CHARACTERIZING RINGS BY A DIRECT DECOMPOSITION PROPERTY OF THEIR MODULES

DINH VAN HUYNH[™] and S. TARIQ RIZVI

(Received 23 June 2003; revised 27 January 2005)

Communicated by J. Du

Abstract

A module M is said to satisfy the condition (\wp^*) if M is a direct sum of a projective module and a quasi-continuous module. In an earlier paper, we described the structure of rings over which every (countably generated) right module satisfies (\wp^*) , and it was shown that such a ring is right artinian. In this note some additional properties of these rings are obtained. Among other results, we show that a ring over which all right modules satisfy (\wp^*) is also left artinian, but the property (\wp^*) is not left-right symmetric.

2000 Mathematics subject classification: primary 16D70, 16P20, 16D50.

1. Introduction

Throughout this note, all rings are associative with identity, and all modules are unitary modules. Let M be a right module over a ring R. The Jacobson radical and the injective hull of M are denoted respectively by J(M) and E(M). For a module M consider the following conditions:

(C₁) Every submodule of M is essential in a direct summand of M.

 (C_2) Every submodule isomorphic to a direct summand of M is itself a direct summand.

(C₃) If A, B are direct summands of M with $A \cap B = 0$, then $A \oplus B$ is a direct summand of M.

A module M is defined to be a *CS module* (or an *extending module*) if M satisfies condition (C₁). If M satisfies (C₁) and (C₂), then M is said to be a *continuous module*. A module M is called *quasi-continuous* if it satisfies (C₁) and (C₃).

^{© 2006} Australian Mathematical Society 1446-7887/06 \$A2.00 + 0.00

Let *M* be a module. A module *N* is called *M*-injective if every homomorphism of any submodule $L \subseteq M$ to *N* can be extended to a homomorphism of *M* to *N*. A module *N* is called *quasi-injective* (or *self-injective*), if *N* is *N*-injective.

If M is a module of finite composition length, we denote its length by l(M).

Following [5], a module M is said to satisfy the condition (\wp^*) if M is a direct sum of a projective module and a quasi-continuous module. A ring R is called a *right* \wp^* -semisimple ring, if every right R-module satisfies (\wp^*). Rings whose countably generated right modules satisfy (\wp^*) were characterized in [5, Theorem 7]. These rings are exactly right artinian rings over which every finitely generated right module is a direct sum of a projective module and a quasi-injective module (and in particular, are also right \wp^* -semisimple). In this note we improve this result by showing:

(1) Every right \wp^* -semisimple ring is left artinian.

(2) A right \wp^* -semisimple ring is not necessarily left \wp^* -semisimple.

(3) In general, the direct sum decomposition of R in [5, Theorem 7 (III)] is not a ring-direct sum decomposition.

(4) Finally we give a correction that the right ideal B of R is not necessarily a CS right R-module as claimed in [5, Theorem 7 (III) (ii) and Lemma 11].

Thus, combining with [5, Theorem 7], we describe the structure of right \wp^* -semisimple rings in the following theorem.

THEOREM 1.1. For a ring R, the following conditions are equivalent:

(I) Every countably generated right R-module satisfies (\wp^*) .

(II) R is right artinian and every finitely generated right R-module satisfies (\wp^*).

(III) R is a right and left artinian ring with Jacobson radical square zero; $R_R = A \oplus B \oplus C$, where $(B \oplus C)A = BC = CB = 0$, and B_R and C_R are nonsingular right ideals of R. In general, this direct sum is not a ring-direct sum. Moreover,

(i) $A_R = A_1 \oplus \cdots \oplus A_l$, where each A_i is uniform, $E(A_i)$ is projective, and $l(E(A_i)) \leq 2$.

(ii) $B_R = B_1 \oplus \cdots \oplus B_m$, where each B_j is a uniform module of length one or two; the injective hull E(S) of each minimal submodule S of B_R has length three. Moreover, E(S)/S is a direct sum of two simple modules, in particular E(S) = xR + yR for some $x, y \in E(S)$. If $B \neq 0$, then there exist at least two (uniform) direct summands B_j and $B_{j'}$ of B with $l(B_j) = 1$, $l(B_{j'}) = 2$ and $B_j \cong Soc(B_{j'})$. Furthermore, B_R is not necessarily CS and has the structure described in Proposition 3.2.

