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Abstract. We study the relationship between the equations de¢ning a projective variety and
properties of its secant varieties. In particular, we use information about the syzygies among
the de¢ning equations to derive smoothness and normality statements about SecX and also
to obtain information about linear systems on the blow up of projective space along a variety
X .We use these results to geometrically construct, for varieties of arbitrary dimension, a £ip ¢rst
described in the case of curves by M. Thaddeus via Geometric Invariant Theory.
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1. Introduction

Let X � Pn be a projective variety, scheme theoretically de¢ned by homogeneous
polynomials F0; . . . ;Fs of degree d. The Fi induce a rational map
j : Pn ÿÿ! Ps de¢ned off X . Equivalently, j is determined by a linear system
V � G�Pn;O�d�� with base scheme X . One resolves j to a morphismej : fPn ! Ps by blowing up Pn along X . j and ej have been studied in a number
of contexts, including Cremona transformations [10, 11, 13, 20], linear systems
on the blow up of projective space [15], and in somewhat greater generality in
the form of projections from subvarieties [3].

We will be most concerned with the case d � 2. It is well known that if L is an
ample line bundle on a variety X , then X is ideal theoretically de¢ned by quadrics
for all embeddings induced by suf¢ciently large multiples of L. Explicit examples
include smooth curves embedded by line bundles of degree at least 2g� 2 and
canonical curves with Clifford index at least 2.

We begin with the observation that, in the case d � 2, ifL � Pn is a secant line toX
then j collapses L to a point as the restriction of the Fi to L forms a system of
quadrics with a base scheme of length two, determining a unique quadric. This raises
the natural question: When is j an embedding off SecX? Corollary 2.5 shows this is
the case if a condition slightly weaker than Green's condition �N2� is imposed.
In fact, in Theorem 2.10 we prove a more general statement (for arbitrary d) about
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when ej is an embedding off the proper transform of an appropriate secant variety.
We also give in Corollary 2.12 an application to the vanishing of the cohomology
of powers of ideal sheaves.

Section 3 is concerned with the structure of SecX and its proper transform in the
case d � 2. The main results in this section are Theorem 3.9 and its
Corollary 3.10 where it is shown that the restriction of ej to the proper transform
of the secant variety is a P1-bundle over the length two Hilbert scheme of X ,
extending a result in [4] to varieties of arbitrary dimension. We also give
(Remark 3.12) a geometric criterion for determining the dimension of the secant
variety to a variety satisfying Green's condition �N2�.

In Section 4, we obtain a partial answer to a question raised in [7, ½1] by con-
structing a £ip ¢rst described in the case of smooth curves by M. Thaddeus [28]
via GIT. The construction proceeds in several stages, with the end result summarized
in Theorem 4.12. The reader should note that these are not KX -£ips in the sense of the
Minimal Model Program. It is shown in [7] that the £ips constructed by Thaddeus
are, in fact, log £ips; however we do not address that question here. Again
(Corollary 4.15) we give a simple application to the cohomology of ideal sheaves.

Aside from gaining an understanding of the geometry of secant varieties and how
this geometry relates to syzygies, a practical goal of the £ip construction is the
derivation of vanishing theorems for the groups Hi�Pn; I aX �b�� (Cf. [8, 35]).
Speci¢cally, in [28], Thaddeus obtains vanishing theorems on the £ipped spaces
via Kodaira vanishing as he is able to identify the ample cone on each space. In
a related direction, Bertram [6] uses a generalization of Kodaira vanishing to prove
vanishing theorems directly on the space fPn, deduced from the existence of log
canonical divisors. As discussed in [6], a combination of the two techniques should
reveal the strongest results. The construction of further £ips is taken up in [32],
and the question of vanishing theorems in [33].

NOTATION

We will decorate a projective variety X as follows: Xd is the dth Cartesian product of
X ; SdX is SymdX � Xd=Sd , the dth symmetric product of X ; and HdX is Hilbd�X �,
the Hilbert Scheme of zero dimensional subschemes of X of length d. Recall
(Cf. [16]) that if X is a smooth projective variety then HdX is also projective,
and is smooth if either dimX W 2 or dW 3.

If V is a k-vector space, P�V � is the space of one-dimensional quotients of V . We
work throughout over the ¢eld k � C of complex numbers. We use the terms locally
free sheaf (resp. invertible sheaf) and vector bundle (resp. line bundle)
interchangeably. If D � X is a Cartier divisor, then the associated invertible sheaf
is denoted OX �D�. We conform to the convention that products of line bundles cor-
responding to explicit divisors are written additively, while other products are
written multiplicatively, e.g. �L 
 OX �D��
n � L
n 
OX �nD�. A line bundle L on
X is nef if L � CX 0 for every irreducible curve C � X . A line bundle L is big if
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L
n induces a birational map for all n� 0. The term conic is used to mean a quadric
hypersurface in some projective space.

2. Condition �Kd �
We begin with the situation d � 2 from the Introduction and establish a useful tech-
nical result:

PROPOSITION 2.1. Let V � G�Pn;O�2�� be a linear system with base scheme X,
with induced map j : Pn ÿÿ ! P�V �. Then the following are equivalent:

(1) j is an embedding o¡ SecX.
(2) If L � Pn is a line not intersecting X, L 6� SecX, then the natural restriction map

rL : V ! G�L;OL�2�� is surjective.
Proof. Assume j is an embedding off SecX , and let L 6� SecX be a line not

intersecting X . Then the restriction of j to L is base point free, hence
corank�rL�W 1. If corank�rL� � 1, then jjL is a rami¢ed double cover of P1, con-
tradiction the assumption that j is an embedding off SecX .

