Bull. Aust. Math. Soc. 88 (2013), 479–485 doi:10.1017/S0004972713000087

1-REGULAR CAYLEY GRAPHS OF VALENCY 7

JING JIAN LI[∞], GENG RONG ZHANG and BO LING

(Received 15 November 2012; accepted 27 December 2012; first published online 8 March 2013)

Abstract

A graph Γ is called 1-regular if Aut Γ acts regularly on its arcs. In this paper, a classification of 1-regular Cayley graphs of valency 7 is given; in particular, it is proved that there is only one core-free graph up to isomorphism.

2010 *Mathematics subject classification*: primary 05C25. *Keywords and phrases*: 1-regular, Cayley graph, core-free.

1. Introduction

Throughout this paper, all graphs are finite, simple and undirected.

Let Γ be a graph. We denote the vertex set, edge set, arc set and full automorphism group by $V(\Gamma)$, $E(\Gamma)\operatorname{Arc}(\Gamma)$ and $\operatorname{Aut}\Gamma$, respectively. We say Γ is *X*-vertex-transitive, *X*-edge-transitive and *X*-arc-transitive if *X* acts transitively on $V(\Gamma)$, $E(\Gamma)$ and $\operatorname{Arc}(\Gamma)$ respectively, where $X \leq \operatorname{Aut}\Gamma$. We simply call Γ vertex-transitive, edge-transitive and arc-transitive for the case where $X = \operatorname{Aut}\Gamma$. In particular, Γ is called (X, 1)-regular if $X \leq \operatorname{Aut}\Gamma$ acts regularly on its arcs, and 1-regular when $X = \operatorname{Aut}\Gamma$. Let *G* be a finite group with identity 1. We call Γ a Cayley graph of *G*, denoted by $\Gamma = \operatorname{Cay}(G, S)$, if there is a subset *S* of *G* with $1 \notin S$ and $S = S^{-1} := \{s^{-1} \mid s \in S\}$ such that $V(\Gamma) = G$ and $E(\Gamma) = \{(g, sg) \mid g \in G, s \in S\}$. It is easy to see that $\operatorname{Cay}(G, S)$ has valency |S|. Moreover, $\operatorname{Cay}(G, S)$ is connected if and only if $\langle S \rangle = G$.

For a Cayley graph $\Gamma = \text{Cay}(G, S)$, G can be viewed as a regular subgroup of Aut Γ by right multiplication action on $V(\Gamma)$. For convenience, we still denote this regular subgroup by G. Then a Cayley graph is vertex-transitive. If G is a normal subgroup of Aut Γ , then Γ is called a *normal Cayley graph* of G. While for a nonnormal Cayley graph Γ , if Aut Γ contains a normal subgroup N that is semi-regularly on $V(\Gamma)$ and has exactly two orbits, then Γ is called a *bi-normal* Cayley graph. Both normal and bi-normal Cayley graphs have nice properties (see, for example, [5, 6, 7, 11]).

The project was sponsored by the Scientific Research Foundation of Guangxi University (Grant No. XBZ110328), NSF of Guangxi (Nos 2012GXNSFBA053010 and 2010GXNSFA013109), NSF of China (No. 10961007).

^{© 2013} Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

And Cay(G, S) is called *core-free* (with respect to G) if G is core-free in some $X \leq \text{Aut}(\text{Cay}(G, S))$, that is, $\text{Core}_X(G) := \bigcap_{x \in X} G^x = 1$.

Li proved in [6] that there are only a finite number of core-free *s*-transitive Cayley graphs of given valency *k* for $s \in \{2, 3, 4, 5, 7\}$ and $k \ge 3$, and that, with the exceptions s = 2 and (s, k) = (3, 7), every *s*-transitive Cayley graph is a normal cover of a core-free one. Li and Lu gave a classification of cubic *s*-transitive Cayley graphs for $s \ge 2$ in [8]. What about the case where s = 1? Until now, the results on 1-regular graphs have mainly focused on constructing examples. For example, Frucht gave the first example of cubic 1-regular graphs in [4]. Conder and Praeger then constructed two infinite families of cubic 1-regular graphs in [2]. Marušič [9] and Malnič [10] constructed two infinite families of tetravalent 1-regular graphs. Classification of such graphs has received great interest in recent years. Motivated by the above results and problem, we consider 1-regular Cayley graphs in this paper. We present the following theorem.