(iii) $C_R = C_1 \oplus \cdots \oplus C_q$, where each C_k is an indecomposable module of length one or three; the injective hull of each minimal submodule of C_R is of length two and not projective. If $C \neq 0$, there exist at least two C_k , say C_1 , C_2 with $l(C_1) = 1$, $l(C_2) = 3$ and C_1 is embedable in Soc (C_2) . Characterizing rings

(IV) Every right R-module is a direct sum of a projective module and a quasiinjective module. In particular, R is right \wp^* -semisimple.

In general, right \wp^* -semisimple rings need not be left \wp^* -semisimple.

2. The proof of Theorem 1.1

We refer to [5, Theorem 7] for the stucture of a right \wp^* -semisimple ring. Hence, in addition to [5, Theorem 7], for a right \wp^* -semisimple ring *R* we need to prove:

(1) R is left artinian.

(2) The direct sum decomposition $R_R = A \oplus B \oplus C$ in [5, Theorem 7 (III)] is not necessarily a ring-direct sum decomposition.

(3) R is not necessarily left \wp^* -semisimple.

(4) In general, B_R in (ii) of [5, Theorem 7 (III)] is not CS.

PROOF. (1) By [5, Theorem 7], R is right artinian, and for any right R-module M, $M = P \oplus Q$, where P_R is projective, and Q_R is quasi-injective. By [1, Theorem 27.11], P is a direct sum of cyclic modules, each of which is isomorphic to some eR with a primitive idempotent $e^2 = e \in R$. As R is right artinian, $Q = \bigoplus_{i \in I} U_i$, where each U_i is uniform and isomorphic to the quasi-injective hull of some simple right R-module (compare with [7]). By [5, Theorem 7], each $E(S_i)$ is 2-generated. But, as a right artinian ring, R has only finitely many non-isomorphic simple right R-modules, and finitely many non-isomorphic indecomposable projective right R-modules. It follows that R has only finitely many non-isomorphic indecomposable right R-modules, or in other words, R is a ring of finite representation type. Thus it is well-known that R is left artinian.

(2) We consider the following example.

Let \mathbb{C} and \mathbb{R} be the fields of complex numbers and real numbers, respectively. Let $V = \{\begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} \mid y \in \mathbb{C}\} \subset \{\begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \mid x, y \in \mathbb{C}\}, K = \{\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \mid x \in \mathbb{C}\}, \text{ and } F = \{\begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \mid x \in \mathbb{R}\}.$ Then V is a K-bialgebra with dim $(V_K) = \dim(_K V) = 1$, dim $(V_F) = \dim(_F V) = 2, V^2 = 0$, and KV = VK = FV = VF = V. Notice that $K \cong \mathbb{C}, F \cong \mathbb{R}$, and F is a subfield of K with dim $(K_F) = 2$. We consider the ring

$$R = \begin{pmatrix} K & V & 0\\ 0 & K & V\\ 0 & 0 & F \end{pmatrix}$$

and aim to show first that R is a right \wp^* -semisimple ring.

Matrix rings of this type are very useful in describing the structure of some other interesting classes of rings, see [6].

Let

$$L_1 = \begin{pmatrix} K & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad L_2 = \begin{pmatrix} 0 & V & 0 \\ 0 & K & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad L_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & V \\ 0 & 0 & F \end{pmatrix}.$$

Then $_R R = L_1 \oplus L_2 \oplus L_3$, a direct sum of three local left ideals with $l(L_1) = 1$, $l(L_2) = l(L_3) = 2$. In particular, R is left serial. Moreover, $R/J(R) \cong K \oplus K \oplus F$, that is, commutative. Hence by [3, Theorem 3.2], the injective hull of every simple right R-module is uniserial, that is, its lattice of submodules is linearly ordered by inclusion. Let S be a simple right R-module, and let E(S) be the injective hull of S. As $J(R)^2 = 0$, we have $E(S)J(R) \subseteq S$. This shows that the uniserial module E(S)/S is semisimple, hence it is zero or simple. Therefore $l(E(S)) \leq 2$.

$$A_{1} = \begin{pmatrix} K & V & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad C_{1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & K & V \\ 0 & 0 & 0 \end{pmatrix}, \quad C_{2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & F \end{pmatrix}$$

Then A_1 is injective, because $l(A_1) = 2$. Moreover, C_1 and C_2 are nonsingular right ideals, C_1 has length 3, and uniform dimension 2. Each simple submodule of C_1 is isomorphic to C_2 .