Conversely, choose a length two subscheme Z � Pn n SecX ; Z determines a
unique line L 6� SecX . If L intersects X in a single point, then the restriction of
j to L resolves to a linear embedding of L. If L does not intersect X , then the
surjectivity of the restriction map implies that j is an embedding along L. Hence
points and tangents are separated off SecX . &

In other words, we need only avoid the case where, after a choice of coordinates on
L, the restriction ofj to L is the system generated by x2; y2. We introduce a condition
that guarantees this does not happen.

DEFINITION 2.2. A subscheme X � Pn satis¢es condition �Kd� if X is scheme
theoretically cut out by forms F0; . . . ;Fs of degree d such that the trivial (or Koszul)
relations among the Fi are generated by linear syzygies.

More generally, let V � H0�OPn�d�� be a linear system of forms of degree d with
(possibly empty) base scheme X . Then the pair �X ;V � satis¢es condition �Kd� if
the trivial relations among the elements of V are generated by linear syzygies. Write
�X ;Fi� for the pair �X ;V � if the set fFig generates the linear system V . Perhaps the
simplest example of varieties that do not satisfy �Kd � is that of scheme theoretic
complete intersections of hypersurfaces of degree d.

Remark 2.3. For a projective varietyX � Pn, M. Green [17] de¢nes condition �N2�
as: X projectively normal, ideal theoretically de¢ned by quadrics Fi, and all of the
syzygies among the Fi are generated by linear ones. Examples include a smooth curve
embedded by a line bundle of degree at least 2g� 3 [17], canonical curves with
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Clifford index at least 3 [26, 34], Veronese embeddings of Pn, e.g. [12], and all suf-
¢ciently large embeddings of any projective variety [17, 22].

Clearly, if X satis¢es �N2�, then X satis¢es the weaker condition �K2�. Though �K2�
is a technically simpler condition and will arise naturally, in practice most examples
we consider that satisfy �K2� will actually satisfy the stronger, and well studied, con-
dition �N2�. As such, we have made no attempt to understand examples where X
satis¢es �K2� but not �N2�. It is not dif¢cult, however, to see where such examples
might arise. Speci¢cally, if X � Pn is a smooth surface satisfying �N2� and if
h1�OX �3�� < h1�OX �1��, then a general quadric section of X is not projectively
normal, but is certainly scheme theoretically de¢ned by quadrics.

In light of Lemma 2.4 below, one may also expect to ¢nd examples by taking
hyperplane sections of non arithmetically Cohen^Macaulay varieties.

An advantage of the weaker condition �Kd� is the following simple:

LEMMA 2.4. Let V be a linear system onPn that satis¢es �Kd�, and let M � Pk be a
linear subspace of Pn. Then the restriction of V to M satis¢es �Kd�. &

This gives

COROLLARY 2.5. Let X � Pn be scheme theoretically de¢ned by quadrics
F0; . . . ;Fs satisfying �K2�. Then the induced map j is an embedding off SecX.

Proof. Let L � Pn, L 6� SecX , be a line not intersecting X . By Lemma 2.4, the
restriction of the Fi to L must satisfy �K2�. However, it is easy to check that the
only base point free system of quadrics on P1 satisfying �K2� is the complete system
of quadrics. Hence by Proposition 2.1, j is an embedding off SecX . &

Remark 2.6. A similar result was discovered independently by K. Hulek and W.
Oxbury [21]. &

Recall that a base point free linear system W on X is said to be k-very ample if
every zero-dimensional subscheme ofX of length k spans aPkÿ1 inP�W �. We record
the following elementary:

LEMMA 2.7. Assume X � P�W � � Pn satis¢es condition �K2� and contains no lines
or conics. Then W is a 4-very ample linear system on X.

Proof. Assume to the contrary that there is a 2-plane M that intersects X in a
scheme Z of length kX 4. Note that by hypothesisM cannot intersect X in a scheme
of positive dimension.

Two conics in M intersect in a scheme of length 4 if and only if they have no
common component. However, a pair of plane conics cannot satisfy �K2� unless they
share a linear factor, which would imply a positive dimensional base scheme.
Therefore, there can be no such 2-plane. &
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We return to the case of arbitrary d. Via the closure of the graph Gj � Pn �Ps, we
have a resolution of the rational map j:

where ~j is the restriction of the projection onto the second factor. Note that ~j can be
identi¢ed with the morphism BlX �Pn� ! Ps induced by lifting the appropriate sec-
tions of G�Pn; IX �d�� to sections of G�fPn;OePn

�dH ÿ E��.

PROPOSITION 2.8. Let �X ;Fi� satisfy �Kd� and assume that X does not contain a
line. If a 2 Im ~j, then ~jÿ1�a� � Pk � fag � Pn �Ps, where either

(1) k � 0 or
(2) p1�Pk � fag� � Pk � Pn intersects X in a hypersurface of degree d in Pk.

Proof. Take coordinates �z0; . . . ; zn; t0; . . . ; ts� on Pn �Ps and let S be the scheme
de¢ned by the equations Fitj ÿ Fjti � 0

� 	8i; j. Clearly, Gj � S as schemes and it is
easy to verify that Gj � S off of E, the exceptional divisor of the blow up.

