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1. Introduction

One dimensional diffusion processes have been increasingly invoked to model

a variety of biological, physical and engineering systems subject to random fluc-

tuations (cf., for instance, Blake, I. F. and Lindsey, W. C. [2], Abrahams, J. [1],

Giorno, V. et al. [10] and references therein). However, usually the knowledge of

the 'free' transition probability density function (pdf) is not sufficient; one is thus

led to the more complicated task of determining transition functions in the pre-

sence of preassigned absorbing boundaries, or first-passage-time densities for

time-dependent boundaries (see, for instance, Daniels, H. E. [6], [7], Giorno, V. et

al. [10]). Such densities are known analytically only in some special instances so

that numerical methods have to be implemented in general (cf., for instance, Buono-

core, A. et al. [3], [4], Giorno, V. et al. [11]). The analytical approach becomes par-

ticularly effective when the diffusion process exhibits some special features, such

as the symmetry of its transition pdf. For instance, in [10] special symmetry con-

ditions on the transition pdf of one-dimensional time-homogeneous diffusion pro-

cess with natural boundaries are investigated to derive closed form results con-

cerning the transition pdf's and the first-passage-time pdf for particular

time-dependent boundaries. On the other hand, by using the method of images, in

[6] Daniels has obtained a closed form expression for the transition pdf of the

standard Wiener process in the presence of a particular time-dependent absorbing

boundary. It is interesting to remark that such density cannot be obtained via the

methods described in [10], even though the considered process exhibits the kind of

symmetry discussed therein.

The purpose of the present paper is to make use of a variant of the method of
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images in order to disclose new transition pdf s in the presence of time-dependent

boundaries, as well as new first-passage-time pdf's, for a particular class of sym-

metric processes that also include Daniel's mentioned result for the standard

Wiener process.

In the remaining part of this Section we shall establish the notation and state

some preliminary results.

Let {X(t) t ^ t0, t0 ^ R} be a time-homogeneous diffusion process defined

over the interval I = (vlf v2), with vλ and v2 natural boundaries and let

Aλix) and A2(x) be the drift and the infinitesimal variance of Xit), respectively.

Following Feller, W. [8], [9], we assume that for all x e /, Axix), A2ix) and

A2ix) are defined and continuous functions, with A2(x) > 0. Let τ > t0 be an

arbitrary instant. For all t > τ and x, y €= / let us denote by

(1.1) fix,t\y,τ) =^P{X(t) <x\X(τ) = y)

the transition pdf. As proved in [8], since vί and v2 have been assumed to be natu-

ral boundaries, the transition pdf fix, t\y, τ) is the unique solution of the

Fokker-Planck equation

(1.2) ~ f ( x , t \ y , τ ) = --jfc D W / C x , t\y, r ) ] + \—2 [A2ix)fix, t\y, τ ) ]

with the initial delta condition:

(1.3) lim/Ozr, t\y,τ) = δix - y).
t l τ

Throughout this paper we shall deal with a subclass of the symmetric proces-

ses introduced and analyzed in [10].

LEMMA 1.1. Let φix> f) be a continuous function of x mapping I onto itself for

all t> τ such that dψix, t)/dx, d2φix, i)/dx\ d3ψix, t)/dx\ dψix, t)/dt,

d2ψix, t) /dxdt exist, with dφix> t) /dx < 0 for all t > τ and x e /. Furthermore,

let rif) <^ C2[τ, + oo) be such that

(1.4) ψίrit), t] = r(ί),

and let

(1.5) <p(x, t) =
dψix, t) 2r'jt)
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with

( 1 6 )

Then, for all x, y ^ I and t > τ

(1.7) / < * , f l ^ r ) f

, m =
, n x dφ(x,f) , λ , λ dφ(x,i) , AjOr) d2φ(x,t) A2(x) fdφ(x9t)\2

 Λ

(1.8b) ^ — + A 1 ( a r ) — ^ — H g 2 "φ(x7flΓ\—Sr—/ =

Proof It follows by a procedure similar to that exploited for Theorem 3.1 of

[10]. Note that here the additional assumption is made that φ is a strictly decreas-

ing function of x satisfying (1.4). Therefore, expression (1.5) of φ is now obtained

in place of the corresponding expression given in [10]. D

It should be stressed that the knowledge of the infinitesimal moments

Ax(x) and A2(x) of the process allows one to establish via (1.4), (1.5) and (1.8)

whether functions φ and φ exist such that (1.7) holds. It is worth pointing out

that for any x < r(f) [x > r(f)] one has φ(x, f) > r(t) [φ(x, t) < r(t)]. It is

thus natural to call r(t) a symmetry curve with respect to the symmetry function

φ(x, y). We remark that, since φ(xt t) is a monotonic decreasing function of x

satisfying (1.4), relation (1.8a) is equivalent to

(1.9) Vftx, r(t)] = W[r(t)9 φ(x9 t)].

