1-REGULAR CAYLEY GRAPHS OF VALENCY 7

JING JIAN LI ${ }^{\boxtimes}$, GENG RONG ZHANG and BO LING

(Received 15 November 2012; accepted 27 December 2012; first published online 8 March 2013)

Abstract

A graph Γ is called 1-regular if Aut Γ acts regularly on its arcs. In this paper, a classification of 1-regular Cayley graphs of valency 7 is given; in particular, it is proved that there is only one core-free graph up to isomorphism.

2010 Mathematics subject classification: primary 05C25.
Keywords and phrases: 1-regular, Cayley graph, core-free.

1. Introduction

Throughout this paper, all graphs are finite, simple and undirected.
Let Γ be a graph. We denote the vertex set, edge set, arc set and full automorphism group by $V(\Gamma), E(\Gamma) \operatorname{Arc}(\Gamma)$ and $\mathrm{Aut} \Gamma$, respectively. We say Γ is X-vertex-transitive, X-edge-transitive and X-arc-transitive if X acts transitively on $V(\Gamma), E(\Gamma)$ and $\operatorname{Arc}(\Gamma)$ respectively, where $X \leq \mathrm{Aut} \Gamma$. We simply call Γ vertex-transitive, edge-transitive and arc-transitive for the case where $X=$ Aut Γ. In particular, Γ is called $(X, 1)$-regular if $X \leq \mathrm{Aut} \Gamma$ acts regularly on its arcs, and 1-regular when $X=\mathrm{Aut} \Gamma$. Let G be a finite group with identity 1 . We call Γ a Cayley graph of G, denoted by $\Gamma=\operatorname{Cay}(G, S)$, if there is a subset S of G with $1 \notin S$ and $S=S^{-1}:=\left\{s^{-1} \mid s \in S\right\}$ such that $V(\Gamma)=G$ and $E(\Gamma)=\{(g, s g) \mid g \in G, s \in S\}$. It is easy to see that $\operatorname{Cay}(G, S)$ has valency $|S|$. Moreover, $\operatorname{Cay}(G, S)$ is connected if and only if $\langle S\rangle=G$.

For a Cayley graph $\Gamma=\operatorname{Cay}(G, S), G$ can be viewed as a regular subgroup of Aut Γ by right multiplication action on $V(\Gamma)$. For convenience, we still denote this regular subgroup by G. Then a Cayley graph is vertex-transitive. If G is a normal subgroup of Aut Γ, then Γ is called a normal Cayley graph of G. While for a nonnormal Cayley graph Γ, if Aut Γ contains a normal subgroup N that is semi-regularly on $V(\Gamma)$ and has exactly two orbits, then Γ is called a bi-normal Cayley graph. Both normal and bi-normal Cayley graphs have nice properties (see, for example, [5, 6, 7, 11]).

[^0]And $\operatorname{Cay}(G, S)$ is called core-free (with respect to G) if G is core-free in some $X \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$, that is, $\operatorname{Core}_{X}(G):=\bigcap_{x \in X} G^{x}=1$.

Li proved in [6] that there are only a finite number of core-free s-transitive Cayley graphs of given valency k for $s \in\{2,3,4,5,7\}$ and $k \geq 3$, and that, with the exceptions $s=2$ and $(s, k)=(3,7)$, every s-transitive Cayley graph is a normal cover of a core-free one. Li and Lu gave a classification of cubic s-transitive Cayley graphs for $s \geq 2$ in [8]. What about the case where $s=1$? Until now, the results on 1-regular graphs have mainly focused on constructing examples. For example, Frucht gave the first example of cubic 1-regular graphs in [4]. Conder and Praeger then constructed two infinite families of cubic 1-regular graphs in [2]. Marus̆ic̆ [9] and Malnič [10] constructed two infinite families of tetravalent 1-regular graphs. Classification of such graphs has received great interest in recent years. Motivated by the above results and problem, we consider 1-regular Cayley graphs in this paper. We present the following theorem.