Now, considering a syzygy as a vector of forms, let

f�a`0; . . . ; a`s�; 0W `W rg

generate the linear syzygies among the Fi. Let T � Pn �Ps be the subscheme de¢ned
by the equations fPs

k�0 a`k�z�tk; 0W `W rg. Again it is clear that Gj � T as schemes,
(Cf. [20, ½1]) but condition �Kd� implies that T � S, hence Gj � T off of E.

~jÿ1�a� is contained as a scheme in Ta, where Ta is the ¢ber over a of the projection
map restricted to T . Without loss of generality, assume a � �1; 0; . . . ; 0� 2 Ps. Ta is
then scheme theoretically de¢ned by the bihomogeneous equations

Xs
k�0

a0ktk; . . . ;
Xs
k�0

arktk; t1; t2; . . . ; ts

( )
and so more simply by

a00t0; . . . ; ar0t0; t1; t2; . . . ; tsf g
giving:

Ta � Pk � �1; 0; . . . ; 0� � Pn �Ps

� Pk;

where Pk is the linear subspace of Pn de¢ned by the fa`0g. We have just seen
~jÿ1�a� � Ta off of E; Ta is irreducible, however, so ~jÿ1�a� � Ta � Pk as long as
either of the following is true:
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(1) Ta is a reduced point (i.e. k � 0).
(2) Ta and ~jÿ1�a� are not both contained in E.

To guarantee that the second possibility occurs if Ta has positive dimension, note
that X does not contain a line. Therefore p1�Ta�, which is a linear subspace of
Pn, cannot be isomorphic to a positive-dimensional reduced linear subscheme of
X . Hence, Ta cannot be contained in E. &

Remark 2.9. Rather than the hypothesis thatX contain no lines, one could instead
insist that X is not set theoretically cut out by any subsystem of the Fi. We choose the
former hypothesis as it will be necessary below. &

Denoting by Sec1dX the variety of lines intersecting X in a subscheme of length at
least d, we have a natural extension of Corollary 2.5:

THEOREM 2.10. Let �X ;Fi� be a pair that satis¢es �Kd�, and assume that X does not
contain a line. Then ~j is an embedding off the proper transform of Sec1dX.
Furthermore, if X is smooth then the image of ~j is a normal subvariety of Ps.

Proof. To prove the ¢rst claim, note that because the ¢bers of ~j are reduced, we
need only show that points are separated.

Take p; q 2 Gj, and assume ~j�p� � ~j�q� � frg 2 Ps. Then by Proposition 2.8,
S � ~jÿ1�r� satis¢es p�S� � Pk; k > 0. There are then two possibilities:

(1) p�S� \ X is a d-ic hypersurface in p�S� and, hence, every line in p�S� is a d-secant
line of X, which implies that p�S� � Sec1d�X �, and so p and q are in the proper
transform of the variety of d-secant lines.

(2) p�S� � X. In this case, however, p�S� is a positive dimensional linear subvariety of
X , which is not allowed by hypothesis.

To see that the image is normal if X is smooth, notice that by identi¢cation with
the blow up of Pn along X , Gj is smooth, hence normal. We have just shown that
the ¢bers are reduced and connected, hence the result follows from the fact that
the image of a proper morphism from a normal variety with reduced, connected
¢bers is normal. &

Remark 2.11. The proof of Theorem 2.10 implies that if X � Pn is scheme theor-
etically de¢ned by forms of degree d that satisfy �Kd�, then the map
j : Pn n X ! Ps is an embedding off of Sec1dX , even if X does contain a line,
extending Corollary 2.5. &

Theorem 2.10 provides a simple extension of a vanishing result for powers of ideal
sheaves of projective varieties in [8, 1.10]. The bound is only improved by one degree;
this comes precisely from the fact that we know O�dH ÿ E� is big.
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COROLLARY 2.12. If X is smooth, irreducible and satis¢es �Kd� then Theorem 2.10
shows that the linear system O�dH ÿ E� on Gj � BlX �Pn� is big and nef, and
O�kH ÿmE� is very ample if km > d. A simple application of the
Kawamata^Viehweg vanishing theorem gives

Hi Pn; IaX �k�
ÿ � � 0; i > 0; kX d�e� aÿ 1� ÿ �n� 1�;

where e is the codimension of X in Pn. &

3. Results on Secant Varieties

We describe a vector bundle onH2X � Hilb2�X � and a morphism to projective space
giving rise to SecX . Our construction follows that of [4, ½1], [2, VIII.2], and [27]
where this is done for curves with the identi¢cation of H2X with S2X .

Let V � G�X ;L� be a very ample linear system and denote by D the universal
subscheme of X �H2X and note D � BlD�X � X �. Let p : X �H2X ! X and
p2 : X �H2X !H2X be the projections, and let L be any line bundle on X . Form
the invertible sheaf OD 
 p�L on D � X �H2X . Now p2jD : D! H2X is £at of
degree 2, hence EL � �p2���OD 
 p�L� is a locally free sheaf of rank 2 on H2X .
We de¢ne the ¢rst secant bundle of X with respect to L to be the P1-bundle
B1�L� � PH2X �EL�.

To de¢ne the desired map, push the natural restriction p�L!OD 
 p�L down to
H2X giving an evaluation map H0�X ;L� 
 OH2X ! EL which in turn for any linear
system V � H0�X ;L� restricts to V 
OH2X ! EL. Now a ¢ber of EL over a point
Z 2 H2X is H0�X ;L
OZ�, so if V is very ample then this map is surjective and
we obtain a morphism:

b1 : B1�L� ! P�V � � H2X ! P�V �:

The image of this morphism is the secant variety to X in P�V �.