THEOREM 1.1. Let $\Gamma = Cay(G, S)$ be a 1-regular Cayley graph with valency 7, and let $N = Core_A(G)$. Then Γ is connected, and one of the following holds:

- (1) G = N and Γ is a normal Cayley graph;
- (2) |G:N| = 2, Γ is a bi-normal Cayley graph;
- (3) Γ is a normal cover of a core-free graph (up to isomorphism): (A, G) = (S₇, S₆).

REMARK 1.2. For more information on the core-free graph in (3) of Theorem 1.1, the readers can refer to Lemmas 2.2 and 2.3.

2. Core-free case

In this section, we will consider the core-free 1-regular Cayley graphs of valency 7. First, we will list all the (X, 1)-regular graphs with automorphism group X containing the regular subgroup. For an (X, 1)-regular graph, one does not expect it also to be 1-regular. So it is an important task for us to determine whether an (X, 1)-regular graph is 1-regular.

Let *X* be an arbitrary finite group with a core-free subgroup *H*. For an element $g \in X \setminus H$ such that $g^2 \in H$, the coset graph Cos(X, H, g) is the graph with vertex set [X : H], and two vertices Hx, Hy are adjacent if and only if $y^{-1}x \in HgH$. By [8], we have the following simple proposition.

PROPOSITION 2.1. Let $\Gamma = Cay(G, S)$ be a connected (X, 1)-regular Cayley graph of valency 7 with $G \le X \le Aut\Gamma$. Let H be the stabiliser of $1 \in V(\Gamma)$ in X. Then there exists an involution τ in S such that $\tau \in X \setminus N_X(H)$, $\Gamma \cong Cos(X, H, \tau)$, $\langle \tau, H \rangle = X$, $S = G \cap H\tau H$ and $G = \langle S \rangle$.

Let $\Gamma = \text{Cay}(G, S)$ be a connected (X, 1)-regular core-free Cayley graph of valency 7, where $G \le X \le \text{Aut}\Gamma$. For convenience, we let $\Sigma = \{1, 2, ..., 7\}$. By considering the right multiplication action of X on the right cosets of G in X, we may view X as a subgroup of the symmetric group S_7 , which contains a regular subgroup (of S_7) isomorphic to a stabiliser of X acting on $V(\Gamma)$. And in this way, G is a stabiliser of X

acting on Σ by marking [X:G] as Σ . Without loss of generality, we may assume that G fixes 1.

In the following, we will construct all possible connected core-free (X, 1)-regular Cayley graphs of valency 7 with a given stabiliser $H \cong \mathbb{Z}_7$. Without loss of generality we let $H = \langle \sigma \rangle$ with $\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7)$. Clearly *H* acts regularly on Σ ; then *H* is a regular subgroup of S₇. By Proposition 2.1, we may take an involution $\tau \in S_7 \setminus N_{S_7}(H)$ such that $1^{\tau} = 1$. Let $X = \langle \tau, H \rangle$, $S = \{ \sigma \in H\tau H \mid 1^{\sigma} = 1 \}$; then

$$G = \langle S \rangle = \{ \sigma \in X \mid 1^{\sigma} = 1 \}$$

is a complement subgroup of H in X since G is a stabiliser and H is a regular subgroup of X. Thus G acts regularly on [X : H], and it follows that $Cos(X, H, \tau) \cong$ Cay(G, S) is a connected core-free (X, 1)-regular Cayley graph of G. Note that all isomorphic regular subgroups of S_7 are conjugate in S_7 (see, for example, [12]), and $Cos(X, H, \tau)$ is independent of the choice of H up to isomorphism. It is well known that $Cos(X, H, \tau) \cong Cos(X^{\sigma}, H, \tau^{\sigma})$ for any $\sigma \in N_{S_2}(H)$. With the help of GAP, we see that there are in total 74 such τ 's, which are conjugate under N_{S₇}(H) to one of the following nine permutations:

