radical of J ®K J because 

npa = 0, [J:K] = p\ 

p the characteristic of K. Thus J ®K J, considered as a /-algebra is of the 
form considered in (6). 

If / is not obtained by a single adjunction then K and J are infinite (1, 
Theorem 26) and for each a in J there exists b < a such that aph belongs to 
K. Let m be the largest of these #'s, m strictly < a. Thus [N : J] = pa — 1 
and for every n in Ny 

npm = 0. 
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Hence J ®K J cannot be isomorphic to 

J[XVW) 
so it is of strongly unbounded type. / ®K J is also of strongly unbounded type 
when considered as a i£-algebra. 

In the case J = K(a), the radical element a ® 1 — 1 ® a = n, non-zero 
powers of which are linearly independent, generates N. For the powers ar(r = 
1, . . . , pa) form a i£-basis for J and the elements a1 ® aj(i, j = 1, . . . , pa) 
form a i£-basis for / ®K J. But 

nva~x = (a ® 1 - 1 ® af*-1 = a**'1 ® 1 + * + 1 ® apa~\ 

where * indicates a sum of terms of the form ta1 ® aj with both i and j greater 
than 1. This is not zero so in this case 

J®KJ= J[X]/{Xva) 

and considered as a /-algebra is of finite type. Both K and J are subalgebras 
in the centre of J ®K J and any /-linear transformation is also i£-linear so 
J ®K J considered as a i£-algebra is also of finite type. 

Using Lemma 1 and the structure theory for fields, we may drop the purely 
inseparable condition. 

LEMMA 2. If F can be obtained from K by a single adjunction then F ® 
of finite type. If not, F ®K F is of strongly unbounded type. 

Proof. Let / be the field of elements of F purely inseparable over K, then F 
is separable over / , J purely inseparable over K. F can be obtained by a single 
algebraic adjunction if and only if / can be so obtained. This is seen by using 
(1, Theorem 26) and the fact that every field between F and K is the unique 
composite of a field separable over K and a field purely inseparable over K 
(that is, between / and K). 

Hence by Lemma 1 J ®K J is of strongly unbounded type if F is not ob­
tainable by a single adjunction, of finite type if F can be so obtained. But by 
Theorem 5, J ®KJ, (J ®KJ) ®jF = J ®K F, and F ® j (J ®K F) = 
F ®K F are all of the same representation type because F is separable over / . 

Combining Lemmas 1 and 2, we prove the following: 

THEOREM 6. Let 0 > L, F > K, L r\ F = J all be fields. If L, F are separ­
able over I and J is obtained from K by a single adjunction then L ®K F is of 
finite type. If I is not obtained from K by a single adjunction then L ®K F is of 
strongly unbounded type. 

Proof. In the first case / ®K J is of finite type by Lemma 2. Using Theorem 
5, the algebras I ®KJ, (J ®K J) ® J F = J ®K F and L ®j (J ®K F) = 
L ®K F are all of the same (that is, finite) type because L and F are assumed 
separable over J". 
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In the second case / ®K J is of strongly unbounded type by Lemma 2, thus 
so are the algebras / ®K F and L ®K F by Corollary 2. 

We believe that Theorem 6 could be sharpened to read "L ®K F and 
/ ®K J are of the same representation type," however, in the case J ®K J is of 
finite type, the condition of Theorem 5 is too weak to be used without addi­
tional assumptions on L and F. 
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