Hence, for all x ^ / and t > r the symmetry function φ(x, t) is such that

(1.10) φ[φ(x9 t), t] = x.

The meaning of φ is illustrated by remarking that for a given symmetry curve

r(i) and for all t> τ from (1.8a) and (1.5) one has ^ — = — 1 and
χ=r(t)

φ[r(t), t] = 1. Hence, for all y ^ / and t > τ from (1.7) one obtains φ(y, τ) =

f[r(f), t\ φ(y, r ) , τ]/f[r(t), t\ y, τ]. The function ψ thus expresses a ratio of

transition densities that becomes independent of the current time t by virtue of the
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role played by the symmetry curve r and the symmetry function ψ. In the sequel,

under the assumptions of Lemma 1.1, any function r such that (1.4) holds will be

called a symmetry curve, while φ and φ will be denoted as the corresponding sym-

metry functions.

We remark that, under the assumptions of Lemma 1.1, for all x, y ^ / and

1 df
t > τ the function ~Ύ~β~ satisfies the following relation:

1 df{x,t\y,τ)
ί-ίL) f(x,t\y,τ) θx

= dφix, t) I" 1 df[z,t\φ(y, r), r] 1 3 (dφ(x, ήy1

dx \f[z, t\φ(y, τ), r] 32 !;=<»<*,,) 2 V 9 x /

v 920te, ί) /90(x, OX-MJ^Cr, ί)] . AU) 2r'(ί)
dx

2 \ dx ) A2(x) ^ A2{x) yf

Lemma 1.1 relates the function fix, t\y, τ) to the function f[ψ(x, t),

t\ ψ(y, T), τ\. In general no relation exists between /Cr, t\ y, τ).and f[ψ(x, f),

t\ y, τ\. However, the following theorem shows that such a relation does exist if

1 df
and only if ~j~β~ has a particular form.

THEOREM 1.1. For all t>τ let Q(t, τ) be a continuous positive function such

that dQ/dt exists and

(1.12) lim Q(t, τ) = 0.
f i r

Then, under the assumptions of Lemma 1.1,

(1.13) φ(x, t)
90Cr, t)

dx f[φ(x, f), t\y,τ] = fix, t\y,τ)

e x p { - -Q^-J- Wίx, r(t)] W[y,

iff

1 df(x,t\y, τ) Aγ(x) 3 A2(x)
fix, t\y,τ) dx A2ix) 4 A2ix)

« * •
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Proof. First of all we check that (1.14) satisfies relation (1.11). Since φ(x, f)

is a monotonic decreasing function of x, from (1.8a) we have:

(1.15)
dAΛz)

= A'(x)
θφ(x,t) J _ n Λ , . 32φ(x,t)

dz

Making then use of (1.8a), (1.9) and (1.15), from (1.14) one obtains:

6 f 1 df[z,t\ψ(y,τ),τ\]

\f[z, t\ φ(y, τ), τ] dz K=ΦU,I)

Ax[φ{x, t)] (dφ(x,t)γ2 _ 3_ ίdψ(x,t)γ1A2{x) 3̂  ίdφjx, t)\'2 d2ψ(x,

AΛx) \ dx ) 4 \ dx ) AΛx) 2 \ dx ) **

1 (dφ{x,t)\-1 f 1 dQ(t, τ)
W\-^—) \Q(t,τ) dt

One easily sees that (1.14) and (1.16) satisfy (1.11). Hence, (1.14) is in agreement

with the assumptions of Lemma 1.1. We now prove that (1.13) implies (1.14). To

this end we notice that due to (1.7), the left-hand-side of (1.13) satisfies the

Fokker-Planck equation (1.2). Hence, we set

(1.17) H(x, t\y, τ) = exp{- Q(f y ) Wbc, r(f)]W[y,

and impose that also the right-hand-side of (1.13), i.e. the product f(x, t\y, τ)

H(x, 11 y y T) , for t > r satisfies the Fokker-Planck equation

fifH)+i Άω/fl] \(1.18) γ t (fH) + g£ ίA1(x)fH] - g-—2 [A2(x)fH] = 0.
(JJL

(dH\-ιdH /dHγιd2H £ n r

Since l"^—) ~^r and l~^r) r exist for all x, y e / and ί > r, making use
\ ra / or \ 0ί / g χ

