A. Di Crescenzo, V. Giorno, A. G. Nobile and L. M. Ricciardi
Nagoya Math. J.
Vol. 145 (1997), 143—-161

ON FIRST-PASSAGE-TIME AND TRANSITION DENSITIES
FOR STRONGLY SYMMETRIC DIFFUSION PROCESSES

A. DI CRESCENZOY, V. GIORNO?, A. G. NOBILE?
aND L. M. RICCIARDIY

1. Introduction

One dimensional diffusion processes have been increasingly invoked to model
a variety of biological, physical and engineering systems subject to random fluc-
tuations (cf., for instance, Blake, I. F. and Lindsey, W. C. [2], Abrahams, J. [1],
Giorno, V. ef al. [10] and references therein). However, usually the knowledge of
the ‘free’ transition probability density function (pdf) is not sufficient; one is thus
led to the more complicated task of determining transition functions in the pre-
sence of preassigned absorbing boundaries, or first-passage-time densities for
time-dependent boundaries (see, for instance, Daniels, H. E. [6], [7], Giorno, V. et
al. [10]). Such densities are known analytically only in some special instances so
that numerical methods have to be implemented in general (cf., for instance, Buono-
core, A. et al. (3], [4], Giorno, V. et al. [11]). The analytical approach becomes par-
ticularly effective when the diffusion process exhibits some special features, such
as the symmetry of its transition pdf. For instance, in [10] special symmetry con-
ditions on the transition pdf of one-dimensional time-homogeneous diffusion pro-
cess with natural boundaries are investigated to derive closed form results con-
cerning the transition pdf's and the first-passage-time pdf for particular
time-dependent boundaries. On the other hand, by using the method of images, in
[6] Daniels has obtained a closed form expression for the transition pdf of the
standard Wiener process in the presence of a particular time-dependent absorbing
boundary. It is interesting to remark that such density cannot be obtained via the
methods described in [10], even though the considered process exhibits the kind of
symmetry discussed therein.

The purpose of the present paper is to make use of a variant of the method of
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images in order to disclose new transition pdf’s in the presence of time-dependent
boundaries, as well as new first-passage-time pdf’s, for a particular class of sym-
metric processes that also include Daniel’s mentioned result for the standard
Wiener process.

In the remaining part of this Section we shall establish the notation and state
some preliminary results.

Let {X(® ;12> ty 1y € R} be a time-homogeneous diffusion process defined
over the interval I= (v,, v,), with v, and v, natural boundaries and let
A, (z) and A,(x) be the drift and the infinitesimal variance of X(#), respectively.
Following Feller, W. [8], [9], we assume that for all £ € I, 4,(x), A,(x) and
A5 (x) are defined and continuous functions, with A,(x) > 0. Let 7 = ¢, be an
arbitrary instant. For all ¢ > 7 and x, y € I let us denote by

(1.1 flx, tly, 0 = —%P{X(t) <z|Xx) =y

the transition pdf. As proved in [8], since v, and v, have been assumed to be natu-
ral boundaries, the transition pdf f(r, t| Y, T) is the unique solution of the
Fokker-Planck equation

2
(1.2) —%f(x, tly, o) = —a%[Al(x)f(x, tly, D1 +%‘£E[Az(x)f(x, tly, )]

with the initial delta condition:

(1.3) lim f(x, tly, ©) = d(x — y).
tlt
Throughout this paper we shall deal with a subclass of the symmetric proces-
ses introduced and analyzed in [10].

LemMma 1.1. Let ¢(x, D be a continuous function of x mapping I onto itself for
all t2 7 such that 3¢(x, t)/dx, 8°¢(x, O /0x", °¢(x, D /0x’, 0 (x, 1) /dt,
3°(x, t) /0x0t exist, with d¢(x, D) /0x < 0 for all t = T and x € 1. Furthermore,
let r(t) € C,lt, + ©0) be such that

(1.4) olr®D, & = r®,
and let
| 0g(x, O |M? @ A (2) 27 (D
(15) ez, H = ‘T exp{—_/; dz A:(z) + TAGOT Wiz, r(t)]},
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with
b
(1.6) Wi(a, b) =fa \/,f—ia'

Then, forallx,y € Tand t = 7

oz, D ‘ o¢(x, D

(1.7) flx, tly, 7 1f[gb(x, D, tl ¢y, D, 7l

T oy, 0 ox
iff
(1.8a) A, D] = A,(0) [Qﬁb-(a‘i’—t)] ,
op(x, B oo, d  A,@ ¢, b A,(x) oz, )\*
(L8t) P50 A ) P Sy SO e (Z£22) <o,