Theorem 1.1. Let $\Gamma=\operatorname{Cay}(G, S)$ be a 1-regular Cayley graph with valency 7, and let $N=\operatorname{Core}_{\mathrm{A}}(G)$. Then Γ is connected, and one of the following holds:
(1) $\quad G=N$ and Γ is a normal Cayley graph;
(2) $|G: N|=2, \Gamma$ is a bi-normal Cayley graph;
(3) Γ is a normal cover of a core-free graph (up to isomorphism): $(\mathrm{A}, G)=\left(\mathrm{S}_{7}, \mathrm{~S}_{6}\right)$.

Remark 1.2. For more information on the core-free graph in (3) of Theorem 1.1, the readers can refer to Lemmas 2.2 and 2.3.

2. Core-free case

In this section, we will consider the core-free 1-regular Cayley graphs of valency 7. First, we will list all the ($X, 1$)-regular graphs with automorphism group X containing the regular subgroup. For an $(X, 1)$-regular graph, one does not expect it also to be 1regular. So it is an important task for us to determine whether an ($X, 1$)-regular graph is 1 -regular.

Let X be an arbitrary finite group with a core-free subgroup H. For an element $g \in X \backslash H$ such that $g^{2} \in H$, the coset graph $\operatorname{Cos}(X, H, g)$ is the graph with vertex set [$X: H$], and two vertices $H x, H y$ are adjacent if and only if $y^{-1} x \in H g H$. By [8], we have the following simple proposition.

Proposition 2.1. Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected $(X, 1)$-regular Cayley graph of valency 7 with $G \leq X \leq A u t \Gamma$. Let H be the stabiliser of $1 \in V(\Gamma)$ in X. Then there exists an involution τ in S such that $\tau \in X \backslash \mathrm{~N}_{X}(H), \Gamma \cong \operatorname{Cos}(X, H, \tau),\langle\tau, H\rangle=X$, $S=G \cap H \tau H$ and $G=\langle S\rangle$.

Let $\Gamma=\operatorname{Cay}(G, S)$ be a connected $(X, 1)$-regular core-free Cayley graph of valency 7 , where $G \leq X \leq \mathrm{Aut} \Gamma$. For convenience, we let $\Sigma=\{1,2, \ldots, 7\}$. By considering the right multiplication action of X on the right cosets of G in X, we may view X as a subgroup of the symmetric group S_{7}, which contains a regular subgroup (of S_{7}) isomorphic to a stabiliser of X acting on $V(\Gamma)$. And in this way, G is a stabiliser of X
acting on Σ by marking [$X: G]$ as Σ. Without loss of generality, we may assume that G fixes 1 .

In the following, we will construct all possible connected core-free $(X, 1)$-regular Cayley graphs of valency 7 with a given stabiliser $H \cong \mathbb{Z}_{7}$. Without loss of generality we let $H=\langle\sigma\rangle$ with $\sigma=(1234567$). Clearly H acts regularly on Σ; then H is a regular subgroup of S_{7}. By Proposition 2.1, we may take an involution $\tau \in \mathrm{S}_{7} \backslash \mathrm{~N}_{\mathrm{S}_{7}}(H)$ such that $1^{\tau}=1$. Let $X=\langle\tau, H\rangle, S=\left\{\sigma \in H \tau H \mid 1^{\sigma}=1\right\}$; then

$$
G=\langle S\rangle=\left\{\sigma \in X \mid 1^{\sigma}=1\right\}
$$

is a complement subgroup of H in X since G is a stabiliser and H is a regular subgroup of X. Thus G acts regularly on $[X: H]$, and it follows that $\operatorname{Cos}(X, H, \tau) \cong$ $\operatorname{Cay}(G, S)$ is a connected core-free ($X, 1$)-regular Cayley graph of G. Note that all isomorphic regular subgroups of S_{7} are conjugate in S_{7} (see, for example, [12]), and $\operatorname{Cos}(X, H, \tau)$ is independent of the choice of H up to isomorphism. It is well known that $\operatorname{Cos}(X, H, \tau) \cong \operatorname{Cos}\left(X^{\sigma}, H, \tau^{\sigma}\right)$ for any $\sigma \in \mathrm{N}_{\mathrm{S}_{7}}(H)$. With the help of GAP, we see that there are in total 74 such τ 's, which are conjugate under $\mathrm{N}_{\mathrm{S}_{7}}(H)$ to one of the following nine permutations:

$$
\begin{aligned}
\tau_{7,1}=(27), & \tau_{7,2}=(24)(37), \quad \tau_{7,3}=(25)(37), \\
\tau_{7,4}=(26)(37), & \tau_{7,5}=(23)(57), \quad \tau_{7,6}=(26)(37)(45), \\
\tau_{7,7}=(26)(34)(57), & \tau_{7,8}=(23)(46)(57), \quad \tau_{7,9}=(27)(35)(46) .
\end{aligned}
$$

For $i \in\{1,2, \ldots, 9\}$, we let $\Gamma_{7, i}=\operatorname{Cos}\left(X_{7, i}, H, \tau_{7, i}\right)$ and $G_{7, i}=\left\{\sigma \in X_{7, i} \mid 1^{\sigma}=1\right\}$, where $X_{7, i}=\left\langle\tau_{7, i}, \sigma\right\rangle$. Then $\Gamma_{7, i} \cong \operatorname{Cay}\left(G_{7, i}, S_{7, i}\right)$ with $S_{7, i}=G_{7, i} \cap H \tau_{7, i} H$ and $G_{7, i}=\left\langle S_{7, i}\right\rangle$.
Lemma 2.2. We have $\left(G_{7,2}, X_{7,2}\right) \cong\left(\mathrm{S}_{4}, \operatorname{PSL}(3,2)\right),\left(G_{7, i}, X_{7, i}\right) \cong\left(\mathrm{A}_{6}, \mathrm{~A}_{7}\right)$ and $\left(G_{7, j}\right.$, $\left.X_{7, j}\right) \cong\left(\mathrm{S}_{6}, \mathrm{~S}_{7}\right)$, where $i \in\{3,4,5\}$ and $j \in\{1,6,7,8,9\}$.

Proof. Let $i \in\{3,4,5\}, j \in\{1,6,7,8,9\}$ and

$$
\begin{aligned}
& \pi_{1}=\left(\tau_{7,1} \sigma^{-1}\right)^{4} \tau_{7,1}, \quad \beta_{1}=\tau_{7,1}, \\
& \pi_{6}=\left(\tau_{7,6} \sigma^{3}\right)^{2}\left(\tau_{7,6} \sigma\right)^{3} \sigma^{-3}, \quad \beta_{6}=\tau_{7,6} \sigma^{2}\left(\tau_{7,6} \sigma^{-3}\right)^{2} \tau_{7,6} \sigma^{2} \tau_{7,6}, \\
& \pi_{7}=\tau_{7,7} \sigma^{3} \tau_{7,7} \sigma^{-2} \tau_{7,7}, \quad \beta_{7}=\sigma \tau_{7,7} \sigma^{-3}\left(\tau_{7,7} \sigma\right)^{2}, \\
& \pi_{8}=\left(\sigma^{-1} \tau_{7,8}\right)^{2} \sigma\left(\sigma \tau_{7,8}\right)^{2} \sigma^{-2} \tau_{7,8}, \quad \beta_{8}=\left(\tau_{7,8} \sigma^{-2}\right)^{2} \tau_{7,8} \sigma^{-1} \tau_{7,8} \sigma^{2} \tau_{7,8} \sigma, \\
& \pi_{9}=\left(\tau_{7,9} \sigma^{-1}\right)^{4} \tau_{7,9}, \quad \beta_{9}=\sigma^{2} \tau_{7,9} \sigma^{-2} \tau_{7,9} \sigma^{-1} \tau_{7,9} \sigma^{2}\left(\tau_{7,9} \sigma\right)^{2} .
\end{aligned}
$$

Then $\pi_{j}=(234567)$ and $\beta_{j}=(27)$. Note that π_{j} acts transitively on $\Sigma \backslash\{1\}$, and $X_{7, j}$ acts 2-transitively on Σ. On the other hand, $X_{7, j}$ contains a 2-cycle (27), which leads to $X_{7, j} \cong \mathrm{~S}_{7}$ by [3, Theorem 3.3A]. Furthermore, $G_{7, j} \cong \mathrm{~S}_{6}$.