Remark 3.1. It will be useful to note that the above surjection also induces a
morphismH2X ! G�1;V �which is an embedding as long as V is 3-very ample [9].&

Notation 3.2. To help simplify notational clutter, we denote S � Sec12X and
T � TanX . This should cause no confusion as we will be concerned with a ¢xed
variety X , and will be primarily concerned only with the ¢rst secant variety. &

HYPOTHESIS 3.3. For the remainder of this section, X � Pn will denote a smooth,
irreducible, non-degenerate variety, scheme theoretically de¢ned by quadrics
�F0; . . . ;Fs� � V � G�Pn;O�2�� satisfying �K2�. Assume that X contains no lines
and no conics. In particular, the embedding of X is 4-very ample. &
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In this situation, Theorem 2.10 implies that the map ~j is an embedding off the
proper transform of the secant variety to X . Here we study what the map does when
restricted to the proper transform of the secant variety. Denote by ~S the proper
transform of the secant variety under the blowing up p : fPn! Pn of Pn along
X . By a slight abuse of notation, write ~j : ~S! Ps for the restriction of
~j : fPn ! Ps. We show ¢rst that there is a map ~S!H2X , and then an embedding
of H2X into the image variety of ~j, such that the composition factors
~j : ~S! Ps and the map ~S!H2X is a P1-bundle.

Remark 3.4. Because of the assumption that X contains no lines and no conics,
each ¢ber of ~j : ~S! Ps is isomorphic to P1 by Proposition 2.8. In particular, given
a point in ~S or in S n X , one can say on which secant or tangent line it lies. &

LEMMA. 3.5. There is a morphism g : ~S!H2X taking a point p to the length 2
subscheme Z of X determining the secant line on which p lies.

Proof. We construct a morphism ~S! G�1; n�whose image isH2X . LetY � Im ~j,
and push the surjection

H0� ~S;O ~S�H�� 
 O ~S !O ~S�H� ! 0

down to Y :

H0� ~S;O ~S�H�� 
 OY ! ~j�O ~S�H�
The sheaf ~j�O ~S�H� is locally free of rank 2, and the map is surjective asO�H�maps a
¢ber of ~j to a linearly embedded P1 � Pn. Pulling this surjection back to ~S gives a
surjection from a free rank n� 1 sheaf to a rank 2 vector bundle, hence a morphism
~S! G�1; n� taking a ¢ber of ~j to the point representing the associated secant line.
The image of this morphism is clearly H2X ,!G�1; n� from Remark 3.1. &

Having constructed a map g : ~S!H2X , we construct an embedding
f : H2X ,!Ps so that ~j � �f �g� : ~S! Ps.

Let Z 2 H2X be a length 2 subscheme of X , and let `Z � Pn be the line determined
by Z. Note that by hypothesis `Z does not lie on X . There are homomorphisms:

rZ : V ! H0�Pn;OPn �2� 
 O`Z �:
f is set theoretically given by associating to every Z 2 H2X the one-dimensional
quotient V=ker�rZ�. This association is injective by Remark 3.4.

LEMMA 3.6. f : H2X ! P�V � � Ps is a morphism.
Proof. Let L � OePn

�2H� and form p�1L on fPn �H2X . Embed:

~S,!fPn �H2X ;

p 7! �i�p�; g�p��;
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where i : ~S,!fPn is the inclusion. Applying p2� to the surjection
p�1L! p�1L
O ~S ! 0 gives a map:

H0�fPn;L� 
 OH2X ! p2� p
�
1L
O ~S

ÿ �
:

Recalling V � H0�fPn;L
OePn
�ÿE��, there is a map:

V 
OH2X ! p2� p
�
1L
O ~S

ÿ �
;

where a ¢ber of the coherent sheaf p2� �p�1L
O ~S� over a point Z 2 H2X is
isomorphic to H0�Pn;OPn �2� 
 O`Z �. By the above remarks, this map has rank
1, hence gives a surjection to a line bundle on H2X with ¢ber over Z isomorphic
to H0�Pn;OPn�2� 
 IX 
O`Z �. f is the morphism induced by this surjection. &

The diagram

then commutes, and because the ¢bers of ~j are reduced, those of f are as well:

PROPOSITION 3.7. Let �X ;V � be a pair satisfying �K2�, and assume X � Pn is
smooth, irreducible, and contains no lines or conics. Then the morphism
f : H2X ,!P�V � above is an embedding &

LEMMA 3.8. With hypotheses as in Proposition 3.7, the exceptional divisor of the
blow up ~S! S is isomorphic to BlD�X � X �.

Proof. Let F � ~S be the exceptional divisor of this blow up. LetY be the image of:

F ! X �H2X

p 7! p�p�; ~j�p�� �:
Y is £at of degree 2 over H2X . Indeed, by the structure of ~j the ¢ber over a point in
H2X is exactly the corresponding length 2 subscheme of X , hence Y induces the
identity morphism id : H2X !H2X . By the universal property of
D � BlD�X � X �, the universal subscheme of X �H2X , we have:

Y � �idX � idH2X �ÿ1�D�:
The map from F to Y is a ¢nite birational morphism to a smooth variety, so is an
isomorphism, hence F � BlD�X � X �. &

This allows another construction of the secant bundle B1�L�: Writing
PicfPn � ZH �ZE, form the line bundle H 
OF on the exceptional divisor
F � ~S. The restriction of ~j to F is a degree two map to H2X . Let
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E � ~j��H 
OF �. By the identi¢cation of F withD and ofH � p�OPn�1�with L onX ,
we see B1�L� � PH2X �E�.