Proof. 1t follows by a procedure similar to that exploited for Theorem 3.1 of
[10]. Note that here the additional assumption is made that ¢ is a strictly decreas-
ing function of x satisfying (1.4). Therefore, expression (1.5) of ¢ is now obtained
in place of the corresponding expression given in [10]. U

It should be stressed that the knowledge of the infinitesimal moments
A,(x) and A,(x) of the process allows one to establish via (1.4), (1.5) and (1.8)
whether functions ¢ and ¢ exist such that (1.7) holds. It is worth pointing out
that for any x < 7(#) [x > r(#)] one has ¢(z, D > »() [Pz, H < r(D]. 1t is
thus natural to call #(f) a symmetry curve with respect to the symmetry function
¢(x, y). We remark that, since ¢(x, #) is a monotonic decreasing function of x
satisfying (1.4), relation (1.8a) is equivalent to

(1.9) Wiz, r()] = Wlr@®), ¢(z, 1)].

Hence, for all £ € [ and t = 7 the symmetry function ¢(z, #) is such that

(1.10) olo(x, B, 11 = z.
The meaning of ¢ is illustrated by remarking that for a given symmetry curve
0 ,
r(D and for all ¢ = 7 from (1.8a) and (1.5) one has % = —1 and
X x=7r(t)

olr(®), t1 = 1. Hence, for all y € I and t > 7 from (1.7) one obtains ¢(y, 7) =
flrd, t| ¢y, v), 71 /f[r(t), t|y, 7]. The function ¢ thus expresses a ratio of
transition densities that becomes independent of the current time ¢ by virtue of the
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role played by the symmetry curve # and the symmetry function ¢. In the sequel,
under the assumptions of Lemma 1.1, any function # such that (1.4) holds will be
called a symmetry curve, while ¢ and ¢ will be denoted as the corresponding sym-
melry functions.

We remark that, under the assumptions of Lemma 1.1, for all x, y € I and

10
t > 7 the function 767;: satisfies the following relation:

1 of(z, tly, )
(1.11) flx, tly, © ox
0z, ) [ 1 oflz, t| ¢y, D), r]} " 3 (6¢J(x, t))‘l
- oz \fle tl o, 0, 1] 0z i@y 2\ 0z
y g, ) (agb(x, t))‘1 Alg(x, D] N A@ 27 (1)
axz ox Az(x) Az(.l') \/m Az[i’(t)] )

Lemma 1.1 relates the function f(z, t|y, 7) to the function fl¢(x, D,
t| ¢(y, 1), 7]. In general no relation exists between f(x, t|y, 7).and fl¢(z, D,
t| y, 7l. However, the following theorem shows that such a relation does exist if

1 of .
and only if 7 ox has a particular form.
THEOREM 1.1. For all t > 7 let Q(t, ©) be a continuous positive function such
that 0Q /0t exists and

(1.12) lim Q(¢, ) = 0.

tlt

Then, under the assumptions of Lemma 1.1,

(1.13) oz, D ‘a—gbgc’it)‘f[gb(x, D, tly, 71 = flx, tly, o
x exp~ Gy Wi, 01 WLy, (21}
iff
114 1 of(x, tly, ) _ A@ 3 A4 n 1
(1.14) f(x, tly, D ox T4 440 /A4,

1 0Q(t, 0 1 140
« [Q(t, 5 T Wz, 10 — g5 Wy, 7@ ——-—r[r(m}.
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Proof. First of all we check that (1.14) satisfies relation (1.11). Since ¢(x, ?)
is a monotonic decreasing function of x, from (1.8a) we have:

dA,(2)
dz

2
_A,()agb(a: )] +2A()6</)(x2, t)'

2=(z,1) o0x

(1.15)

Making then use of (1.8a), (1.9) and (1.15), from (1.14) one obtains:

1 oflz, tl ¢y, ), 7l
(116) [f[Z, tl gb(y, T)y T] aZ }z ¢(x,t)
_Alg(x, 0] <8¢(x, t)>-2 _ §<a¢)(x, t)>-1A;(x) _§<a¢(x, t))—2 ¢, B
T AW ox 4 or Ax) 2 or o’
1 0¢(x, H\? 1 0Q(t, )
+ ,/—Az(x) (%5 loaa o W r®)

r' () }
+ .
Q(t 7.') W[Z/, 7’(1’)] m
One easily sees that (1.14) and (1.16) satisfy (1.11). Hence, (1.14) is in agreement
with the assumptions of Lemma 1.1. We now prove that (1.13) implies (1.14). To

this end we notice that due to (1.7), the left-hand-side of (1.13) satisfies the
Fokker-Planck equation (1.2). Hence, we set

2
117 He, tly, 9 = exp(~ gz Wiz, 01 Wy, @1},
and impose that also the right-hand-side of (1.13), i.e. the product f(x, t|y, ©)

H(x, t|y, 1), for t > 7 satisfies the Fokker-Planck equation

0 0 10° _
(1.18) W(fH) +E’8_[A1(x)fH] —‘—2‘—6;-2 [A,(x) fH] = 0.