Let

$$
\begin{array}{ll}
\pi_{3}=\sigma^{-1} \tau_{7,3} \sigma^{-2}, & \beta_{3}=\sigma^{2}\left(\tau_{7,3} \sigma\right)^{2}, \\
\pi_{4}=\sigma^{-1} \tau_{7,4} \sigma^{-2}, & \beta_{4}=\left(\tau_{7,4} \sigma^{2}\right)^{2}, \\
\pi_{5}=\sigma^{-1} \tau_{7,5} \sigma^{3}, & \beta_{5}=\left(\sigma \tau_{7,5} \sigma^{-1} \tau_{7,5}\right)^{2} .
\end{array}
$$

Then $\pi_{3}=\left(2674\right.$ 5) , $\pi_{4}=(26345), \pi_{5}=(2457)(36)$ and $\beta_{i}=\left(\begin{array}{ll}1 & 2\end{array}\right)$). Noticing that $\left\langle\tau_{7, i}, \pi_{i}\right\rangle$ acts transitively on $\Sigma \backslash\{1\}, X_{7, i}$ acts 2-transitively on Σ. However, $X_{7, i}$ contains a 3-cycle (123) and all generators of $X_{7, i}$ are even permutations. Thus $X_{7, i} \cong \mathrm{~A}_{7}$ by [3, Theorem 3.3A], and, moreover, $G_{7, i} \cong \mathrm{~A}_{6}$.

Let $\mu=\left(\sigma^{2} \tau_{7,2}\right)^{2}=(14)(67)$; then $\tau_{7,2}=\mu \sigma^{-2} \mu \sigma^{2} \mu$ and $X_{7,2}=\left\langle\tau_{7,2}, \sigma\right\rangle=\langle\mu, \sigma\rangle$. Note that $\sigma^{7}=\left(\sigma^{4} \mu\right)^{4}=(\sigma \mu)^{3}=\mu^{2}=1, X_{7,2} \cong \operatorname{PSL}(3,2)$ and $G_{7,2} \cong \mathrm{~S}_{4}$ by [1].

In the rest of this section, we let

$$
\begin{aligned}
& c_{1}=(1234567)(891011121314) \text {, } \\
& c_{2}=(18)(214)(313)(412)(511)(610)(79) \text {, } \\
& d_{1}=(1234567)(891011121314)(15161718192021) \text {, } \\
& d_{2}=(1815)(21019)(31216)(41420)(5917)(61121)(71318) \text {, } \\
& \bar{\tau}_{7,1}=(35)(1113), \quad \bar{\tau}_{7,2}=(34)(57)(911)(1213) \text {, } \\
& \bar{\tau}_{7,3}=(34)(67)(910)(1213), \quad \bar{\tau}_{7,4}=(45)(67)(910)(1112), \\
& \bar{\tau}_{7,5}=(27)(45)(914)(1112), \quad \bar{\tau}_{7,6}=(27)(34)(56)(914)(1011)(1213) \text {, } \\
& \bar{\tau}_{7,7}=(26)(34)(57)(913)(1011)(1214)(1620)(1718)(1921) \text {, } \\
& \bar{\tau}_{7,9}=(27)(35)(46)(914)(1012)(1113) .
\end{aligned}
$$