2

of (1.2), equation (1.18) becomes:

1 df Ax(x) A'2(x) 1 (dHγ1 dH 1 (dHy1 d2H
( 1 ' 1 9 ) / dx A2(x) A2(x) + A2(x) \dx) dt 2 \dx) dχ*'

Recalling definitions (1.17), from (1.19) we immediately obtain (1.14). This proves

the necessary part of the theorem. To prove the sufficiency we integrate both

sides of (1.14) in the interval (x, φ(x, f)). Then,
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(1.20) f[ψ(x,f),t\y,τ]

dQ(t,τ) , r(f)]
Q(t, τ) dt

Due to (1.8a) we also have:

(1.21) W[x, φ(x, t)] = 2W[x, r(t)], f "' a

Hence, making use of (1.21) equation (1.20) becomes:

(1.22) f[ψ(x,t),t\y,τ] = f ( x , t \ y , τ )
dφ{x, t) ~3/2

dx

2r'(t)
eMi dzA~{£)-

e x p { " Q(t, r) Wίx' r{t)λ W[y'

WVx,

Recalling Definition (1.5), from (1.22) Relation (1.13) follows. Note that our

assumptions on the function Q(t, τ) insure the validity of (1.13) as / tends to τ. O

The nature of the function Q(t, τ) that appears in (1.13) is elucidated by the

following corollary.

COROLLARY 1.1. Let r,(i) (t = 1,2) be two arbitrary symmetry curves such that

for all t> τ one has r^f) Φ r2(t) and let Q{(t, τ) (i = 1,2) be the corresponding

functions in equation (1.13). Then, under the assumptions of Theorem 1.1, one has:

(1.23)

where we have set

(1.24)

^t, τ) = Q2(t, r) = D{t)D{τ) j * ~ψ—,

D(t) = WirSt), r2(ί)].

Proof. From (1.14) one has:
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1 df(x,t\y,τ) AM)Γ 1
[fix, t\y,τ) dx

Then, from (1.25) for i — 1,2 one obtains:

( 1 2 6 ) ίW^)" 9ί WJ7Λ dΓ~\ W[x' r>

where D(t) is defined in (1.24). In order for (1.26) to hold for all x, y ^ I and

t > T, it must be Q^t, τ) = Q2(̂ > r ) Furthermore, Equation (1.26) becomes:

Recalling (1.12), from (1.27) the expression (1.23) then finally follows. D

Corollary 1.1 shows that for any two symmetry curves r<Jj) and r2(f) such

that rγ{f) Φ r2(t) for all t > r, the function Q^t, τ) related to r^t) is known (cf.

(1.23)) and it coincides with the function Q2(t, τ) related to r2(f).

In for instance, A2(x) = σ2 and rγ(t) — at + b, r2(t) = a t + b with r^f)

Φ r2(f) for all t> r, then from (1.23) and (1.24) we obtain Q^t, τ) = Q2(t, τ) =

t - τ.

DEFINITION 1.1. A diffusion process will be said to be strongly symmetric iff rela-

tions (1.7) and (1.13) hold under the assumptions of validity of Theorem 1.1.

In the sequel we shall confine our attention exclusively to strongly symmetric

processes.

2. One absorbing boundary

Let y(t), u(t) and v(t) be symmetry curves such that y(t) < u(t) < v(t)

[y(t) > u(f) > v(f)] for all t > r, where τ > tQ is a fixed instant. We denote by

Φι(x, t) and φx{Xj t) the symmetry functions corresponding to u(t) and by φ2(xf f)
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and φ2(x, t) the symmetry functions for v(t). Furthermore we assume that

(2.1) ]

Such an assumption implies that the symmetry curve v(t) is the "image" of

the symmetry curve y(f) in the "mirror" u(f) via the symmetry function φv If, for

instance, for all t > r (r fixed) one has y(f) < u(t) < v(t), the conditions

y(f) < x < u(t) amount to requiring ψ^yif), t] > φ^x, t) > (p^uti), t], i.e.

u(t) < φx{xy t) < v(t).

Let us now assume P{X(τ) = y(τ)} = 1 and let S(t τ) be a continuous

function of t taking values in / for all t > τ. For all ί ^ r and x ^ / we set:

(2.2) \PiX(t) <x;X($) <S(ΰ;τ) V£e (τj)\X(τ) = y(τ)}

(x < S(t τ) y(τ) < lim S(t r)),

P{Z(0 <x;Z(ίί) >S(,9;r) V^e (r,ί)|-Y(r) =y(r)}

(x>S(ί;r);y(r) >limS(ί;r))

and

(2.3) a t e , / | » ( r ) , τ) =J^A(x, t\y(τ), τ).