-1
%) %—Iti and (%) aa exist for all x, y € I and t > 7, making use
z’

of (1.2), equation (1.18) becomes:

Since (

(1.19)

10f_A@ 4@ 1 (@)@_1<@> o’H
foxr = 4,@  A,@ ' 4,@ ot 2\0r) gp*

Recalling definitions (1.17), from (1.19) we immediately obtain (1.14). This proves
the necessary part of the theorem. To prove the sufficiency we integrate both
sides of (1.14) in the interval (z, ¢(z, £)). Then,
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(1.20) fl¢(zx, D, tly, 7]

s@n A 3. A, , ¢
=flx, tly, o) expu: dz A:g “Zln%x))]

1 0Q¢, o = Wiz, r(®] 1
+ Q(t, 7) ot _/; 2 AR QG0 Wiz, ¢(x, D]

r’(f)

X Wy, @) = o Wie, 6, 91},

Due to (1.8a) we also have:

o(x,t)
(21 Wiz, o, 01 =20z, 0], [ et 2o,
Hence, making use of (1.21) equation (1.20) becomes:
—-3/2
(1.22) flo@, D, tly, 7] = f(x, tly, 0 gg%c%

van A (2) 27 (¥)
X exp{j; dz 4,0 JAL DT Wiz, r(t)]}

2
X exp{— ¢ D Wiz, r(O1Wly, r(f)]}.

Recalling Definition (1.5), from (1.22) Relation (1.13) follows. Note that our
assumptions on the function Q(¢, 7) insure the validity of (1.13) as £ tends to 7.[]

The nature of the function @(f, 7) that appears in (1.13) is elucidated by the
following corollary.

CoroLLArRY 1.1. Let 7,(8) (i = 1,2) be two arbitrary symmetry curves such that
for all t = 7 one has r,() # r,(t) and let Q;(t, ©) (i = 1,2) be the corresponding
Sfunctions m equation (1.13). Then, under the assumptions of Theorem 1.1, one has:

d9
DO’

(1.23) &, 9 = Qt, 9 = DD [

where we have set

(1.24) D® = Wir,(®), r,(O].

Proof. From (1.14) one has:
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1 of(x, tly, 0 A, (x) 3 A(x)
[f(x, . D oz TAW 1 Az(x)] VA (@)

1 0, 1 @
= Qi(t, Z') at W[x, 7; (t)] Qi(t, T) W[y, ri(T)] /——‘Az[rz(t)]

(1.25)

(t=1,2).

Then, from (1.25) for ¢ = 1,2 one obtains:

[ 1 0, D 1 0Q,(t, o)
Q,(t, o ot Q,(t, D ot

(1.26) ] Wiz, r, (D]

1 1
B [Ql(t, D Q,, T)] Wiy, r (0]

—_ 1 6Q2(t, T) 1 ,
=0t 0 a PO-gEPO-DO,

where D(#) is defined in (1.24). In order for (1.26) to hold for all x, y € I and
t > z, it must be Q,(¢, ©) = @Q,(t, ©). Furthermore, Equation (1.26) becomes:

0Q,(t, ©) D' D(7)
(1.27) Zat ~ D @D~ Fp =0
Recalling (1.12), from (1.27) the expression (1.23) then finally follows. U

Corollary 1.1 shows that for any two symmetry curves #,(#) and 7,( such
that #,(t) # 7,(t) for all t 2 7, the function @,(¢, 7) related to #;(f) is known (cf.
(1.23)) and it coincides with the function @,(f, 7) related to 7,(#).

In for instance, 4,(x) = 0° and 7,() = at + b, r,( = a™t + b* with 7
# 7,(#) for all = 7, then from (1.23) and (1.24) we obtain @,(f, 7) = @,(¢,7) =
t—

DerINITION 1.1. A diffusion process will be said to be strongly symmetric iff rela-
tions (1.7) and (1.13) hold under the assumptions of validity of Theorem 1.1.

In the sequel we shall confine our attention exclusively to strongly symmetric

processes.