THEOREM 3.9. Let X � Pn be smooth, irreducible and satisfy �K2�. If X contains no
lines and no conics then ~j : ~S!H2X is the P1-bundle PH2X �E� ! H2X.

Proof. Note that E � ~j��H 
OF � and ~j��H 
O ~S� are isomorphic rank two
vector bundles on H2X and that H 
O ~S is generated by its global sections. Hence
there is a surjection ~j�E ! H 
O ~S! 0 which induces a morphism
k : ~S! PH2X �E�.

This gives the diagrams:

where p is the natural projection map. k makes both triangles commute, and so is a
¢nite (by the second diagram) birational (by the ¢rst) morphism to a smooth variety,
hence an isomorphism. &

COROLLARY 3.10. Under the hypotheses of Theorem 3.9:

(1) ~S is smooth and S is smooth o¡ X.
(2) ~T is smooth and T is smooth o¡ X.
(3) S is normal.

Proof. The smoothness of ~S is immediate from Theorem 3.9.
For the second claim, note that ~j maps ~T to the diagonal in H2X , which is the

projectivized tangent bundle to X , hence smooth (by the diagonal in H2X , we mean
the proper transform on the diagonal under the birational morphism
H2X ! S2X ). Therefore, ~T is smooth as above.

To show S is normal, we use the (just proven) fact that ~S is smooth, hence normal.
It suf¢ces to show that for p 2 X , pÿ1�p� is reduced and connected where p : ~S! S is
the blow up of S along X . But by Lemma 3.8, pÿ1�p� � Blp�X �. &

Remark 3.11. In [4], A. Bertram shows directly that ~S is isomorphic to B1�L� if X
is a smooth curve embedded by the complete linear system associated to a line bundle
L that is 4-very ample. &

Remark 3.12. A simple consequence of the above results is that a smooth,
irreducible variety X � Pn satisfying �K2� with no lines and no conics has a
non-de¢cient secant variety. It can be shown [31, 3.6.1] that if
d � 2r� 1ÿ dim�S� is the de¢ciency of the secant variety to X , then
d � �2rÿ dimY �=2 where Y is the image variety of ~j : ~S! Ps.
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In particular, this shows that the dimension of S is determined by the dimension of
the ¢bers of ~j: The generic pair of points of X lies on a quadric hypersurface of
(maximal) dimension d if and only if dim�S� � 2r� 1ÿ d.

4. Geometric Flip Construction

In this section we are motivated by [28] to construct a £ip centered about H2X . We
recall his construction.

4.1. WORK OF THADDEUS

In [28] Thaddeus considers the moduli problem of semi-stable pairs �E; s� consisting
of a rank two bundle E with ^2E � L, and a section s 2 G�X ;E� ÿ f0g. This is inter-
preted as a GIT problem, and by varying the linearization of the group action,
a collection of (smooth) moduli spaces M1;M2; . . . ;Mk, k � ��d ÿ 1�=2�, is con-
structed. As stability is an open condition, these spaces are birational. In fact, they
are isomorphic in codimension one, and may be linked via a diagram

where there is a morphism Mk !M�2;L�. The relevant observations are ¢rst that
this is a diagram of £ips (in fact it is shown in [7] that it is a sequence of log £ips)
where the ample cone of each Mi is known, second that M1 is the blow up of
P�G�X ;KX 
 L��� along X , and ¢nally that ~M2 is the blow up ofM1 along the proper
transform of the secant variety and that all of the £ips can be seen as blowing up and
down various higher secant varieties.

Our inspiration can be stated as follows: The sequence of £ips in Thaddeus' con-
struction, constructed via Geometric Invariant Theory, can be realized as a sequence
of natural geometric constructions depending only on the original embedding of
X � Pn. An advantage of this approach is that the smooth curve X can be replaced
by any smooth variety. Even in the curve case, ours applies to situations where
the original construction does not hold (e.g. for canonical curves with Clifford index
at least 3).

Thaddeus goes on [28, 7.8] to compute the dimension of the spaces
H0�PH0�KX 
 L�; IaX �k�� for certain values of d; g; a; k. In particular, this compu-
tation is used to verify the rank-two Verlinde formula. A part of our motivation
is to try to extend this computation to a much larger class of varieties.

4.2. OUTLINE OF OUR CONSTRUCTION

With notation as above assume X � Pn is smooth, irreducible, satis¢es �K2�, and
contains no lines or conics. Let r � dimX and assume that nÿ 2rÿ 1X 2, i.e. that
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S is not a hypersurface in Pn. Write P�E� for the secant bundle PH2X �E� and identify
~S with P�E� (Theorem 3.9). Simply write ~j : P�E� ! H2X for the restriction of
~j : fPn ! Ps.
We begin with a general construction: Let f : X ÿÿ ! Y and g : X ÿÿ ! Z be

rational maps of irreducible varieties, f birational. Form Gf ;g � X � Y � Z, the
closure of the graph of �f ; g� : X ÿÿ! Y � Z, and let M2 � Y � Z be the image
of Gf ;g under the obvious projection. We have the following diagrams where all maps
are projections, the left included in the right by restriction:

Note that X ;Y ;Gf ;Gf ;g, and M2 are all birational.
Of particular interest is the case where Gf ! Y is a small morphism with excep-

tional locus W . Assume there exists a line bundle L on Gf with base scheme W
and take Z � PH0 Gf ;L

ÿ �
. Then Gf and M2 are isomorphic in codimension one.

Furthermore, if Gf and M2 are factorial varieties, then the image of L under the
isomorphism PicGf � PicM2 is a globally generated line bundle on M2.