Note that (2.2) and (2.3) define the transition distribution function and the transi-

tion pdf of X(t), respectively, in the presence of the absorbing boundary S(t τ)

conditioned upon .XXτ) = y(τ).

THEOREM 2.1. For all t > τ set

(2.4) D(t) = W[y(t), u(t)], Q(t, τ) = D(t)D(τ) jf'—f̂ —, R(t, r) =

and let

/<-» r-\ A ίί \ 2 I A —4R(t,T)

(2.5) Δ^t τ) = cλ + 4c2̂

For α strongly symmetric process, if cλ > 0, c2

 e R αn<i lim^^.^ 4 ^ ^ r) > 0

/or all t > T one has

a(x, t\y(τ), τ) =f(χ, t\y{τ), τ) + clΨl(x, t) dφl^χ'
f) fYφ,{x, 0, ί|»(r), r]

+ c2ψ2(x, t) ^ f\.Φi\x, t), t\y(τ), τ]
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ix < Sit r), yiτ) < uiτ)) or ix > Sit τ), yiτ) > «(τ)),

where Sit z) is a continuous solution of the following equation:

(2.7) WVyit), Sit τ)l = 0(0 - r,l',l In

Proof Let axix, t\y(τ), τ) be the right-hand-side of (2.6). Clearly, since

(1.7) holds, the function axix, t\y(τ), r) satisfies the Fokker-Planck equation.

Furthermore, making use of (1.13) and (1.23), axix, t\ y(τ), τ) can be written as

(2.8) ax(xy t\y(τ), τ)

= fix, t\y(τ), τ) [l - cx exp{- Q(f τ) W[x, u(t)] W[y(τ),

- c2exp{- Q α

2

 τ) W[xy v(t)] Wly(τ), v

Recalling (2.1), and making use of (1.9) and of the first equality of (1.21), from

(2.8) we obtain:

(2.9) α i(j

r( , / \ \ -4i?(ί,r) ( -<Wix,t,τ) i r -2C/(x,ί,r) -, η 4#(ί,rh

= - fix, t yiz),z)e k2e + [ q e — l]e },

where Z)(β and Q(/, r) are defined in (2.4) and where we have set

(2.10) Uix, t, z) = Q^τ)

τ) Wίx, uit)].

If (i) q G R and c2 > 0 or (ii) c2 < 0 and lim^+0O J x ( i r) > 0, relation (2.9) be-

comes:

(? 1 1) a (Ύ t\ u(z) τ)

λ -4Λ(ί,τ) I -2tf(a:,f,τ)

X L-
L

In order for o^Cr, t\ y(τ), τ) to be a transition pdf in the presence of an absorb-

ing boundary Sit τ), the right-hand-side of (2.11) must be zero at x — Sit τ),

non negative for all x < Sit τ) and yiτ) < lirm i τ S(f r) [x > Sit r) and

yiτ) > limt iτ S(t ;τ)]\ finally, it must satisfy the initial delta-condition. It is easy

to prove that all these conditions hold iff cx > 0, c2 e R, \imt_++oo Δx(t r) > 0

and Sit τ) is solution of (2.7). •
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We remark explicitly that the boundary S(t r), the solution of (2.7), is such

that lirriί ι τ S(t r) = u(τ). In other words, for a fixed initial time r, starting from

the symmetry curves u(t) and y(f), an absorbing boundary S(t τ) has been

obtained, which approaches u(t) as t approaches r. It should be noticed the sim-

plicity of the transition pdf in the presence of the absorbing boundary S(t r).

Such an expression follows from (2.6) or (2.8) for the entire class of strongly sym-

metric processes.

We now define the first-passage time through S(t r) :

Γιnί{t:X(t) > S(t τ)}, X(τ) = y(τ) < u(τ)
(2.12) T= \^T

I inf{*:*(*) < Sit τ)}, X(τ) = y(τ) >u(τ).
t>τ

Let

(2.13) g(t\y(τ), τ) =^P{T< t}

be its pdf. The following theorem indicates a closed form relation of the FPT pdf

through the boundary S(t τ) in terms of the free transition pdf.

THEOREM 2.2. Under the assumptions of Theorem 2.1 one has:

(2.14) g(t\y(τ), τ) = ^ ^ f ^ y JA2lS(t; r)] ^ ί flSU τ), t\y(τ), r ] .

Proof. Let y(τ) < u(τ) or equivalently D(τ) > 0. As is well known,

X
S(t τ) r>t

dzaiz, t\y(τ), τ) + I d$g{$\y(τ), τ) = 1.