Write $\text{Soc}(C_1) = S \oplus T$ where S, T are minimal right ideals. Let T^* be a maximal essential extension of T in C_1 , that is, T^* is a closure of T in C_1 . If $l(T^*) > 1$, then $T^* \oplus S = C_1$, a contradiction. Hence $l(T^*) = 1$, or equivalently, $T^* = T$, that is T is a closed submodule of C_1 . Therefore, C_1/T is uniform (compare with [2, Section 5.10 (1)]), and it has length 2. Whence C_1/T must be injective, and since S embeds in C_1/T , we have $E(S) \cong C_1/T$. Moreover, C_1/T is not projective, because otherwise T would split in C_1 . A similar consideration yields that C_1/S is injective, uniform, not projective, $l(C_1/S) = 2$ and $E(T) \cong C_1/S$. It follows that $E(C_2)$ is also not projective, and $l(E(C_2)) = 2$.

Set $A = A_1$, $C = C_1 \oplus C_2$. Then $R = A \oplus C$ and CA = 0. Thus R is a ring of Theorem 1.1 with B = 0, but $AC \neq 0$. This proves (2).

(3) We consider the left side of the above right \wp^* -semisimple ring R. Let L_i be as before. It is easy to check that L_3 is a two-sided ideal of R, for which we have

$$R/L_3 \cong \begin{pmatrix} K & V \\ 0 & K \end{pmatrix} \cong \begin{pmatrix} K & K \\ 0 & K \end{pmatrix}.$$

It follows that $\begin{pmatrix} 0 & V \\ 0 & K \end{pmatrix}$ is an injective left ideal of R/L_3 . Hence $(L_2 + L_3)/L_3 \cong (L_2)$ is an injective left R/L_3 -module. Therefore L_2 is a quasi-injective left ideal of R.

Characterizing rings

We aim to show that it is even an injective left *R*-module. It is obvious that L_2 is L_1 -injective. Let

$$T = \begin{pmatrix} K & V & 0 \\ 0 & 0 & V \\ 0 & 0 & 0 \end{pmatrix}.$$

Then T is an essential left ideal of R. As $V^2 = 0$, it is clear that $T \operatorname{Soc}(L_3) = 0$. This means that $\operatorname{Soc}(L_3)$ is a singular left ideal of R. As L_2 is a nonsingular left ideal of R, there is no nonzero map from submodules of L_3 to L_2 . This shows that L_2 is L_3 -injective. Thus by [1, Section 16.13 (2)], L_2 is $(L_1 \oplus L_2 \oplus L_3 = R)$ -injective, as claimed.

Now if R is left \wp^* -semisimple, so applying [5, Theorem 7] for left \wp^* -semisimple rings we see that L_3 must be injective. This means that R is a direct sum of a simple left ideal and two injective uniform left ideals of length 2. By [2, Section 13.5 (e), (g)], R must be right serial also. However, this is impossible because the local right ideal C_1 defined in the proof of (2) is not uniform. Thus R is not left \wp^* -semisimple, completing the proof of (3).

We prove (4) by giving a more general observation on CS modules in the next section. In particular, in Proposition 3.2, we will give more information on the structure of the right ideal $B \subseteq R$ of Theorem 1.1.

3. A correction

The conclusion in (ii) of [5, Theorem 7 (III)] and [5, Lemma 11], that B_R is CS, is unfortunately incorrect. This mistake arose from an incorrect conclusion in the proof of [5, Theorem 7] on page 144, line 6, that $\operatorname{ann}_R(w) = \operatorname{ann}_R(ur) \cap \operatorname{ann}_R(vs)$ if w = ur + vs'. Fortunately, this mistake does not affect the correctness of other parts of Theorem 1.1, because the CS conclusion for B_R was not used anywhere in the remainder of the proof of [5, Theorem 7]. In (a) of the proof of [5, Lemma 13] the fact that B_R is a direct sum of uniform modules was used, but this property follows from the definition of B_R and not because B_R was CS.

For the purpose of showing that the right ideal B of R in [5, Theorem 7] is, in general, not a CS right R-module, we first prove a general result, which might also be of interest on its own.