We give an explicit construction of this birational transformation: take Gf ! Y
above to be ~j : fPn! Ps. As the exceptional locus of ~j is ~S, we ¢nd a line bundle
onfPn whose base scheme is ~S, identify explicitly the exceptional loci in the diagram,
give explicit linear systems de¢ning the morphisms and ¢nally show that the space
M2 is smooth.

4.3 THE DIAGRAM OF EXCEPTIONAL LOCI

An examination of Thaddeus' construction [28, 3.11] suggests we identify a vector
bundle F on H2X of rank nÿ 2rÿ 1 � codim�P�E�;fPn� such that

~j��F� � N�
P�E�= ~Pn 
OP�E��ÿ1� �1�

and then construct one of the exceptional loci as PH2X �F�. Writing
NP�E��k� � NP�E�= ~Pn 
OP�E��k�, we verify F � ~j�N

�
P�E��ÿ1� satis¢es (1).

PROPOSITION 4.1. Let ~Y � P1 be a ¢ber of ~j : P�E� ! H2X. Then
NP�E��k� 
 O ~Y � �O ~Y �kÿ 1� and it follows that

~j� ~j�N
�
P�E��ÿ1� � N�P�E��ÿ1�:
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Proof. Denoting tangent sheaves by Y, it is easy to see that

�p�YPn � 
 O ~Y � YPn 
OY � O�2� � O�1� � � � � � O�1�:
Let F be the universal quotient bundle on the exceptional divisorE and j : E,!fPn the
inclusion. Because the intersection of ~Y with E is a scheme of length two, pulling the
exact sequence [14, 15.4] 0! YePn

! p�YPn ! j�F ! 0 back to ~Y gives
YePn

O ~Y �k� ample for kX 2. The sequence

0! YP�E� 
 O ~Y ! YePn

O ~Y ! N

P�E�=ePn

O ~Y ! 0

then gives NP�E��k� 
 O ~Y ample for kX 2 because it is the quotient of an ample
bundle [18, III.1.7]; hence NP�E� 
 O ~Y � �O ~Y �ai� where the ai X ÿ 1. A
straightforward computation of the determinant via the isomorphism
oP�E� � o ~Pn 
 Lnÿ2rÿ1NP�E� shows ai � ÿ1, and the ¢rst part of the statement holds.
The second follows immediately. &

We construct the diagram of exceptional loci for the £ip: Let

E 02 � PP�E� N�P�E��ÿ1�
� �

� PP�E�� ~j�F�

and

E2 � PP�E��N�P�E��:
Hence, E2 is the exceptional divisor of the blow up BlP�E��fPn�. As the vector bundles
de¢ning E2 and E 02 differ by the twist of a line bundle, there is an isomorphism
g [19, II.7.9]

with the property that

g��OE 02�1�� � OE2 �1� 
 p��OP�E��ÿ1��: �2�

Writing P�F� � PH2X �F�, there is a morphism E 02! P�F� induced by the natural
surjection � ~j �p0���F � ! OE 02 �1� ! 0. Via g we get a morphism h : E2 ! P�F�
induced by the surjection (note (2))

� ~j � p���F� ! OE2�1� 
 p� OP�E��ÿ1�
ÿ �! 0

and, hence, a diagram
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The isomorphism g gives E2 � PP�E�� ~j�F�. Note the following symmetry property:

LEMMA 4.2. E2 � PP�F ��f �E�.
Proof. To give a map E2! PP�F ��f �E� it is equivalent to give a surjection

h�f �E ! K ! 0 for some line bundle K on E2. By the above diagram, this is equiv-
alent to a surjection p� ~j�E ! K ! 0, which we obtain from the natural surjection
~j�E ! OP�E��1� ! 0 on P�E�. As the ¢bers of h are isomorphic to P1, it is clear
that the induced map is an isomorphism. &

Let the very ample invertible sheaf M on H2X � Ps be the restriction of OPs�1�.
Then for every k suf¢ciently large, OP�F��1� 
 f �Mk is very ample on P�F�, [19],
Ex. II.7.14], and so gives an embedding i : P�F�,!Pr. The induced morphism
i �h : E2 ! Pr is given by a linear system associated to the line bundle:

�i � h�� OPr�1�� � � h� OP�F��1� 
 f �Mkÿ �
� h�f �Mk 
OE2 �1� 
 p� OP�E��ÿ1�

ÿ �
: �3�

Since h�OE2 � OP�F � by Lemma 4.2, the projection formula yields:

G P�F�;OP�F��1� 
 f �Mkÿ � � G E2; h� OP�F ��1� 
 f �Mkÿ �ÿ �
;

hence:

LEMMA 4.3. The complete linear system jOP�F ��1� 
 f �Mkj on P�F � pulls back to
the complete linear system jh��OP�F ��1� 
 f �Mk�j on E2. &

4.4. THE TOTAL SPACES

We build the total spaces of the £ip containing the diagram of exceptional loci, with
those maps given by restriction. Three of the four spaces have been constructed
already: fPn; Im ~j; and BlP�E��fPn�. We construct the fourth (and most interesting!)
as the image of a linear system on BlP�E��fPn�. This construction proceeds in several
steps: First, we identify (4) an invertible sheaf on BlP�E��fPn� that restricts to
h� OP�F ��1� 
 f �Mk
ÿ �

on E2 (Cf. Lemma 4.3). We then show that the associated com-
plete linear system gives a birational morphism which is an embedding off E2, and
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that its restriction to E2 is the complete linear system associated to
h� OP�F ��1� 
 f �Mk
ÿ �

.
Following the notation of [28], denote ~M2 � BlP�E��fPn�. Writing

Pic ~M2 � ZH �ZE1 �ZE2 � Z�p�H� �Z�p�E� �ZE2

and noting OE2 �ÿE2� � OE2 �1�, we have

OE2 �2kÿ 1�H ÿ kE1 ÿ E2� � � �f � h��Mk 
OE2�1� 
 p�OP�E��ÿ1�
� �i � h�� OPr �1�� � �4�

by Equation (3).