$$\begin{aligned} \tau_{7,1} &= (2\ 7), \quad \tau_{7,2} &= (2\ 4)(3\ 7), \quad \tau_{7,3} &= (2\ 5)(3\ 7), \\ \tau_{7,4} &= (2\ 6)(3\ 7), \quad \tau_{7,5} &= (2\ 3)(5\ 7), \quad \tau_{7,6} &= (2\ 6)(3\ 7)(4\ 5), \\ \tau_{7,7} &= (2\ 6)(3\ 4)(5\ 7), \quad \tau_{7,8} &= (2\ 3)(4\ 6)(5\ 7), \quad \tau_{7,9} &= (2\ 7)(3\ 5)(4\ 6). \end{aligned}$$

For $i \in \{1, 2, ..., 9\}$, we let $\Gamma_{7,i} = \text{Cos}(X_{7,i}, H, \tau_{7,i})$ and $G_{7,i} = \{\sigma \in X_{7,i} \mid 1^{\sigma} = 1\}$, where $X_{7,i} = \langle \tau_{7,i}, \sigma \rangle$. Then $\Gamma_{7,i} \cong \mathsf{Cay}(G_{7,i}, S_{7,i})$ with $S_{7,i} = G_{7,i} \cap H\tau_{7,i}H$ and $G_{7,i} = \langle S_{7,i} \rangle$.

LEMMA 2.2. We have $(G_{7,2}, X_{7,2}) \cong (S_4, PSL(3, 2)), (G_{7,i}, X_{7,i}) \cong (A_6, A_7)$ and $(G_{7,i}, X_{7,i}) \cong (A_6, A_7)$ $X_{7,j} \cong (S_6, S_7)$, where $i \in \{3, 4, 5\}$ and $j \in \{1, 6, 7, 8, 9\}$.

PROOF. Let $i \in \{3, 4, 5\}$, $j \in \{1, 6, 7, 8, 9\}$ and

$$\begin{aligned} \pi_1 &= (\tau_{7,1}\sigma^{-1})^4 \tau_{7,1}, \quad \beta_1 &= \tau_{7,1}, \\ \pi_6 &= (\tau_{7,6}\sigma^3)^2 (\tau_{7,6}\sigma)^3 \sigma^{-3}, \quad \beta_6 &= \tau_{7,6}\sigma^2 (\tau_{7,6}\sigma^{-3})^2 \tau_{7,6}\sigma^2 \tau_{7,6}, \\ \pi_7 &= \tau_{7,7}\sigma^3 \tau_{7,7}\sigma^{-2} \tau_{7,7}, \quad \beta_7 &= \sigma \tau_{7,7}\sigma^{-3} (\tau_{7,7}\sigma)^2, \\ \pi_8 &= (\sigma^{-1}\tau_{7,8})^2 \sigma (\sigma \tau_{7,8})^2 \sigma^{-2} \tau_{7,8}, \quad \beta_8 &= (\tau_{7,8}\sigma^{-2})^2 \tau_{7,8}\sigma^{-1} \tau_{7,8}\sigma^2 \tau_{7,8}\sigma, \\ \pi_9 &= (\tau_{7,9}\sigma^{-1})^4 \tau_{7,9}, \quad \beta_9 &= \sigma^2 \tau_{7,9}\sigma^{-2} \tau_{7,9}\sigma^{-1} \tau_{7,9}\sigma^2 (\tau_{7,9}\sigma)^2. \end{aligned}$$