2. One absorbing boundary

Let y(), #(#) and v(¢) be symmetry curves such that y(f) < u(t) < v(f)
[y(® > u(® > v(D] for all t = 7, where T = ¢, is a fixed instant. We denote by
¢,(x,H and ¢,(x, D the symmetry functions corresponding to #(#) and by ¢,(x, ?)
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and ¢,(x, 1) the symmetry functions for v(#). Furthermore we assume that
(2.1) v(®) = ¢,ly@), tl.

Such an assumption implies that the symmetry curve v(#) is the “image” of
the symmetry curve y(#) in the “mirror” #(f) via the symmetry function ¢,. If, for
instance, for all ¢ =7 (r fixed) one has y(§ < u(f) < v(f), the conditions
y(® <z <u(d amount to requiring ¢,[y(®), 1 > ¢, (x, D > ¢,[u(®, 1], ie
u(@®) < ¢z, D <.

Let us now assume P{X(v) = y(v)} =1 and let S(t;7) be a continuous
function of f taking values in I for all £ = 7. For all t 2 7 and x € I we set:

(2.2) PIXWO<z;X®<S@;0 VIe (r,t)] X =y}

Az, tly(o), o) = (x<S(t;T);y(f)<}ifr15(t;f)),

PX(t) <z; XW® >S@;0 VIE (r, 1) | X(2) =y(D)}
@>St;0;y(0 >1limSE; 7))
tlr
and
0
(2.3) alz, ty), v = —6§A(“r’ ty), 7).
Note that (2.2) and (2.3) define the transition distribution function and the transi-
tion pdf of X(#), respectively, in the presence of the absorbing boundary S(¢; 7)

conditioned upon X(7) = y(1).

THEOREM 2.1. Forallt = 7 set

= - 49 _ D)D)
(2.4) DM = Wly®, u®], Qt, ) =D®HD() f oy R(t, 0 = 5028
and let
(2.5) A(t; D = 612 + 462e—4R(l,T)

For a strongly symmetric process, if ¢, > 0, ¢, € R and lim,_,, A,(t;7) > 0 then,
for all t = T one has

alz, tly(®, ) =flx, tly(®, D +c oz, D %Qf[gbl(x, B, tly(o), 7l

(25) + a0 25D 1,6, 0, 14,
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(x < SUt; 0, ylo <u() or (x> St; 1), y(o) > u(),

where S(t ; T) is a continwous solution of the following equation:

Ao | [Cl +V2‘_1_(7;”%7].

2.7) Wly®, St; 01 = DO ~ Sy 2

Proof. Let a,(x, t| y(¢), 7) be the right-hand-side of (2.6). Clearly, since
(1.7) holds, the function a,(x, t|y(), 7) satisfies the Fokker-Planck equation.
Furthermore, making use of (1.13) and (1.23), o, (z, t| y(z), ©) can be written as

(2.8) a,(z, tly(), 1)

= flx, t|y(D, 1) [1 -0 exp[ Q(t D Wiz, u(®] Wiy(o), u(z‘)]}

-, exp{ Q(t D Wiz, v()] Wiy(o), v(T)]H
Recalling (2.1), and making use of (1.9) and of the first equality of (1.21), from
(2.8) we obtain:
(2.9) oz, tly(d), 0
— _f(l', tl y(f)’ z_) e—-4R(l,T) {Cz e-—4U(I,t,T> + [Cl e—ZU(I,[,T) . 1] e4R(I,T>}’
where D(¥) and Q(¢, ) are defined in (2.4) and where we have set

D(7)

(2.10) Uz, t, ) = )

If i) ¢; € R and ¢, > 0 or (ii) ¢, < 0 and lim,_,., 4,(f; ) > 0, relation (2.9) be
comes:

(2.11) oz, tlyo), 7

_ —4RGtD | —2v@tn 2 ]
== o/, t]y@, Do T
_ 2
% Wt _ _*___]
[e o — VA D)

In order for a,(z, tly(1), ) to be a transition pdf in the presence of an absorb-
ing boundary S(t; 7), the right-hand-side of (2.11) must be zero at x = S(¢; 1),
non negative for all x < S(;7) and y(r) <limricS¢;7) [x> S;7) and
y(r) > lim: 1 S(¢;0)]; finally, it must satisfy the initial delta-condition. It is easy
to prove that all these conditions hold iff ¢, > 0, ¢, € R, lim,_,,, 4,(t;7) >0
and S(¢; 7) is solution of (2.7). J
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We remark explicitly that the boundary S(¢; 7), the solution of (2.7), is such
that lim: 1 - S(¢ ; 7) = u(7). In other words, for a fixed initial time 7, starting from
the symmetry curves u(f) and y(f), an absorbing boundary S(¢;7) has been
obtained, which approaches #(f) as ¢ approaches 7. It should be noticed the sim-
plicity of the transition pdf in the presence of the absorbing boundary S(t; 7).
Such an expression follows from (2.6) or (2.8) for the entire class of strongly sym-
metric processes.