PROPOSITION 4.4. Let L be an invertible sheaf on a complete variety X, and let B
be any locally free sheaf. Assume that the map l : X ! Y induced by L is a birational
morphism and that l is an isomorphism in a neighborhood of p 2 X. Then for all n
suf¢ciently large, the map

H0�X ;B 
 Ln� ! H0�X ;B 
 Ln 
Op�

is surjective.
Proof. Push the exact sequence

0! B
Ln 
 I p! B
Ln ! B
Ln 
Op ! 0

down to Y . Because l is an isomorphism in a neighborhood of p, the map

l��B 
 Ln 
Op� ! R1l��B 
 Ln 
 I p�
is the zero map, hence there is an exact sequence on Y :

0! l��B 
 Ip��n� ! l��B��n� ! l��B��n� 
 Op! 0;

where L ' l�OY �1�. Since OY �1� is (very) ample, H1�Y ; l��B 
 I p��n�� � 0 for all n
suf¢ciently large. Therefore there is a section of l��B��n� that does not vanish at
p 2 Y which can be pulled back to a section of B 
 Ln that does not vanish at
p 2 X . &

Remark 4.5. Proposition 4.4 should be thought of as an analogue of the statement
that if L is an ample line bundle, then Ln 
 B is globally generated for all n� 0.&

COROLLARY 4.6. For k suf¢ciently large, the set theoretic base locus of the linear
system j�2kÿ 1�H ÿ kEj on fPn is P�E�.

Proof. Clearly, the base locus of j�2kÿ 1�H ÿ kEj contains P�E�. Note, however,
that as j2H ÿ Ej is base point free, the base locus of j�2kÿ 1�H ÿ kEj will stabilize
for k suf¢ciently large. Hence it suf¢ces to show that if p is a point not in P�E�,
then j�2kÿ 1�H ÿ kEj is free at p for all k� 0. Now take B � OePn

�ÿH� and
L � OePn

�2H ÿ E� in Proposition 4.4, and use Theorem 2.10. &

SECANT VARIETIES LEADING TO A GEOMETRIC FLIP CONSTRUCTION 277

https://doi.org/10.1023/A:1002663915504 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002663915504


Notation 4.7. For the rest of this section, write O�a; b; c� for
OeM2
�aH � bE1 � cE2�, and write Lk � OeM2

��2kÿ 1�H ÿ kE1 ÿ E2�, k 2 Q.

LEMMA 4.8. Lk is nef for all k suf¢ciently large.
Proof. Letting C � ~M2 be an irreducible curve not contained in E2, we have
Lk � CX 0 for k� 0 by Corollary 4.6. Letting C 0 � E2, Lk 
OE2 is globally gen-
erated on E2 for k� 0 by �4�, hence Lk � C0X 0 and Lk is nef. &

PROPOSITION 4.9. With hypotheses as above and for k suf¢ciently large, the
rational map on ~M2 induced by the linear system jLkj is a morphism, is an embedding
off of E2, and its restriction to E2 is the morphism h : E2! P�F�.

Proof. We ¢rst show that for k suf¢ciently large jLkj restricts to the complete
linear system on E2 associated to the invertible sheaf
h�f �Mk 
OE2�1� 
 p� OP�E��ÿ1�

ÿ �
(Cf. Lemma 4.3). For this it suf¢ces to prove

H1 ~M2;O�2kÿ 1;ÿk;ÿ2�ÿ � � 0:

Writing B � O�2kÿ 1;ÿk;ÿ2� and noting

KeM2
� O�ÿnÿ 1; nÿ rÿ 1; nÿ 2rÿ 2�:

B 
 Kÿ1eM2

� O�2k� n;ÿkÿ n� r� 1;ÿn� 2r�:

Let a � �k� nÿ rÿ 1�=�nÿ 2r� and rewrite the right side asLnÿ2ra 
O�2; 0; 0�. For
k� 0, La is a nef Q-divisor by Lemma 4.8, hence B 
 Kÿ1eM2

is big and nef and the
vanishing holds by the Kawamata^Viehweg vanishing theorem (note that by [25,
1.9], a nef line bundle tensored with a big and nef line bundle is again big and nef).

To see jLkj is a morphism, note that by Corollary 4.6, the support of the base
scheme is contained in E2. By what has just been proven, however, jLkj has no base
points since the complete linear system on E2 associated to
h�f �Mk 
OE2�1� 
 p� OP�E��ÿ1�

ÿ �
induces a morphism. Further, as O�2;ÿ1; 0�

induces an embedding off of E2, jLkj does as well for k� 0. &

Remark 4.10. It is unfortunate that this proof gives no bound on k; however, there
is an important case when the value of k can be determined. Speci¢cally, if S � Pn is
scheme theoretically de¢ned by cubics, then the line bundle L2 will be base point free
and k � 3 suf¢ces for Proposition 4.9. &

We simply write the morphism from Proposition 4.9 as h : ~M2! P�jLkj�. Denote
by M2 the image variety of h. Then M2 nP�F� � fPn nP�E� by Proposition 4.9.