For a module M_R over a ring R we denote by $\sigma[M]$ the full subcategory of Mod-Rwhose objects are submodules of M-generated modules. For $N \in \sigma[M]$, the injective hull of N in $\sigma[M]$ is denoted by $E_M(N)$. It is known that $E_M(N)$ is M-injective and for each nonzero proper submodule T of $E_M(N)$, T is not M-injective. This fact is used in the proof of Lemma 3.1 below. For more on basic properties of $E_M(N)$ we refer to [8, Section 15]. LEMMA 3.1. For a right module M_R over a ring R, let $M_R = M_1 \oplus \cdots \oplus M_t \oplus M_{t+1} \oplus \cdots \oplus M_n$, such that each M_i is uniform, $l(M_1) = \cdots = l(M_i) = 2$, $(t \ge 1)$, and $l(M_{i+1}) = \cdots = l(M_n) = 1$. Assume further that $Soc(M_i) \cong Soc(M_j)$, and $l(E_M(M_i)) > 2$ for all $i, j = 1, 2, \ldots, n$. Then M is a CS module if and only if t = 1.

PROOF. Let t = 1 and let V be a closed submodule of M. If $M_1 \cap V = 0$, then by modularity we have $M_1 \oplus V = M_1 \oplus V'$ where $V' = (M_1 \oplus V) \cap (M_2 \oplus \cdots \oplus M_n)$. Since V' is a direct summand of $M_2 \oplus \cdots \oplus M_n$, it is clear that $M_1 \oplus V$ is a direct summand of M. It follows that V is a direct summand of M. Now we consider the case $U = M \cap V \neq 0$. If $U = M_1$, then by modularity, we conclude that V is a direct summand of M. If $U \neq M_1$, then U is a minimal submodule of M_1 . Let S* be the closure of U in V. As V is closed in M, S* must be closed in M (see, for example, [2, Section 1.10 (4)]). Hence $l(S^*)$ is at least 2. Since $S^* \cap (M_2 \oplus \cdots \oplus M_n) = 0$, we have $S^* \oplus (M_2 \oplus \cdots \oplus M_n) = M$. From here we conclude as before that V is a direct summand of M. Thus M is CS.

Conversely, assume that t > 1. We use an idea in the proof of [4, Theorem 6] to show that M is not CS. Suppose on the contrary that M_R is CS. Then for j = 2, ..., t, $M_1 \oplus M_j$ is a CS module. Hence by [2, Section 7.3 (ii)], M_1 is M_j -injective. Let S_i be the socle of M_i . Then M_1 is S_i -injective for any i.

Let $\varphi : S_1 \to S_j$ be an isomorphism, and let $L = \{x + \varphi(x) \mid x \in S_1\}$. Then L is a minimal submodule of $M_1 \oplus M_j$. There are two possibilities:

(a) L is closed in $M_1 \oplus M_j$. Hence L is a direct summand of $M_1 \oplus M_j$. This is impossible by the Krull-Schmidt Theorem (compare with [1, Section 12.9]).

(b) *L* is not closed in $M_1 \oplus M_j$. Then the closure *L'* of *L* in $M_1 \oplus M_j$ has length at least 2. As $l(M_1 \oplus M_j) = 4$, we have $M_1 \oplus M_j = L' \oplus M_j = M_1 \oplus L'$. It follows $M_1 \cong M_j$. Thus by [1, Section 16.13 (2)], M_1 is $(M_1 \oplus \cdots \oplus M_t \oplus M_{t+1} \oplus \cdots \oplus M_n = M)$ -injective, a contradiction to the assumption that $l(E_M(M_1)) > 2$.

The following example shows the existence of a ring R (= B) of Theorem 1.1 with A = C = 0, but R is not right CS.