We now define the first-passage time through S(¢; 7):

inf{t : X&) > S(t; 0}, X(v) = y(o) < ul7)

(2.12) T ==t
inf{t: X® < St; 0}, X =yl) >uln).
Let
0
(2.13) gtly(n), 1) = EP{T< B

be its pdf. The following theorem indicates a closed form relation of the FPT pdf
through the boundary S(f; 7) in terms of the free transition pdf.

THEOREM 2.2. Under the assumptions of Theorem 2.1 ome has:

/A GG —1¢] )
(2.14) gltly(D, 0 —W\/AZ[S(LT)] QG D fIS¢; D, tly(), 1.

Proof. Let y(7) < u(7) or equivalently D(z) > 0. As is well known,

St;1) t
(2.15) f dzalz, t|y(o), ©) + f d9g9|y(0), ©) = 1.

1

Making then use of (1.7), (1.10) and (2.6), from (2.15) one has:
S50 P
2.16) gtly@®, ) =— f dz—a—toz(z, tylo), 1)

S(t;7) a
z_ful dz; {f(z, t1y(@), D)

- Cl (pl[(pl(y(r)y T)’ T] f[zy tl ¢1(y(T), T)y T]
— ¢, 0, [0, (y(D), D), 7l flz, t| ¢,(y(D), D), 7).

Recalling that the function f satisfies Fokker-Planck equation (1.2), Equation
(2.16) can be written as:
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S(t;7)
@17) gly@, 9= [ dep|a@ s 5o @@ 5]
S0
6ol 0@, 9,9 [ e ADh— 5o @]
St
el 4@, 0,9 [ do|4@s— 5o U@ )]

where we have set:

(218)  f=fG tly@, D, f£=flz, tl ¢, D, 7] (=1.2).

From (1.7), (1.10) and (1.13) one obtains:

2190 o[, @@, O, 7 flz, t 6, @@, D, 71 = f(z, t] y(@), D) =
(2.19b)  @,[0, (D), D, 7 flz, t| ¢, (D), D, 7] = flz, t|yD), ©) 7,
where U(z, ¢, 7) is defined in (2.10) and

D(v)

(2.20) Vz, t, o) = 0G0

Wiz, v()].

Furthermore, from (2.7) we have:

(2.21a) 1 — ¢, exp{— 2U[S(t; D), t, 7]} — c,exp{— 4VIS(; 1), ¢t, 7]} =0,

2
(2.21b) expl— 2UIS(t; D, ¢, 71} = T VAED
Calculating the integrals in (2.17) and making use of (2.19) and (2.21), relation
(2.14) follows. The case y(7) > u(7) can be analysed in a similar way, with the
proviso that Equation (2.15) is changed to

(2.22) [ et tly@, 0 + [ 49461y, 0 = 1. O

3. Two absorbing boundaries

Let y(®, u(d and v(H) be symmetry curves such that v(H) < y(® < u(D for
all £ = 7, where 7 2 £, is a fixed instant. We denote by ¢,(z, #) and @,(z, O the
symmetry functions corresponding to y(, by ¢,(x, # and ¢,(z, ) the symmetry
functions for #(#) and by ¢,(z, ) and @,(z, H those for v(f). Furthermore, we
assume that
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(3.1) v(®) = ¢,lu®), 1.

Assumption (3.1) implies that the symmetry curve v(f) is the “image” of the
symmetry curve #(#) in the “mirror” y(#) via the symmetry function ¢, Hence, for
all 2=t (r fixed) conditions y(#) <z < u(f) are equivalent to ¢,[y(®), {1 >
Golx, 1) > Plu®, 1, ie. v(t) < ¢z, H < y@).

Let us now assume P{X(r) =y(7)} = 1. Furthermore, let S;(#;7) and
S,(t; 7) denote continuous functions of f taking values in I for all { = 7, such
that (i) S,(¢;0) < S,(t;7) Vi= 17 and (i) lime1-S,(¢;0) <y <limy1:S,(¢; 7).
For all t = rand x € (S,(t; 1), S,(t; 7)) we consider the following functions:

(3.2) Bz, tly(0), ) = PIX®) <zx;5,3;7 <X
<S,@;0vVI€E (¢, )] X(2) = y(o)}

and

(3.3) B, ty(@, 9 = = B, tly(@), 0.

Note that (3.2) and (3.3) define the transition distribution function and the transi-
tion pdf of X(#), respectively, in the presence of the absorbing boundaries S,(¢; 7)
and S,(¢; 7).