Then $\pi_i = (2\ 3\ 4\ 5\ 6\ 7)$ and $\beta_i = (2\ 7)$. Note that π_i acts transitively on $\Sigma \setminus \{1\}$, and $X_{7,i}$ acts 2-transitively on Σ . On the other hand, $X_{7,i}$ contains a 2-cycle (2 7), which leads to $X_{7,j} \cong S_7$ by [3, Theorem 3.3A]. Furthermore, $G_{7,j} \cong S_6$. Let

$$\pi_{3} = \sigma^{-1} \tau_{7,3} \sigma^{-2}, \quad \beta_{3} = \sigma^{2} (\tau_{7,3} \sigma)^{2}, \\ \pi_{4} = \sigma^{-1} \tau_{7,4} \sigma^{-2}, \quad \beta_{4} = (\tau_{7,4} \sigma^{2})^{2}, \\ \pi_{5} = \sigma^{-1} \tau_{7,5} \sigma^{3}, \quad \beta_{5} = (\sigma \tau_{7,5} \sigma^{-1} \tau_{7,5})^{2}$$

Then $\pi_3 = (2\ 6\ 7\ 4\ 5), \pi_4 = (2\ 6\ 3\ 4\ 5), \pi_5 = (2\ 4\ 5\ 7)(3\ 6)$ and $\beta_i = (1\ 2\ 3)$. Noticing that $\langle \tau_{7,i}, \pi_i \rangle$ acts transitively on $\Sigma \setminus \{1\}, X_{7,i}$ acts 2-transitively on Σ . However, $X_{7,i}$ contains a 3-cycle (1 2 3) and all generators of $X_{7,i}$ are even permutations. Thus $X_{7,i} \cong A_7$ by [3, Theorem 3.3A], and, moreover, $G_{7,i} \cong A_6$.

Let $\mu = (\sigma^2 \tau_{7,2})^2 = (1 \ 4)(6 \ 7)$; then $\tau_{7,2} = \mu \sigma^{-2} \mu \sigma^2 \mu$ and $X_{7,2} = \langle \tau_{7,2}, \sigma \rangle = \langle \mu, \sigma \rangle$. Note that $\sigma^7 = (\sigma^4 \mu)^4 = (\sigma \mu)^3 = \mu^2 = 1$, $X_{7,2} \cong \text{PSL}(3, 2)$ and $G_{7,2} \cong \text{S}_4$ by [1]. \Box

In the rest of this section, we let

$$\begin{split} c_1 &= (1\ 2\ 3\ 4\ 5\ 6\ 7)(8\ 9\ 10\ 11\ 12\ 13\ 14),\\ c_2 &= (1\ 8)(2\ 14)(3\ 13)(4\ 12)(5\ 11)(6\ 10)(7\ 9),\\ d_1 &= (1\ 2\ 3\ 4\ 5\ 6\ 7)(8\ 9\ 10\ 11\ 12\ 13\ 14)(15\ 16\ 17\ 18\ 19\ 20\ 21),\\ d_2 &= (1\ 8\ 15)(2\ 10\ 19)(3\ 12\ 16)(4\ 14\ 20)(5\ 9\ 17)(6\ 11\ 21)(7\ 13\ 18),\\ \bar\tau_{7,1} &= (3\ 5)(11\ 13),\quad \bar\tau_{7,2} &= (3\ 4)(5\ 7)(9\ 11)(12\ 13),\\ \bar\tau_{7,3} &= (3\ 4)(6\ 7)(9\ 10)(12\ 13),\quad \bar\tau_{7,4} &= (4\ 5)(6\ 7)(9\ 10)(11\ 12),\\ \bar\tau_{7,5} &= (2\ 7)(4\ 5)(9\ 14)(11\ 12),\quad \bar\tau_{7,6} &= (2\ 7)(3\ 4)(5\ 6)(9\ 14)(10\ 11)(12\ 13),\\ \bar\tau_{7,7} &= (2\ 6)(3\ 4)(5\ 7)(9\ 13)(10\ 11)(12\ 14)(16\ 20)(17\ 18)(19\ 21),\\ \bar\tau_{7,9} &= (2\ 7)(3\ 5)(4\ 6)(9\ 14)(10\ 12)(11\ 13). \end{split}$$