Let $\bar{H}_{1}=\left\langle c_{1}, c_{2}\right\rangle, \bar{X}_{7, i}=\left\langle c_{1}, c_{2}, \bar{\tau}_{7, i}\right\rangle, \bar{\Gamma}_{7, i}=\operatorname{Cos}\left(\bar{X}_{7, i}, \bar{H}_{1}, \bar{\tau}_{7, i}\right\rangle, \bar{S}_{7, i}=\left\{\sigma \in \bar{H}_{1} \bar{\tau}_{7, i} \bar{H}_{1} \mid\right.$ $\left.1^{\sigma}=1\right\}$ and $\bar{G}_{7, i}=\left\langle\bar{S}_{7, i}\right\rangle$, with $i=1,2,3,4,5,6,9$. Since $c_{1}^{7}=c_{2}^{2}=1$ and $c_{1}^{c_{2}}=$ $c_{1}^{-1}, \bar{H}_{1} \cong \mathrm{D}_{14}$. Write $\bar{\Sigma}_{1}=\{1,2, \ldots, 14\}, \bar{\Sigma}_{2}=\{1,2, \ldots, 21\}, \bar{H}_{2}=\left\langle d_{1}, d_{2}\right\rangle, \bar{X}_{7,7}=$ $\left\langle d_{1}, d_{2}, \bar{\tau}_{7,7}\right\rangle, \quad \bar{\Gamma}_{7,7}=\operatorname{Cos}\left(\bar{X}_{7,7}, \bar{H}_{2}, \bar{\tau}_{7,7}\right\rangle, \quad \bar{S}_{7,7}=\left\{\sigma \in \bar{H}_{2} \bar{\tau}_{7,7} \bar{H}_{2} \mid 1^{\sigma}=1\right\} \quad$ and $\bar{G}_{7,7}=$ $\left\langle\bar{S}_{7,7}\right\rangle$. Since $d_{1}^{7}=d_{2}^{3}=1$ and $d_{1}^{d_{2}}=d_{1}^{2}, \bar{H}_{2} \cong \mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$.

Lemma 2.3. If $i \in\{1,2,3,4,5,6,7,9\}$, then $\Gamma_{7, i}$ is not a core-free 7-valent 1-regular Cayley graph.
Proof. For convenience, we denote $\bar{S}_{7, i}=\left\{\bar{s} \mid s \in S_{7, i}\right\}$ with $i \in\{1,2,3,4,5,6,7,9\}$. According to our calculations,

$$
\begin{aligned}
& S_{7,1}=\left\{a_{7,1}, b_{7,1}, b_{7,1}^{-1}, b_{7,1}^{2} a_{7,1} b_{7,1}^{-2}, b_{7,1}^{3} a_{7,1} b_{7,1}^{3}, b_{7,1}^{-2} a_{7,1} b_{7,1}^{2}, b_{7,1} a_{7,1} b_{7,1}^{-1}\right\}, \\
& S_{7,2}=\left\{\tau_{7,2}, a_{7,2}, b_{7,2}, a_{7,2}^{-1}, b_{7,2}^{-1}, \tau_{7,2} b_{7,2}, a_{7,2}^{-1} b_{7,2}\right\}, \\
& S_{7,3}=\left\{\tau_{7,3}, a_{7,3}, b_{7,3}, a_{7,3}^{-1}, b_{7,3}^{-1}, \tau_{7,3} a_{7,3} b_{7,3} \tau_{7,3} a_{7,3}^{-1}, \tau_{7,3} a_{7,3}^{2} b_{7,3}^{-2}\right\}, \\
& S_{7,4}=\left\{a_{7,4}, b_{7,4}, c_{7,4}, b_{7,4}^{-1}, c_{7,4}^{-1}, b_{7,4} a_{7,4} b_{7,4}^{-1}, c_{7,4} b_{7,4} a_{7,4} b_{7,4}^{-1} c_{7,4}^{-1}\right\}, \\
& S_{7,5}=\left\{a_{7,5}, b_{7,5}, c_{7,5}, b_{7,5}^{-1}, c_{7,5}^{-1}, b_{7,5}^{-1} c_{7,5} a_{7,5} c_{7,5}^{-1} b_{7,5}, b_{7,5} c_{7,5}^{-1} a_{7,5} c_{7,5} b_{7,5}^{-1}\right\}, \\
& S_{7,6}=\left\{\tau_{7,6}, a_{7,6}, b_{7,6}, a_{7,6}^{-1}, b_{7,6}^{-1}, a_{7,6}^{2} b_{7,6}^{-1} a_{7,6}^{-1} b_{7,6}, \tau_{7,6} b_{7,6}^{-2} a_{7,6} b_{7,6}\right\}, \\
& S_{7,7}=\left\{\tau_{7,7}, a_{7,7}, b_{7,7}, a_{7,7}^{-1}, b_{7,7}^{-1}, \tau_{7,7} b_{7,7}^{-1} \tau_{7,7} a_{7,7}^{-1} \tau_{7,7}, \tau_{7,7} a_{7,7} \tau_{7,7} b_{7,7} \tau_{7,7}\right\}, \\
& S_{7,9}=\left\{\tau_{7,9}, a_{7,9}, b_{7,9}, a_{7,9}^{-1}, b_{7,9}^{-1}, a_{7,9} b_{7,9}^{-1} \tau_{7,9}, \tau_{7,9} b_{7,9} a_{7,9}^{-1}\right\},
\end{aligned}
$$