EXAMPLE 1 (compare with [4, Example 3.2]). Let

$$R = \begin{pmatrix} \mathbb{C} & 0 & \mathbb{C} \\ 0 & \mathbb{C} & \mathbb{C} \\ 0 & 0 & \mathbb{C} \end{pmatrix}.$$

Then R is a right (and left) SI ring, that is a ring over which every singular right (left) R-module is injective (see [3, Chapter 3]). Let

$$e_{11} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e_{33} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Then R can be written in the form $R = e_{11}R \oplus e_{22}R \oplus e_{33}R$. It is clear that

$$e_{33}R \cong \operatorname{Soc}(e_{11}R) \cong \operatorname{Soc}(e_{22}R), \quad l(e_{11}R) = l(e_{22}R) = 2.$$

Moreover,

$$E(e_{11}R) = \begin{pmatrix} \mathbb{C} & \mathbb{C} & \mathbb{C} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

and hence $l(E(e_{11}R)) = 3$. Thus R is a ring of Theorem 1.1 with A = C = 0. However, by Lemma 3.1, R is not right CS.

In light of Lemma 3.1, we can give some more information on the structure of the right ideal B of R in Theorem 1.1.

PROPOSITION 3.2. Let R be a ring of Theorem 1.1 and B be a right ideal of R described in III (ii). Then $B_R = V_1 \oplus \cdots \oplus V_k \oplus V_{k+1} \oplus \cdots \oplus V_n$, where each V_i has a homogeneous socle such that for $i \neq j$, $Soc(V_i) \ncong Soc(V_j)$. Moreover, V_1, \ldots, V_k are CS, and V_{k+1}, \ldots, V_n are not CS.

PROOF. As in Theorem 1.1 part III (ii), $B = B_1 \oplus \cdots \oplus B_m$ where each B_i is uniform of length 1 or 2, and the injective hull of each simple submodule of B_R has length 3. We can renumber the B_i 's such that B_1, \ldots, B_k has length 2, each pair of these B_i 's do not have isomorphic socles, and no $B_j \in \{B_{k+1}, \ldots, B_m\}$ is of length 2 and has a socle isomorphic to the socle of one of the B_i 's for $i = 1, \ldots, k$. The next B_{k+1}, \ldots, B_n ($n \le m$) have the property that each pair of them do not have isomorphic socles, each B_j , $k + 1 \le j \le n$, has length 2 and for each of them there is at least one more $B_{t_j} \in \{B_n, \ldots, B_m\}$ such that $l(B_{t_j}) = 2$ and $Soc(B_{t_j}) \cong Soc(B_j)$. The socle of each $B_t \in \{B_{n+1}, \ldots, B_m\}$ is isomorphic to either the socle of some B_i , $1 \le i \le k$, or the socle of some B_j with $k + 1 \le j \le n$.

Now let $[B_i]$ be the direct sum of all $B_{i'} \in \{B_1, \ldots, B_m\}$ with $Soc(B_{i'}) \cong Soc(B_i)$. By the structure of the right ideals A, B, C of R in Theorem 1.1, there is no nonzero homomorphism of any submodule of A_R and respectively, of any submodule of C_R to B_R . This implies that every submodule of B is A- and C-injective. Hence any B-injective submodule of B is injective. Thus we can apply Lemma 3.1 to see that $[B_1], \ldots, [B_k]$ are CS modules, and $[B_{k+1}], \ldots, [B_n]$ are not CS, proving Proposition 3.2.

Acknowledgements

The authors wish to express their thanks to the referee for many useful suggestions and comments.

[8]

References

- F. W. Anderson and K. R. Fuller, *Rings and categories of modules*, GTM 13, 2nd edition (Springer, New York, 1992).
- [2] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, Extending modules (Pitman, London, 1994).
- [3] K. R. Goodearl, *Singular torsion and the splitting properties*, Mem. Amer. Math. Soc. 124 (Amer. Math. Soc., Providence, RI, 1972).
- [4] D. V. Huynh, 'Structure of some noetherian SI rings', J. Algebra 254 (2002), 362-374.
- [5] D. V. Huynh and S. T. Rizvi, 'On some classes of artinian rings', J. Algebra 223 (2000), 133–153.
- [6] G. Ivanov, 'Non-local rings whose ideals are quasi-injective', Bull. Austral. Math. Soc. 6 (1972), 45-52.
- [7] T. Y. Lam, Lectures on modules and rings, GTM 189 (Springer, New York, 1999).
- [8] R. Wisbauer, Foundations of module and ring theory (Gordon and Breach, Reading, 1991).

Department of Mathematics	Department of Mathematics
Ohio University	The Ohio State University at Lima
Athens	Lima
Ohio 45701	Ohio 45804
USA	USA
e-mail: huynh@math.ohiou.edu	e-mail: rizvi.1@osu.edu