Let $\bar{H}_1 = \langle c_1, c_2 \rangle$, $\bar{X}_{7,i} = \langle c_1, c_2, \bar{\tau}_{7,i} \rangle$, $\bar{\Gamma}_{7,i} = \text{Cos}(\bar{X}_{7,i}, \bar{H}_1, \bar{\tau}_{7,i})$, $\bar{S}_{7,i} = \{\sigma \in \bar{H}_1 \bar{\tau}_{7,i} \bar{H}_1 | 1^{\sigma} = 1\}$ and $\bar{G}_{7,i} = \langle \bar{S}_{7,i} \rangle$, with i = 1, 2, 3, 4, 5, 6, 9. Since $c_1^7 = c_2^2 = 1$ and $c_1^{c_2} = c_1^{-1}$, $\bar{H}_1 \cong D_{14}$. Write $\bar{\Sigma}_1 = \{1, 2, \dots, 14\}$, $\bar{\Sigma}_2 = \{1, 2, \dots, 21\}$, $\bar{H}_2 = \langle d_1, d_2 \rangle$, $\bar{X}_{7,7} = \langle d_1, d_2, \bar{\tau}_{7,7} \rangle$, $\bar{\Gamma}_{7,7} = \text{Cos}(\bar{X}_{7,7}, \bar{H}_2, \bar{\tau}_{7,7})$, $\bar{S}_{7,7} = \{\sigma \in \bar{H}_2 \bar{\tau}_{7,7} \bar{H}_2 \mid 1^{\sigma} = 1\}$ and $\bar{G}_{7,7} = \langle \bar{S}_{7,7} \rangle$. Since $d_1^7 = d_2^3 = 1$ and $d_1^{d_2} = d_1^2$, $\bar{H}_2 \cong \mathbb{Z}_7 \rtimes \mathbb{Z}_3$.

LEMMA 2.3. If $i \in \{1, 2, 3, 4, 5, 6, 7, 9\}$, then $\Gamma_{7,i}$ is not a core-free 7-valent 1-regular Cayley graph.

PROOF. For convenience, we denote $\overline{S}_{7,i} = \{\overline{s} \mid s \in S_{7,i}\}$ with $i \in \{1, 2, 3, 4, 5, 6, 7, 9\}$. According to our calculations,

$$\begin{split} S_{7,1} &= \{a_{7,1}, b_{7,1}, b_{7,1}^{-1}, b_{7,1}^{2}a_{7,1}b_{7,1}^{-2}, b_{7,1}^{3}a_{7,1}b_{7,1}^{3}, b_{7,1}^{-2}a_{7,1}b_{7,1}^{2}, b_{7,1}a_{7,1}b_{7,1}^{-1}\}, \\ S_{7,2} &= \{\tau_{7,2}, a_{7,2}, b_{7,2}, a_{7,2}^{-1}, b_{7,2}^{-1}, \tau_{7,2}b_{7,2}, a_{7,2}^{-1}b_{7,2}^{-1}\}, \\ S_{7,3} &= \{\tau_{7,3}, a_{7,3}, b_{7,3}, a_{7,3}^{-1}, b_{7,3}^{-1}, \tau_{7,3}a_{7,3}b_{7,3}a_{7,3}^{-1}, \tau_{7,3}a_{7,3}^{2}b_{7,3}^{-2}\}, \\ S_{7,4} &= \{a_{7,4}, b_{7,4}, c_{7,4}, b_{7,4}^{-1}, c_{7,4}^{-1}, b_{7,4}a_{7,4}b_{7,4}^{-1}, c_{7,4}a_{7,4}b_{7,4}^{-1}c_{7,4}^{-1}\}, \\ S_{7,5} &= \{a_{7,5}, b_{7,5}, c_{7,5}, b_{7,5}^{-1}, c_{7,5}^{-1}, b_{7,5}^{-1}c_{7,5}a_{7,5}c_{7,5}^{-1}b_{7,5}, b_{7,5}c_{7,5}a_{7,5}c_{7,5}b_{7,5}^{-1}\}, \\ S_{7,6} &= \{\tau_{7,6}, a_{7,6}, b_{7,6}, a_{7,6}^{-1}, b_{7,7}^{-1}, \tau_{7,7}a_{7,7}^{-1}\tau_{7,7}, \tau_{7,7}a_{7,7}\tau_{7,7}b_{7,7}\tau_{7,7}\}, \\ S_{7,9} &= \{\tau_{7,9}, a_{7,9}, b_{7,9}, a_{7,9}^{-1}, b_{7,9}^{-1}, a_{7,9}^{-1}, \tau_{7,9}, \tau_{7,9}b_{7,9}a_{7,9}^{-1}\}, \end{split}$$