Making then use of (1.7), (1.10) and (2.6), from (2.15) one has:

X
S(t τ) Q

dz-Qjaiz, t\y(τ), τ)

X S(t τ) β

dzγt{f(z,t\y(τ),τ)

, r), r] f[z, t\ φiiyiτ), r), r]

- c2φ2[ψ2(y(τ)y r), τ] f[z, t\ ψ2(y(τ), r), r]}.

Recalling that the function / satisfies Fokker-Planck equation (1.2), Equation

(2.16) can be written as:
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(2.17) git\yiτ),τ) = f ' dz-^z \Aιiz)f0-^^-iA2iz)f0)]
Jυι UZ I Δ UZ J

— ^φ^ψ^yiτ), τ), τ] J ^z^Qz ί^1^^1 ~~ ~2~dz ^2^)/i)J

-c2φ2[ψ2(y(τ), r), r] J dz ̂ - [ A U ) ^ - -^-^ (Λ2(-ε)/2)J

where we have set:

(2.18) fo = fiz,t\yiτ),τ), f, = f[z, 11 φfoiτ), τ), r] (ί = 1,2).

From (1.7), (1.10) and (1.13) one obtains:

( 2 . 1 9 a ) Ψ ι [ φ M τ ) , τ), τ] f i x , t\ φ,{y(τ), τ), r ] = f i x , t \ y { τ ) , τ)

( 2 . 1 9 b ) ψ 2 [ φ 2 ( y ( τ ) , τ), τ] f i x , t\ ψ 2 i y ( τ ) , τ), τ ] = f i x , t \ y i τ ) , τ) e

where Uix, t, τ) is defined in (2.10) and

(2.20) Vix, t, τ) = Q^τ)

τ) W[x, υit)].

Furthermore, from (2.7) we have:

(2.21a) 1 - c texp{- 2U[Sit;τ), t, r]} - c2exp{- 4V[Sit;τ), t, r]} = 0,

(2.21b) exp{- 2U[Sit ;τ),t, r]} = \

Calculating the integrals in (2.17) and making use of (2.19) and (2.21), relation

(2.14) follows. The case yiτ) > uiτ) can be analysed in a similar way, with the

proviso that Equation (2.15) is changed to

(2.22) Γ dzaiz, t\yiτ), τ) + Γ d&gi$\yiτ), τ) = 1. D
JS(t;τ) Jτ

3. Two absorbing boundaries

Let y{f), u(t) and v(t) be symmetry curves such that v{t) < y(t) < u(i) for

all t>τ, where r ^ t0 is a fixed instant. We denote by ψo(x, t) and φo(x, t) the

symmetry functions corresponding to y(t), by φx(x> f) and φx{x, t) the symmetry

functions for u(f) and by φ2(x, t) and (p2(x, t) those for v(f). Furthermore, we

assume that
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(3.1) v(t) = ψo[u(t), t].

Assumption (3.1) implies that the symmetry curve v(t) is the "image" of the

symmetry curve u(t) in the "mirror" y(t) via the symmetry function φ0. Hence, for

all t> T (τ fixed) conditions y(t) < x < u(t) are equivalent to ψo[y(t), t] >

ψo(x, t) > φQ[u(t), fl, i.e. v(t) < ψo(x, t) < y(t).

Let us now assume P{X(τ) = y(τ)} = 1. Furthermore, let S^t r) and

S2(t r) denote continuous functions of t, taking values in / for all t > T, such

that (i) Sλ(t ;τ)<S2(t;τ) Vt>τ and (ii) lirm i r Sλ(t r) < y(τ) < liniί i τ S2(t r).

For all t > τ and x ^ (Sλ(t τ), S2(t r)) we consider the following functions:

(3.2) B(x,t\y(τ),τ) = PiX(t) <x;S1(5;τ) < X(Θ)

(r,f)| X(τ) = »(r)}

and

(3.3) β(x, t\y(τ), τ) =-^B(x, t\y(τ), τ ) .

Note that (3.2) and (3.3) define the transition distribution function and the transi-

tion pdf of X(t), respectively, in the presence of the absorbing boundaries Sλ(t τ)

and S2(t τ).

THEOREM 3.1. For all t>τ let D(t), Q(t, τ) and R{t, τ) be defined as in

(2.4) and let

(3.4) Δ2(t;τ) = 1 - 4c1c2ίΓ
4*(''r).