TrEOREM 3.1. For all t= 7 let D(t), Q(t, 7) and R(t, T) be defined as in
(2.4) and let
(3.4) A,(t;0 =1 — deyee” 7.

For a strongly symmetric process, if ¢, > 0, ¢, > 0 and lim,_ ., 4,(t; 7) > 0 then, for
all t = 1, one has

(3.5) Bz, tly(®), 0) =f(x, tly(D, 1)
+e oz, ) 5 — agbl(x ) flg,(x, ), t)y(D), 7]

+ ¢ @z, ) Bd)z(x )

flg,(x, 0, ty(@),
(S, (t; 0 <x < S,(t; 1),
where S;(t ;) (1 = 1,2) is a continuous function, solution of the following equation :

: + V8,00
(36) W@, S50 = (- Do - F5c 5 m [ D]
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Proof. Let us denote by B,(x, t| y(1), ©) the right-hand-side of (3.5). Clear-
ly, since (1.7) holds, B, (x, t| y(7), ©) satisfies the Fokker-Planck equation. Furth-
ermore, by virtue of (1.13) and (1.23), B, (x, t| y(¢), 7) can be written as:

(3.7 Bz, tly@, D =flz, ty@, D [1 — e " — ¢, =71,
Recalling (3.1) and making use of (1.9) and of the first of (1.21), from (3.7) we
obtain:

(38) nBl (.Z', tl y(T), T) _ _f(.Z‘, tl y(r), T) eZU(z,t.z') [Cle—4U(z,t,r) _ e—2U(z,t,r) + cze—le(t.t)].
If (i) ¢; ¢, <O or (ii) ¢; ¢, > 0 and lim,_ ., 4,(¢; 7) > 0, relation (3.8) becomes:
3.9 Bz, tly@, D

— le(l‘, tl y(T), T)eZU(I,t,T) [e

% [ ~20 @t _ 1__—_41@]
¢ 2¢ :

—2U@ ) 1+ VAz(t; 7) ]
2¢,

For B,(x, t|y(7), 7) to be a transition pdf in the presence of the absorbing
boundaries S,(t; ) (i = 1,2), for all £ > t the right-hand-side of (3.9) must be
zero at x = S,(t;7) (1 =1,2), non negative for all x € (S,(¢; 7), S,(¢; 7)) and
y() € (limey - S,(¢; ©), lims ) - S,(¢; 7)) ; furthermore, it must satisfy the initial
delta-condition. It is easy to prove that all these conditions are satisfied iff ¢, >
0, ¢, > 0, lim,_,,, 4,(¢; 7) > 0 and each S;(t;7) (: = 1,2) is a solution of (3.6).
U

It is worth remarking explicitly that the solutions S,(¢;7) and S,(t;7) of
equations (3.6) tend to v(7) and #(7), respectively, as ¢ | 7.

We now define the first-passage time through S,(¢; 7) or S,(¢; 7), namely
the first-exit time of the process from the region (S,(¢; 7), S,(t; 7)) :

(3.10) T =inf {t: X € (S,(¢;0), S,(t; )}, X(@) =yK).

t>t
Let
0
(3.11) |y, 0 = 5 PI <8
be the pdf of 7. The following theorem shows how the first-passage time pdf

through S,(¢; 7) or S,(f; 7) can be obtained in closed form in terms of the free
transition pdf.
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THEOREM 3.2. Under the assumptions of Theorem 3.1 one has:

(312) rtly®@, v

= VGO PO ST 15,059, 1y, 4

+ VAIS,(5; DT fIS,(t; 1), t|y(D), 71},

Proof. Since

S,(t57) t
(3.13) L dzBG, t| (@), 0 +ff a9y, 7 = 1

1,1

the proof goes as for Theorem 2.2 with the proviso that Equations (2.19) are now
replaced by

(3.14a) 1 —c,exp{—2U[S;(¢;7),t, 7]} — c,exp{2V[S,(¢t;7),¢t, 7]} =0
(i=1,2)

1+ (= DYAGEGD
2¢,

(3.14b) exp{— 2UIS,(¢;0), ¢, 1) = (Z=1,2). O

The results outlined in Sections 2 and 3 for transition and FPT pdf’s hold for
the entire class of strongly symmetric diffusion processes. Of course, for indi-
vidual processes belonging to such a class also other types of problems may be
posed and solved by ad hoc methods (see, for instance, Example (a) of Section 4).

4. Examples

The practical usefulness of the results of Sections 2 and 3 will now be

pointed out via some non-trivial examples.