where $a_{7,1} = (3\ 5)$, $\bar{a}_{7,1} = \bar{\tau}_{7,1}$, $a_{7,4} = (3\ 6)(4\ 7)$, $\bar{a}_{7,4} = \bar{\tau}_{7,4}$, $a_{7,5} = (2\ 7)(4\ 5)$, $\bar{a}_{7,5} = \bar{\tau}_{7,5}$ and

$$\begin{split} b_{7,1} &= (2\ 7\ 5\ 3\ 6\ 4), \quad b_{7,1} &= (2\ 7\ 5\ 3\ 6\ 4)(8\ 13\ 11\ 14\ 12\ 10), \\ a_{7,2} &= (2\ 6\ 3)(4\ 5\ 7), \quad \bar{a}_{7,2} &= (2\ 7\ 4)(3\ 6\ 5)(8\ 14\ 10)(9\ 13\ 11), \\ b_{7,2} &= (2\ 4)(3\ 5\ 7\ 6), \quad \bar{b}_{7,2} &= (2\ 7\ 6\ 5)(3\ 4)(8\ 14)(9\ 13\ 12\ 11), \\ a_{7,3} &= (2\ 6\ 7\ 4\ 5), \quad \bar{a}_{7,3} &= (2\ 7\ 6\ 5\ 3)(8\ 13\ 12\ 11\ 9), \\ b_{7,3} &= (2\ 6\ 7\ 4\ 5), \quad \bar{b}_{7,3} &= (2\ 7\ 6\ 5\ 3)(8\ 13\ 12\ 11\ 9), \\ b_{7,4} &= (2\ 6\ 3\ 4\ 5), \quad \bar{b}_{7,4} &= (2\ 3\ 4\ 6\ 7)(8\ 9\ 10\ 12\ 13), \\ b_{7,4} &= (2\ 6\ 3\ 4\ 5), \quad \bar{b}_{7,4} &= (2\ 3\ 4\ 5\ 7)(8\ 9\ 10\ 12\ 14), \\ c_{7,4} &= (3\ 7\ 4\ 5\ 6), \quad \bar{c}_{7,4} &= (2\ 4\ 5\ 6\ 7)(9\ 10\ 11\ 12\ 14), \\ b_{7,5} &= (2\ 4\ 5\ 7)(3\ 6), \quad \bar{b}_{7,5} &= (2\ 7\ 6\ 3)(4\ 5)(9\ 14\ 13\ 10)(11\ 12), \\ a_{7,6} &= (2\ 6)(3\ 4\ 5), \quad \bar{a}_{7,6} &= (2\ 7\ 4\ 3\ 6\ 5)(9\ 14\ 11\ 10\ 13\ 12), \\ a_{7,6} &= (2\ 6\ 4\ 5\ 3\ 7), \quad \bar{b}_{7,6} &= (2\ 7\ 4\ 3\ 6\ 5)(9\ 14\ 11\ 10\ 13\ 12), \\ a_{7,9} &= (2\ 6\ 3\ 5), \quad \bar{b}_{7,9} &= (2\ 6\ 3\ 7)(9\ 13\ 10\ 14), \\ b_{7,9} &= (2\ 6\ 3\ 5), \quad \bar{b}_{7,9} &= (2\ 4\ 5\ 3\ 7\ 6), \\ \bar{a}_{7,7} &= (2\ 4\ 7\ 5\ 6\ 3), \quad b_{7,7} &= (2\ 4\ 5\ 3\ 7\ 6), \\ \bar{a}_{7,7} &= (2\ 4\ 7\ 5\ 6\ 3)(9\ 11\ 14\ 12\ 13\ 10)(16\ 18\ 21\ 19\ 20\ 17). \end{split}$$