where $a_{7,1}=(35), \bar{a}_{7,1}=\bar{\tau}_{7,1}, a_{7,4}=(36)(47), \bar{a}_{7,4}=\bar{\tau}_{7,4}, a_{7,5}=(27)(45), \bar{a}_{7,5}=\bar{\tau}_{7,5}$ and

$$
\begin{aligned}
& b_{7,1}=(275364), \quad \bar{b}_{7,1}=(275364)(81311141210), \\
& a_{7,2}=(263)(457), \quad \bar{a}_{7,2}=(274)(365)(81410)(91311), \\
& b_{7,2}=(24)(3576), \quad \bar{b}_{7,2}=(2765)(34)(814)(9131211), \\
& a_{7,3}=(26745), \quad \bar{a}_{7,3}=(27653)(81312119), \\
& b_{7,3}=(25473), \quad \bar{b}_{7,3}=(23467)(89101213), \\
& b_{7,4}=(26345), \quad \bar{b}_{7,4}=(23457)(89101214), \\
& c_{7,4}=\left(\begin{array}{l}
2
\end{array}\right), \\
& b_{7,5}=(2457), \quad \bar{c}_{7,4}=(24567)(910111214), \\
& c_{7,5}=(2367), \quad \bar{b}_{7,5}=(2754)(36)(9141211)(1013), \quad \bar{c}_{7,5}=(2763)(45)(9141310)(1112), \\
& a_{7,6}=(26)(345), \quad \bar{a}_{7,6}=(274)(56)(91411)(1213), \\
& b_{7,6}=(264537), \quad \bar{b}_{7,6}=(274365)(91411101312), \\
& a_{7,9}=(2736), \quad \bar{a}_{7,9}=(2637)(9131014), \\
& b_{7,9}=(2635), \quad \bar{b}_{7,9}=(3647)(10131114), \\
& a_{7,7}=(247563), \quad b_{7,7}=(245376), \\
& \bar{a}_{7,7}=(256437)(91213111014)(161920181721), \\
& \bar{b}_{7,7}=(247563)(91114121310)(161821192017) .
\end{aligned}
$$