4.1. Hyperbolic process

Let

1 — dexpi— 2ux/c’}
1+ 2exp{— 2uzx/0”}’
I=(—o00,+) (ER,120,0>0).

A (x) = A,(x) = o,

Note that if A = 0 the hyperbolic process yields the Wiener process with drift
u. The transition pdf is given by

https://doi.org/10.1017/50027763000006140 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006140

STRONGLY SYMMETRIC DIFFUSION PROCESSES 157

1+ Aexp{— 2ux/0”}

4.1 (z, tly, 0=
@ flx, thy, 1+ dexp{—2uy/0” J2n6°(t — ©)
[t —y— pt— D1
X — .
exp{ 20%(t — 7) }

This is seen to fulfill the symmetry condition (1.7) of Lemma 1.1 iff
(4.2a) rt) = a"t+ b @*, b* €R),

4.2v)  ¢lx, D =27 — x,

(4.2¢) @z, D=

1+ Aexp{— 2ux/ 0% 2(u—a"
= 2ur/o) o [ 2 a) ) ),
1+ 2exp{—2ul2r() — 2] /07 o’

Furthermore, it satisfies relation (1.13) of Theorem 1.1 with

(4.3) Qit, ) =t—r.

Hence, the hyperbolic process is strongly symmetric in the sense of Definition 1.1.
1) One absorbing boundary. The symmetry curves are (cf. Section 2):

(4.4) y@® =ct+d, ul® =at+5b, v® =2ul)—y®

with a, b, c,d € R and y® <u® <v® [y® > u® > v®] for all t= 1.
From (2.7) the absorbing boundary follows:

_ ot~ 1 ¢, T VA, (t; 0
where
(46) A0 =+ deexp|— 4luld) = yO]luto) - y(m}

ot — 1)

Hence, if ¢, >0, ¢, € R and lim,_,,A4,(t;7) >0, from (2.6) (or equivalently
from (2.8)) and (2.14) the transition pdf in the presence of absorbing boundary
(4.5) and the first-passage-time density through such boundary are obtained.

Note that for x =0, 7= 0 and y(z) = 0 the boundary defined by (4.5)
yields the well-known Daniels’ result [6] for the standard Wiener process.

ii) Two absorbing boundaries. The symmetry curves are (cf. Section 3):
(4.7) y&) =ct+d, ul® =at+b, v =2y — u®,

with @, b, ¢, d € R and v(® < y(&) < u(® for all t= 7. From (3.6) we obtain
the absorbing boundaries:
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o't — 1) [1+m]

(4.82) S ¢t;0) =0 — OETIC) In 7,

N o'(t— 1) 1+ /4,70
(4.8b) S,t;0) =ul® + ATICETIC) In [ 3¢, ]
where

(4.9) A4,(t;7) =1—4cpc, exp[— Alul) — ygt)] Luete) — y(r)]}.
o (t— 1)

Hence, if ¢; > 0, ¢, > 0 and lim,_ ., 4,(¢, 7) > 0, from (3.5) (or equivalently from
(3.7)) and (3.12) the transition pdf’s in the presence of the absorbing boundaries
(4.8) and the first-passage-time density through S,(¢; ©) or S,(¢; ) are obtained.

It should be pointed out that the symmetry properties (1.7) and (1.13) of the
transition pdf also appear in problems requiring infinite superpositions of sym-
metry curves, such as the hyperbolic process with the two linear absorbing
boundaries S,(f) = ¢t + d,, S,() = ¢t + d, (d, < d < d,) with ¢ and d specify-
ing the symmetry curve y( in (4.7). Indeed, assuming again P{X(7) = y(7)} =
1, let us consider the doubly infinite system of linear symmetry curves

(4.102) u, () =ct+d+nld,—d) n=0,£1, £2,...
(4.10b) 0, ) =ct+d,—nld,—d) n=0,%1, £2,...

Further, let us denote by ¢,,(z, t) and ¢,,(z, #) the symmetry functions associ-
ated to u,({) k=0, £ 1, £2,...) and by ¢,,(z, §) and ¢,,(x, D those associ-
ated to v,(f) (=0, £ 1, = 2,...). From (4.2) one clearly obtains

¢ln(xy H= Zun(t) - X,

(4.11a) o @ ) = 1+ Aexp{— 2ux/o°} :
1+ dexp{— 2ul2u,(H) —x] /0"
X exp{— g_(_u_;ﬁ [, () — x]},
o
Oonx, H = 20,(H) — x,
(4.11b) _ 1+ dexp{—2uzx/0"}
(,02,,(1', t) - 2
1+ Aexp{—2ul2v,(t) — 21 /07}
X exp{— M [v,(H — x]}.
g