Note that $\overline{\tau}_{7,i} \in \overline{S}_{7,i}$, $\overline{\tau}_{7,i} \in \overline{G}_{7,i}$, and it follows that $\overline{X}_{7,i} = \overline{G}_{7,i}\overline{H}_1$. It is easy to see that \overline{H}_1 acts regularly on $\overline{\Sigma}_1$ and $1^{\overline{G}_{7,i}} = 1$. It follows that $\overline{G}_{7,i} \cap \overline{H}_1 = 1$ and $\overline{G}_{7,i}$ is a complement subgroup of \overline{H}_1 in $\overline{X}_{7,i}$. Hence, we have $\overline{\Gamma}_{7,i} \cong \operatorname{Cay}(\overline{G}_{7,i}, \overline{S}_{7,i})$ for $i \in \{1, 2, 3, 4, 5, 6, 9\}$. With a similar argument, we get $\overline{\Gamma}_{7,7} \cong \operatorname{Cay}(\overline{G}_{7,7}, \overline{S}_{7,7})$. Let $\Phi_{7,1} : a_{7,1} \longrightarrow \overline{a}_{7,1}, b_{7,1} \longrightarrow \overline{b}_{7,1}; \quad \Phi_{7,i} : \tau_{7,i} \longrightarrow \overline{\tau}_{7,i}, a_{7,i} \longrightarrow \overline{a}_{7,i}, b_{7,i} \longrightarrow \overline{b}_{7,i}; \quad \Phi_{7,j} : a_{7,j} \longrightarrow \overline{a}_{7,j}, b_{7,j} \longrightarrow \overline{b}_{7,j}, c_{7,j} \longrightarrow \overline{c}_{7,j}$ with $i \in \{2, 3, 6, 7, 9\}$ and $j \in \{4, 5\}$.

According to the proof in the above paragraph, $\langle a_{7,1}, b_{7,1} \rangle \cong S_6$, so $\langle \bar{a}_{7,1}, \bar{b}_{7,1} \rangle$ is also isomorphic to S_6 by replacing $a_{7,1}$ and $b_{7,1}$ with $\bar{a}_{7,1}$ and $\bar{b}_{7,1}$, respectively. Thus $G_{7,1} \cong \bar{G}_{7,1}$, that is, $\Phi_{7,1}$ is an isomorphism of $G_{7,1}$ to $\bar{G}_{7,1}$ denoted by $G_{7,1}^{\Phi_{7,1}} = \bar{G}_{7,1}$. Furthermore, $S_{7,1}^{\Phi_{7,1}} = \bar{S}_{7,1}$. With similar arguments, we have $G_{7,i}^{\Phi_{7,i}} = \bar{G}_{7,i}$ and $S_{7,i}^{\Phi_{7,i}} = \bar{S}_{7,i}$. Then $Cay(G_{7,i}, S_{7,i}) \cong Cay(\bar{G}_{7,i}, \bar{S}_{7,i})$, that is, $\Gamma_{7,i} \cong \bar{\Gamma}_{7,i}$. Since $\bar{H}_1 \cong D_{14}$ and $\bar{H}_2 \cong \mathbb{Z}_7 \rtimes \mathbb{Z}_3$, $\bar{\Gamma}_{7,i}$ is not 1-regular and so $\Gamma_{7,i}$ for $i \in \{1, 2, 3, 4, 5, 6, 7, 9\}$.

3. The proof of Theorem 1.1

In this section, we will prove our main result. First, we need some definitions and properties.

Assume that Γ is an X-vertex-transitive graph. Let N be a normal subgroup of X. Denote the set of N-orbits in $V(\Gamma)$ by V_N . The normal quotient Γ_N of Γ induced by N is defined as the graph with vertex set V_N , and two vertices $B, C \in V_N$ are adjacent if there exist $u \in B$ and $v \in C$ such that they are adjacent in Γ . It is easy to show that X/N acts transitively on the vertex set of Γ_N . Assume further that Γ is X-edge-transitive. Then X/N acts transitively on the edge set of Γ_N , and the valency $val(\Gamma) = mval(\Gamma_N)$ for some positive integer m. If m = 1, then Γ is called a normal cover of Γ_N .