Note that $\bar{\tau}_{7, i} \in \bar{S}_{7, i}, \bar{\tau}_{7, i} \in \bar{G}_{7, i}$, and it follows that $\bar{X}_{7, i}=\bar{G}_{7, i} \bar{H}_{1}$. It is easy to see that \bar{H}_{1} acts regularly on $\bar{\Sigma}_{1}$ and $1^{\bar{G}_{7, i}}=1$. It follows that $\bar{G}_{7, i} \cap \bar{H}_{1}=1$ and $\bar{G}_{7, i}$ is a complement subgroup of \bar{H}_{1} in $\bar{X}_{7, i}$. Hence, we have $\bar{\Gamma}_{7, i} \cong \operatorname{Cay}\left(\bar{G}_{7, i}, \bar{S}_{7, i}\right)$ for $i \in\{1,2,3,4,5,6,9\}$. With a similar argument, we get $\bar{\Gamma}_{7,7} \cong \operatorname{Cay}\left(\bar{G}_{7,7}, \bar{S}_{7,7}\right)$. Let $\Phi_{7,1}: a_{7,1} \longrightarrow \bar{a}_{7,1}, b_{7,1} \longrightarrow \bar{b}_{7,1} ; \Phi_{7, i}: \tau_{7, i} \longrightarrow \bar{\tau}_{7, i}, a_{7, i} \longrightarrow \bar{a}_{7, i}, b_{7, i} \longrightarrow \bar{b}_{7, i} ; \Phi_{7, j}:$ $a_{7, j} \longrightarrow \bar{a}_{7, j}, b_{7, j} \longrightarrow \bar{b}_{7, j}, c_{7, j} \longrightarrow \bar{c}_{7, j}$ with $i \in\{2,3,6,7,9\}$ and $j \in\{4,5\}$.

According to the proof in the above paragraph, $\left\langle a_{7,1}, b_{7,1}\right\rangle \cong \mathrm{S}_{6}$, so $\left\langle\bar{a}_{7,1}, \bar{b}_{7,1}\right\rangle$ is also isomorphic to S_{6} by replacing $a_{7,1}$ and $b_{7,1}$ with $\bar{a}_{7,1}$ and $\bar{b}_{7,1}$, respectively. Thus $G_{7,1} \cong \bar{G}_{7,1}$, that is, $\Phi_{7,1}$ is an isomorphism of $G_{7,1}$ to $\bar{G}_{7,1}$ denoted by $G_{7,1}^{\Phi_{7,1}}=\bar{G}_{7,1}$. Furthermore, $S_{7,1}^{\Phi_{7,1}}=\bar{S}_{7,1}$. With similar arguments, we have $G_{7, i}^{\Phi_{7, i}}=\bar{G}_{7, i}$ and $S_{7, i}^{\Phi_{7, i}}=$ $\bar{S}_{7, i}$. Then $\operatorname{Cay}\left(G_{7, i}, S_{7, i}\right) \cong \operatorname{Cay}\left(\bar{G}_{7, i}, \bar{S}_{7, i}\right)$, that is, $\Gamma_{7, i} \cong \bar{\Gamma}_{7, i}$. Since $\bar{H}_{1} \cong \mathrm{D}_{14}$ and $\bar{H}_{2} \cong \mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}, \bar{\Gamma}_{7, i}$ is not 1-regular and so $\Gamma_{7, i}$ for $i \in\{1,2,3,4,5,6,7,9\}$.

3. The proof of Theorem 1.1

In this section, we will prove our main result. First, we need some definitions and properties.

Assume that Γ is an X-vertex-transitive graph. Let N be a normal subgroup of X. Denote the set of N-orbits in $V(\Gamma)$ by V_{N}. The normal quotient Γ_{N} of Γ induced by N is defined as the graph with vertex set V_{N}, and two vertices $B, C \in V_{N}$ are adjacent if there exist $u \in B$ and $v \in C$ such that they are adjacent in Γ. It is easy to show that X / N acts transitively on the vertex set of Γ_{N}. Assume further that Γ is X-edge-transitive. Then X / N acts transitively on the edge set of Γ_{N}, and the valency $\operatorname{val}(\Gamma)=m \mathrm{val}\left(\Gamma_{N}\right)$ for some positive integer m. If $m=1$, then Γ is called a normal cover of Γ_{N}.