For a strongly symmetric process, if cλ > 0, c2 > 0 and lim^+oo Δ2(t τ) > 0 t/ι#n, for

all t > T, one has

(3.5) β(x,t\y(τ), τ) = fix, t\y(τ), τ)

+ Cl Ψι{x, t) dΦli

d

X

χ'
 f) fiφM, t), t\y{τ), r]

+ c2 ψ2(x, t) # 2 ^ ' f) flψ2(x, t), t\ y(τ), ή

(S^t τ) <x< S2(t;τ)),

where S, (ί r) (i — 1,2) is a continuous function, solution of the following equation:

(3.6) W[y(t), S,(ί;τ)] = ( - l ) !
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Proof. Let us denote by ftCr, t \ y(τ), τ) the right-hand-side of (3.5). Clear-

ly, since (1.7) holds, βx(xf t\ y(τ), r) satisfies the Fokker-Planck equation. Furth-

ermore, by virtue of (1.13) and (1.23), ft Or, t\ z/(τ), τ) can be written as:

(3.7) ft Or, f I y(τ), τ) = / ( * , t\y(τ), τ) [ 1 - c ^ ^ - C

Recalling (3.1) and making use of (1.9) and of the first of (1.21), from (3.7) we

obtain:

/o o\ n ( Δ ( \ \ £{ Δ ( \ \ 2U(x,t,τ)r -4U(x,t,τ) -2U(x,t,τ) , -4R(t,τ)Λ

(3.8) ftur, t\ y\τ), τ) — — f\x, t\ y{τ), τ)e ιcλe —e + c2e J.

If (i) cx c2 < 0 or (ii) c1c2> 0 and limί_^+0O Δ2(t τ) > 0, relation (3.8) becomes:

(3.9) ft OP, ί | » ( r ) , τ)
r( . I / \ \ 2U(x,t,τ) Γ -2U(x,t,τ) 1 ' V ̂ 2 ^ > ̂  1

= - q / U , ί | ^ ( τ ) , τ)e \e κ~
L ΔCλ J

For ft Or, ί|2/(τ")> r) to be a transition pdf in the presence of the absorbing

boundaries St(t τ) (i = 1,2), for all ί > τ the right-hand-side of (3.9) must be

zero at x = St(t τ) (i = 1,2), non negative for all x e ( S ^ τ), S2(t τ)) and

z/(r) ^ (lim* i r S :(ί τ), liniiir S2(ί v)) furthermore, it must satisfy the initial

delta-condition. It is easy to prove that all these conditions are satisfied iff cγ >

0, c2 > 0, lim^+ 0 0 Δ2(t τ) > 0 and each S, (ί r) (i = 1,2) is a solution of (3.6).

ϋ

It is worth remarking explicitly that the solutions S^t τ) and S2(t τ) of

equations (3.6) tend to v(τ) and w(r), respectively, as t I τ.

We now define the first-passage time through S^t r) or S 2 (£;r) , namely

the first-exit time of the process from the region (S^t r ) , S2(t τ)) :

(3.10) J = inf {/:X(0 £ (S^f τ), S2(f τ))}, X(r) = z/(r).

Let

(3.11) r ( ί l y ( r ) , τ ) = /

be the pdf of 3". The following theorem shows how the first-passage time pdf

through Sλ(t τ) or S2(ί r) can be obtained in closed form in terms of the free

transition pdf.
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THEOREM 3.2. Under the assumptions of Theorem 3.1 one has:

(3.12) r(t\y(τ), τ)

S.it τ)] fίS^t τϊ.tlyίτ), τ]

+ V A 2 [ S 2 ( ί ; r ) ] f[S2(t;τ), t\y(τ), τ ] } .

Proof. Since

(3.13) Γ 2 >T ώjSGz, t\y(τ), τ) + Γ d&γ($\y(τ), τ) = 1,
JS1(t;τ) Jτ

the proof goes as for Theorem 2.2 with the proviso that Equations (2.19) are now

replaced by

(3.14a) 1 -c 1exp{-2C/[S ί(ί;τ),f, r]} - c2exp{2Vr[Sί(/ τ), t, r]} = 0

(3.14b) exp{- 2U[St(t r), f, r]} = λ + ( ^ ^ ^ — (i = 1,2).

The results outlined in Sections 2 and 3 for transition and FPT pdf s hold for

the entire class of strongly symmetric diffusion processes. Of course, for indi-

vidual processes belonging to such a class also other types of problems may be

posed and solved by ad hoc methods (see, for instance, Example (a) of Section 4).

4. Examples

The practical usefulness of the results of Sections 2 and 3 will now be

pointed out via some non-trivial examples.

4.1. Hyperbolic process

Let

1 - λ exp{- 2μx/σ2} 2

A^x) = μ —, A2(x) = σ ,
1 + λ exp{— 2μx/σ }

/ = (— ooy + oo) (μ e R, X > 0, σ > 0).