We are now in a position to prove Theorem 1.1. Let $\Gamma = \text{Cay}(G, S)$ be a 1-regular Cayley graph of valency 7. Then it is trivial to see that Γ is connected. Let $A = \text{Aut}\Gamma$ and $N = \text{Core}_A(G)$ be the core of G in A. Assume that N is not trivial. Then either G = N or $|G:N| \ge 2$. The former implies $G \le A$, that is, Γ is a normal Cayley graph with respect to G. For the case where |G:N| = 2, it is easy to see that Γ is a binormal Cayley graph. Suppose that |G:N| > 2, namely, N has at least three orbits on $V(\Gamma)$. Consider the normal quotient Γ_N ; we have that Γ_N is a Cayley graph of G/N, $G/N \le A/N \le \text{Aut}\Gamma_N$ and Γ_N is core-free with respect to G/N. Clearly Γ_N is an A/N-arc-transitive Cayley graph of G/N if Γ is A-arc-transitive, and under this assumption, Γ is a normal cover of Γ_N . Now suppose that N is trivial; then Γ is core-free. According to Lemmas 2.2 and 2.3, there is only one possible core-free 1-regular Cayley graph of valency 7 (up to isomorphism): $(G, A) \cong (S_6, S_7)$. The proof of Theorem 1.1 is complete.

References

- [1] J. H. Conway, R. T. Curtis, S. P. Noton, R. A. Parker and R. A. Wilson, *Atlas of Finite Groups* (Clarendon Press, Oxford, 1985).
- M. D. E. Conder and C. E. Praeger, 'Remarks on path-transitivity in finite graphs', *European J. Combin.* 17 (1996), 371–378.
- [3] J. D. Dixon and B. Mortimer, *Permutation Groups*, 2nd edition (Springer-Verlag, New York, 1996).
- [4] R. Frucht, 'A one-regular graph of degree three', Canad. J. Math. 4 (1952), 240–247.
- [5] C. H. Li, 'Finite s-arc transitive graphs of prime-power order', Bull. Lond. Math. Soc. 33 (2001), 129–137.
- [6] C. H. Li, 'Finite s-arc transitive Cayley graphs and flag-transitive projective planes', Proc. Amer. Math. Soc. 133 (2005), 31–40.
- [7] C. H. Li, 'Finite edge-transitive Cayley graphs and rotary Cayley maps', *Trans. Amer. Math. Soc.* 359 (2006), 4605–4635.
- [8] J. J. Li and Z. P. Lu, 'Cubic s-transitive Cayley graphs', *Discrete Math.* **309** (2009), 6014–6025.
- [9] D. Marušič, 'A family of one-regular graphs of valency 4', *European J. Combin.* **18** (1997), 59–64.
- [10] A. Malnič, D. Marušič and N. Seifter, 'Constructing infinite one-regular graphs', *European J. Combin.* 20 (1999), 845–853.
- [11] C. E. Praeger, 'Finite normal edge-transitive Cayley graphs', Bull. Aust. Math. Soc. 60 (1999), 207–220.
- [12] S. J. Xu, X. G. Fang, J. Wang and M. Y. Xu, '5-arc transitive cubic Cayley graphs on finite simple groups', *European J. Combin.* 28 (2007), 1023–1036.

JING JIAN LI, School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan 650031, PR China and College of Mathematics and Information Science, Guangxi University, Nanning 530004, PR China e-mail: lijjhx@163.com

GENG RONG ZHANG, College of Mathematics and Information Science, Guangxi University, Nanning 530004, PR China e-mail: zgrzaw@gxu.edu.cn

BO LING, College of Mathematics and Information Science, Guangxi University, Nanning 530004, PR China e-mail: bolinggxu@163.com

[7]