We are now in a position to prove Theorem 1.1. Let $\Gamma=\operatorname{Cay}(G, S)$ be a 1-regular Cayley graph of valency 7. Then it is trivial to see that Γ is connected. Let A = Aut Γ and $N=\operatorname{Core}_{A}(G)$ be the core of G in A. Assume that N is not trivial. Then either $G=N$ or $|G: N| \geq 2$. The former implies $G \unlhd A$, that is, Γ is a normal Cayley graph with respect to G. For the case where $|G: N|=2$, it is easy to see that Γ is a binormal Cayley graph. Suppose that $|G: N|>2$, namely, N has at least three orbits on $V(\Gamma)$. Consider the normal quotient Γ_{N}; we have that Γ_{N} is a Cayley graph of $G / N, G / N \leq A / N \lesssim \operatorname{Aut} \Gamma_{N}$ and Γ_{N} is core-free with respect to G / N. Clearly Γ_{N} is an A / N-arc-transitive Cayley graph of G / N if Γ is A-arc-transitive, and under this assumption, Γ is a normal cover of Γ_{N}. Now suppose that N is trivial; then Γ is core-free. According to Lemmas 2.2 and 2.3, there is only one possible core-free 1-regular Cayley graph of valency 7 (up to isomorphism): $(G, A) \cong\left(\mathrm{S}_{6}, \mathrm{~S}_{7}\right)$. The proof of Theorem 1.1 is complete.

References

[1] J. H. Conway, R. T. Curtis, S. P. Noton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups (Clarendon Press, Oxford, 1985).
[2] M. D. E. Conder and C. E. Praeger, 'Remarks on path-transitivity in finite graphs', European J. Combin. 17 (1996), 371-378.
[3] J. D. Dixon and B. Mortimer, Permutation Groups, 2nd edition (Springer-Verlag, New York, 1996).
[4] R. Frucht, 'A one-regular graph of degree three', Canad. J. Math. 4 (1952), 240-247.
[5] C. H. Li, 'Finite s-arc transitive graphs of prime-power order', Bull. Lond. Math. Soc. 33 (2001), 129-137.
[6] C. H. Li, 'Finite s-arc transitive Cayley graphs and flag-transitive projective planes', Proc. Amer. Math. Soc. 133 (2005), 31-40.
[7] C. H. Li, 'Finite edge-transitive Cayley graphs and rotary Cayley maps', Trans. Amer. Math. Soc. 359 (2006), 4605-4635.
[8] J. J. Li and Z. P. Lu, 'Cubic s-transitive Cayley graphs', Discrete Math. 309 (2009), 6014-6025.
[9] D. Marušič, 'A family of one-regular graphs of valency 4', European J. Combin. 18 (1997), 59-64.
[10] A. Malnič, D. Marušič and N. Seifter, 'Constructing infinite one-regular graphs', European J. Combin. 20 (1999), 845-853.
[11] C. E. Praeger, 'Finite normal edge-transitive Cayley graphs', Bull. Aust. Math. Soc. 60 (1999), 207-220.
[12] S. J. Xu, X. G. Fang, J. Wang and M. Y. Xu, '5-arc transitive cubic Cayley graphs on finite simple groups', European J. Combin. 28 (2007), 1023-1036.

JING JIAN LI, School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan 650031, PR China and
College of Mathematics and
Information Science, Guangxi University, Nanning 530004, PR China
e-mail: lijjhx@163.com
GENG RONG ZHANG, College of Mathematics and Information Science, Guangxi University, Nanning 530004, PR China
e-mail: zgrzaw@gxu.edu.cn
BO LING, College of Mathematics and Information Science, Guangxi University, Nanning 530004, PR China
e-mail: bolinggxu@163.com

[^0]: The project was sponsored by the Scientific Research Foundation of Guangxi University (Grant No. XBZ110328), NSF of Guangxi (Nos 2012GXNSFBA053010 and 2010GXNSFA013109), NSF of China (No. 10961007).
 (C) 2013 Australian Mathematical Publishing Association Inc. 0004-9727/2013 \$16.00