PROPOSITION 4.11. M2 is smooth.
Proof. Note ¢rst that M2 is normal since it is the image under a morphism of a

normal variety with reduced, connected ¢bers.
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Let Z � hÿ1�p� � P1, where p 2 PH2X �F�. We have the normal bundle sequence:

0! NZ=E2 ! N
Z=eM2
!OE2�E2� 
 OZ ! 0:

Because Z is a ¢ber of the P1 �Pnÿ2rÿ1-bundle E2 overH2X by Proposition 4.9, this
sequence becomes

0!
Mnÿ2
1

OP1 ! N
Z=eM2
!OP1 �ÿ1� ! 0:

This sequence clearly splits and we apply a natural extension of the smoothness
portion of Castelnuovo's contractibility criterion for surfaces (Cf. [1, 2.4]). &

Because fPn and M2 are smooth and isomorphic in codimension one, we have [19,
II.6.5]

PicfPn � PicM2 and H0 fPn;OePn
�2H ÿ E�

� �
� H0 M2;OM2�2H ÿ E�ÿ �

:

Therefore, the line bundleOM2�2H ÿ E� induces a morphism f :M2 ! Ps which is an
embedding off of P�F �. Furthermore, because M2 and P�F� are smooth, [13, 1.1]
implies that h : ~M2!M2 is the blow up of M2 along P�F�.

Collecting these results:

THEOREM 4.12. Let �X ;V � satisfy �K2� and assume X � Pn is smooth, irreducible,
and contains no lines or conics. Then there is a £ip as pictured below with:

(1) fPn, ~M2, and M2 smooth.
(2) fPn nP�E� �M2 nP�F�.
(3) h is the blow up of M2 along P�F�.
(4) p is the blow up of fPn along P�E�.
(5) f, induced byOM2 �2H ÿ E�, is an embeddingo¡ofP�F�, and the restriction of f is the

projection P�F� ! H2X.
(6) ~j, induced byOePn

�2H ÿ E�, is an embeddingo¡ofP�E�, and the restriction of ~j is the
projection P�E� ! H2X:

&
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Note that the ample cone of the space M2 is bounded on one side byOM2�2H ÿ E�
and on the other by a line bundle of the formOM2��2kÿ 1�H ÿ kE�, kX 2, hence the
assertion that this construction yields a £ip. In fact, asOM2 �3H ÿ 2E� is f -ample, this
is a �K �D�-£ip (in the sense of [24, 3.33]) whereD � �n� 4�H ÿ �nÿ r� 1�E. When
r � 1 it is shown in [7] that D is log canonical, i.e. that this is a log £ip.

Remark 4.13 (on Conics). The hypothesis that X contain no conics is not always
needed in order to construct this £ip. The condition is imposed simply to keep
the ¢bers of ~j: ~S! Ps equidimensional; problems occur when a variety has only
a few conics. In the case of quadratic Veronese embeddings where there is a unique
plane quadric through any two points, it is not dif¢cult to modify the results of
the previous sections to achieve similar results. We do not do this, however, as this
case is already understood from the point of view of complete quadrics [29, 30].&

EXAMPLE 4.14. It is interesting to examine Theorem 4.12 in cases where H2X is
well understood. For example, in the case X � Pr, it is easy to see that H2X is itself
a P2-bundle over the Grassmannian G�1; r� of lines in Pr. If we embed Pr via
O�d�, dX 3, ~S has the particularly nice structure of a P1 �P2-bundle over
G�1; r� (in the case d � 2, it is simply a P2-bundle; the missing factor of P1 is
due precisely to the de¢ciency of S).

Furthermore, as the ideal of S is generated by cubics [23], the line bundle
OM2 �3H ÿ 2E� is globally generated (see the discussion below). Applying
Kawamata-Viehweg vanishing yields

Hi�M2;O�kH ÿ aE�� � 0; i > 0; k > 3
2 �e� aÿ 1� ÿ �n� 1�;

where n� 1 � r�d
r

ÿ �
(compare Corollary 2.12). In the special case k � 2aÿ 1, this

vanishing can be pulled directly back to fPn. More generally:

COROLLARY 4.15. With hypotheses as in Theorem 4.12, assume further that
S � Pn is not a hypersurface and is cut out as a scheme by cubics. Then
Hi�Pn; IaX �2aÿ 1�� � 0; i > 0; a > nÿ 3rÿ 1: &

The continuation of this process following [28] is taken up in [32]. We need to
construct a birational morphism ~j2 : M2! Ps2 which contracts the image of
3-secant 2-planes to points, and is an embedding off their union. The natural can-
didate for this morphism is the linear system associated to OM2�3H ÿ 2E�, where
we identify PicfPn � PicM2. Noting the fact that h�OM2�3H ÿ 2E�
� OeM2

�3H ÿ 2E1 ÿ E2�, it is not dif¢cult to see (using Zariski's Main Theorem) that
this system will be globally generated if S � Pn is scheme theoretically de¢ned by
cubics.

There are not yet theorems analogous to those for the quadric generation of
varieties. However, there is evidence that such statements should exist (Cf. [23] where
it is shown that Sec�vd�Pn�� is ideal theoretically de¢ned by cubics for all d; n).
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Furthermore, the author proves set theoretic statements for arbitrary smooth var-
ieties in [32]. These statements also contain information about the syzygies among
the generators that makes it possible to study the map ~j2 in much the same
way as ~j was studied above.
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