Note that if λ = 0 the hyperbolic process yields the Wiener process with drift

μ. The transition pdf is given by
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- λ exp{— 2μx/σ2} 1

exp{— 2μy/σ } J2πσ2(t — τ)

[χ-y-μ(t-τ)]2

(4.1) /Or, f | », τ) =

x exp -

This is seen to fulfill the symmetry condition (1.7) of Lemma 1.1 iff

(4.2a) r(i) = a*t + 6* (α*, 6* e R),

(4.2b) 00c, 0 = 2Kd - x,

.. o . , Λ 1 +Λexp{- 2μx/σ2} ί 2(μ — a*) Γ , Λ Ί )
4.2c φ ( x , β = — ^ e x p ^ [r(ί) - x ] .

l + Λ { 2 [ 2 r ω - ; t f / σ 2 } L σ2 J

Furthermore, it satisfies relation (1.13) of Theorem 1.1 with

(4.3) Q(t, τ) = t- τ.

Hence, the hyperbolic process is strongly symmetric in the sense of Definition 1.1.

i) One absorbing boundary. The symmetry curves are (cf. Section 2):

(4.4) y(t) = ct + d, u(t) = at+b, v(t) = 2u(t) - y(t)

with a, b, c, d e R and y(t) < u(t) <υ(t) [y(f) > u(t) > v(t)] for all t > τ.

From (2.7) the absorbing boundary follows:

where

(4.6) Zl^ί τ) = cx + 4c 2 exp[ ^ j .

Hence, if cx > 0, c2 e R and limί_+oo ^ ( ί τ) > 0, from (2.6) (or equivalently

from (2.8)) and (2.14) the transition pdf in the presence of absorbing boundary

(4.5) and the first-passage-time density through such boundary are obtained.

Note that for μ = 0, τ = 0 and y(τ) — 0 the boundary defined by (4.5)

yields the well-known Daniels' result [6] for the standard Wiener process,

ii) Two absorbing boundaries. The symmetry curves are (cf. Section 3):

(4.7) y(t) = ct + d, u{t) = at+b, v(t) = 2y{f) - u(t),

with a, b, c, d e R and v(f) < y(f) < u(t) for all t > τ. From (3.6) we obtain

the absorbing boundaries:
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(4.8a)
2c2

where

(4.9) Δ2(t;τ) = 1 - ic^expl - r.
1 σ ( t - τ) J

Hence, if cx > 0, c2 > 0 and lim^+oo Δ2(t, r) > 0, from (3.5) (or equivalently from

(3.7)) and (3.12) the transition pdfs in the presence of the absorbing boundaries

(4.8) and the first-passage-time density through Sι(t τ) or S2(t τ) are obtained.

It should be pointed out that the symmetry properties (1.7) and (1.13) of the

transition pdf also appear in problems requiring infinite superpositions of sym-

metry curves, such as the hyperbolic process with the two linear absorbing

boundaries Sx(t) = ct + dlf S2(f) = ct + d2 (dx < d < d2) with c and d specify-

ing the symmetry curve y(t) in (4.7). Indeed, assuming again P{X(τ) = y(τ)} =

1, let us consider the doubly infinite system of linear symmetry curves

(4.10a) un(f) = ct+ d + n(d2 - dλ) n = 0, ± 1, ± 2 , . . .

(4.10b) vn(t) = ct + d2- n(d2 - dλ) n = 0, ± 1, ± 2 , . . .

Further, let us denote by φXn(x, t) and φln(x, t) the symmetry functions associ-

ated to un(t) (n = 0, ± 1, ± 2,. . .) and by Φ2n(x> t) and φ2n(x, t) those associ-

ated to 0Λ(O (w = 0, ± 1, ± 2 , . . . ) . From (4.2) one clearly obtains

φln(x, t) =2un(t) -x,

(4.11a) , Λ 1 + λexp{-2μx/σ2}
<pln(x, t) =

1 + λ e x p ί - 2μ[2un(t) - x] /σ2}

x exp[-
σ2

(4.11b) . N

φ2n(x, t) =
1 + λ exp{~ 2μ\2vn{t) - x] /σ2}

The transition pdf in the presence of the absorbing boundaries 5 x (0 and S2(t) is

https://doi.org/10.1017/S0027763000006140 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000006140


STRONGLY SYMMETRIC DIFFUSION PROCESSES 159

then given by

(4.12) β(x, t\y(τ), τ)