The transition pdf in the presence of the absorbing boundaries S;(#) and S,(9) is
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then given by

(4.12) Bz, tly®@, 7

= £ {oute, o | B2l

n=—o

¢1"(x L ‘f[(/lm(x D, tly(o), 7l

l 0930

e ——(Lt—)—]fwm(x b, 11y, 2,

which, by virtue of (1.13) and (4.3), can also be written as

(4.13) Bz, tly®, v
=f(z, tlyD, D gj [exp[— sz [u,(® — xllu, () — y(z')]}

n=—co o(t—r

2

_ exp{— — v, — 2][v,(0) — y(r)]}],
o (t— 1)

with f defined by (4.1). To prove it, we remark that the series in (4.12) and (4.13)

are absolutely convergent and term by term differentiable. Because of (1.7), from

(4.12) one sees that B(z, t|y(7), ©) satisfies the Fokker-Planck equation (1.2).

Moreover, from (1.7) and (1.10) we obtain

0y, olx—y(@] n=0,

(z, t)lf[fﬁln(x 0, y@, a1} = {2 n=1,%2,. .,

t“{tpm(x t)‘

0Py

lim{%,,(x,t) —M‘f[gbz,,(x D, tly(o), z’]} 0 n=0,%1, %2,

tlt

The right-hand side of (4.12) is immediately seen to satisfy the initial delta-condition.
Finally, use of (4.13) shows that the absorption conditions on the boundaries are satis-
fied, ie. BLS, D, ty(D), 7 = BIS,®, t|y(D, 7] =

Note that for A= ¢ =0 expression (4.12) yields the well-known transition pdf for
the Wiener process in the presence of two constant absorbing boundaries [5].

4.2. Ornstein-Uhlenbeck process
Let
A@=x+py Ax=d, I=(—c, +0) QLueR A1#0,0¢>0).

The transition pdf of X(# is then:

A
mo (exp{At— D} — 1)

(4.14) flx, tly, =/
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« exp{— A+ pu/2— (y+ p/2) explat— ‘[)}]2]
o’lexp{2A¢t— 1)} — 1] '

It satisfies the symmetry condition (1.7) iff

(4.152) ") = — % +a* e (@, bF ER)
(4.15h) o, D =2r() —x

(4.15¢) olr, ) = exp{— %ﬁ e () — J,‘]}.
Furthermore, it satisfies relation (1.13) of Theorem 1.1 with
(4.16) Q0 = e-‘“—”—m%—_—l

This diffusion process is thus strongly symmetric.
i) Ome absorbing boundary. Following Section 2, the symmetry curves are seen to be

417) y@® = — % +e +de, ul) = — % +ad e, v(d = 2uld — y(

with a, b,¢,d€R and y() <ul@® <v® [y® > u@ > v®] for all t= 7. From
(2.7) the absorbing boundary follows:

oexp{— A(t — D} exp{2A(t — D} — 1] In [cl + VA, D) ]
2

(4.18) S(t;0 = u® — L@ — y@]

where

_ 8lexp{At — D} u® —y@®]lu(d) — y(r)]}
o’lexp{2A(t — D} — 1]. '

Hence, if ¢, > 0, ¢, € R and lim,_,, 4,(¢;7) > 0, from (2.6) (or equivalently from (2.8))
and (2.14) we obtain the transition pdf in the presence of the absorbing boundary (4.5)

(4.19) A,@¢, 7) =’ + 4¢, exp{

and the first-passage-time density through such boundary.
i) Two absorbing boundaries. The symmetry curves now are:

(4.20) y@® = — % +cd +de, ul@®) =— % +ad’ + b, v =2y — ul@)

with @, b, ¢, d € R and v(® < y(&) < u(® for all ¢ = 7. The two absorbing boundaries
then follow from (3.6):
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(4.21a) S,(t; 0 =ov® —

o’exp{— A(t— D)} exp{2A(t— D)} — 1] In [1 +/4,(t;7) ]
42[u(t) — y(0)] 2¢,

(4210) S,(t:9 = uld + oexp{— A(t— D} expl22(t— D)} — 1] In [1 +/4,(¢; 0 ]

42[u(t) —y(0] 2¢,

where

_ 8lexp{At — D} u®@® — y@®Iulr) — y(f)]}
o’lexp{2A(t— )} — 1] .
If ¢,>0,¢,>0 and lim,_,, 4,(t, ©) > 0, from (3.5) (or equivalently from (3.7)) and

(3.12) we then obtain the transition pdf in the presence of the two absorbing boundaries
(4.8) and the first-exit-time density from (S,(¢;7), S,(t; 7).

(4.22) At ) =1—4¢g, exp[
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