= Σ [φln(x, t)
n-—oo L

dφln(x, t)

dx

dψ2n(x, t)

fίψln(x, t), t\y(τ), τ]

flφ2n{x, t), t\y(τ), τ]},dx

which, by virtue of (1.13) and (4.3), can also be written as

(4.13) β(x,t\y(τ),τ)

= f(x,t\y(τ),τ) Σ [ e x p ( - , , 2 ^ [un(t) - x][un(r) -

[vn(t) -χ]ίvn(τ) -- expί-1
σ (t- T)

with / defined by (4.1). To prove it, we remark that the series in (4.12) and (4.13)

are absolutely convergent and term by term differentiable. Because of (1.7), from

(4.12) one sees that β(x, t\y(τ), τ) satisfies the Fokker-Planck equation (1.2).

Moreover, from (1.7) and (1.10) we obtain

r ί f Λ dΨm(x, t) , \ \δ[χ-y(τ)] n= 0,

t i τ 1

dψ2n(x, t)

dx
f[ψ2n(x, f), t\ y(τ), T]} =0 n= 0, + 1, ± 2 , . . .

The right-hand side of (4.12) is immediately seen to satisfy the initial delta-condition.

Finally, use of (4.13) shows that the absorption conditions on the boundaries are satis-

fied, i.e. βlSfi), t\y(τ), r] =β[S2(t), t\y(τ), d = 0.

Note that for λ = c = 0 expression (4.12) yields the well-known transition pdf for

the Wiener process in the presence of two constant absorbing boundaries [5].

4.2. Ornstein-Uhlenbeck process

Let

A1(x)=λε + μ, A2(x) = σ\ / =

The transition pdf of X(t) is then:

(λ, 0, σ> 0).

(414) f(x,t\y,τ) =
7rσ2(expUα-τ)}-l)
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]2\f
x expi

1

μ/λ)exp{λ(t-τ)}]2

It satisfies the symmetry condition (1.7) iff

(4.15a) K0 = - - j + α V + δ V (a*, b* e R)

(4.15b) ψ(x,t)=2r(t)-χ

(4.15c) φ(x, f) = exp{- ̂ f- Γ* [Kβ - *]}

Furthermore, it satisfies relation (1.13) of Theorem 1.1 with
2λ(t-τ)

(4.16) Q(t, τ) = e~M) *

This diffusion process is thus strongly symmetric.

i) One absorbing boundary. Following Section 2, the symmetry curves are seen to be

(4.17) yW = -^ + cext + de~u, u(t) = -^ + ae' + be~u, υ(t) = 2u{t) ~ y(t)

with a,b,c,d^R and y(t) < u(t) < v(t) [y{t) > u(t) > v(t)] for all t> τ. From

(2.7) the absorbing boundary follows:

(4.18) S(t;τ)=u(t) 4λ[u(τ) - y(τ)] H 2 J

where

(4.19) Δfi, T) = cγ +4c2exp 1 .
1 σ2[exp{2^α-r)}-l] J

Hence, if cx > 0, c2 e R and lim^^Zl^ί r) > 0, from (2.6) (or equivalently from (2.8))

and (2.14) we obtain the transition pdf in the presence of the absorbing boundary (4.5)

and the first-passage-time density through such boundary,

ii) Two absorbing boundaries. The symmetry curves now are:

(4.20) y(t) = " f + ceλt + de~λ\ u(t) = ~ 7 + aeλt + be~λt, v(t) = 2y(t) - u(t)

with a, b, c, d^R and υ (t) < y(f) < u(t) for all t > r. The two absorbing boundaries

then follow from (3.6):
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ίAnΛ x o/x \ /\ σ2exp{— λ(t— τ)}[exp{2λ(t~ r)} — 1] Γl + vM2(f;τ) 1
(4.21a) ^ ( ί r) =*;(;) 4iWr)-i/(r)] b ί Έ2 J

(4.21b) SΛt'. T) = u{t) H TT?—τ~\ τ~ττ In 0 »
v ' <2 v ' ' N ' Λ i\ *i\ τ \ — -jil τ-\ I I 2JC J

where

tAt,n A U \ Λ A ί 8^ expUq - τ)}[u(t) - y(t)] [u(χ) - y(r)] ]
(4.22) 4 a ( i f r ) = l - 4 V a e x p { 2Γ , o ^ _ . , _ l Ί J

If cx > 0, c2 > 0 and lim^+0OZl2(^ r) > 0, from (3.5) (or equivalently from (3.7)) and

(3.12) we then obtain the transition pdf in the presence of the two absorbing boundaries

(4.8) and the first-exit-time density from (S^t r), S2(t;τ)).
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