ON THE EXISTENCE OF NOWHERE-ZERO VECTORS FOR LINEAR TRANSFORMATIONS

S. AKBARI ${ }^{\boxtimes}$, K. HASSANI MONFARED, M. JAMAALI, E. KHANMOHAMMADI and D. KIANI

(Received 27 August 2009)

Abstract

A matrix A over a field F is said to be an AJT matrix if there exists a vector x over F such that both x and Ax have no zero component. The Alon-Jaeger-Tarsi (AJT) conjecture states that if F is a finite field, with $|F| \geq 4$, and A is an element of $\mathrm{GL}_{n}(F)$, then A is an AJT matrix. In this paper we prove that every nonzero matrix over a field F, with $|F| \geq 3$, is similar to an AJT matrix. Let $A J T_{n}(q)$ denote the set of $n \times n$, invertible, AJT matrices over a field with q elements. It is shown that the following are equivalent for $q \geq 3$: (i) $A J T_{n}(q)=\mathrm{GL}_{n}(q)$; (ii) every $2 n \times n$ matrix of the form $(A \mid B)^{t}$ has a nowhere-zero vector in its image, where A, B are $n \times n$, invertible, upper and lower triangular matrices, respectively; and (iii) $A J T_{n}(q)$ forms a semigroup.

2000 Mathematics subject classification: primary 15A03; secondary 15A04, 15A23.
Keywords and phrases: Alon-Jaeger-Tarsi (AJT) conjecture, nowhere-zero vector, LU decomposition.

1. Introduction

A matrix A over a field F is said to be an $A J T$ matrix if there exists a vector x over F such that both x and $A x$ are nowhere-zero vectors (that is, each component of them is nonzero). The Alon-Jaeger-Tarsi conjecture (AJT conjecture) states that if F is a finite field, with $|F| \geq 4$, and A is an element of $\mathrm{GL}_{n}(F)$, then A is an AJT matrix. In [2] the conjecture was proved for $|F|=p^{k}$, where p is a prime number and $k \geq 2$ is an integer. In [5] it was shown that the conjecture is true for $|F| \geq n \geq 4$.

Our main result is that every nonzero matrix over a field F, with $|F| \geq 3$, is similar to an AJT matrix. We also provide necessary and sufficient conditions for a matrix to be an AJT matrix. Throughout this paper, $M_{m, n}(F)$ denotes the set of all $m \times n$ matrices over the field F, and F^{n} indicates $M_{n, 1}(F)$. Also, $\operatorname{ker}(A)$ and $\operatorname{im}(A)$ denote the kernel and the image of the linear transformation corresponding to the matrix A, respectively. A matrix $A=\left(a_{i j}\right)$ is an upper Hessenberg matrix if $a_{i j}=0$ for $i>j+1$. In that case, A^{t} is called a lower Hessenberg matrix. An $n \times n$ matrix $C=\left(c_{i j}\right)$ is a circulant matrix if $c_{i j}=c_{i+1, j+1}$, where the subscripts are taken

[^0]modulo n. Let $A J T_{n}(q)$ denote the set of $n \times n$, invertible, AJT matrices over a field with q elements. A natural question arises here: which classic subgroups of $\mathrm{GL}_{n}(q)$ are subsets of $A J T_{n}(q)$? It is easily seen that the set of invertible circulant matrices is a subset of $A J T_{n}(q)$.

The permanent of an $n \times n$ matrix $A=\left(a_{i j}\right)$ is defined as

$$
\operatorname{Per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i, \sigma(i)}
$$

The sum here extends over all elements σ of the symmetric group S_{n}.

2. Every nonzero square matrix is similar to an AJT matrix

In this section we prove that under similarity the AJT conjecture is true.
THEOREM 1. Every nonzero matrix $A \in M_{n}(F)$, with $|F| \geq 3$, is similar to an $A J T$ matrix.

Proof. Suppose that A is in its rational canonical form, and without loss of generality assume that its $m \times m$ zero block, if it exists, is located in its upper left corner. Any nonzero block of A has the form

$$
B=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & b_{1} \\
1 & 0 & \cdots & 0 & b_{2} \\
0 & 1 & \cdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & 0 & b_{k-1} \\
0 & 0 & \cdots & 1 & b_{k}
\end{array}\right)
$$

We consider the following cases.
(1) The last column of B contains a nonzero element, say b_{j}. Since B is similar to its transpose B^{t} [4, Section 3.2.3], we can assign a proper coefficient to the j th row of B and add it to the rest of the rows to obtain a nowhere-zero vector.
(2) The last column of B is zero. Then B is similar to

$$
C=\left(\begin{array}{ccccc}
1 & -1 & \cdots & 0 & 0 \\
1 & -1 & \cdots & 0 & 0 \\
0 & 1 & \cdots & \vdots & \vdots \\
\vdots & \vdots & \ddots & 0 & 0 \\
0 & 0 & \cdots & 1 & 0
\end{array}\right)
$$

That is, $C=P B P^{-1}$, where P is the matrix that when applied to B from the left replaces the first row of B with the sum of its first and second rows, and leaves the other rows unaltered. It is easily seen that C is an AJT matrix.
Now, since A is assumed to be block diagonal, we can replace all nonzero blocks on the diagonal of A with their similar AJT versions given in (1) and (2) above, and call the
matrix thus obtained \tilde{A}. Consider a nonzero row of \tilde{A}, say the i th row. Let \tilde{A}_{j} denote the j th row of \tilde{A}. Assume that Q is the invertible matrix such that $(Q \tilde{A})_{j}=\tilde{A}_{j}+\tilde{A}_{i}$, for every $j, 1 \leq j \leq m$, and $(Q \tilde{A})_{k}=\tilde{A}_{k}$, for any $k, m+1 \leq \underset{\sim}{k} \leq n$. It is not hard to see that $Q \tilde{A}=Q \tilde{A} Q^{-1}$. Now, since every nonzero block of \tilde{A} is an AJT matrix we conclude that $Q \tilde{A} Q^{-1}$ is an AJT matrix.

REMARK 2. A similar proof shows that every nonzero matrix $A \in M_{n}(F)$, with $|F| \geq 5$, is similar to a matrix B with the property that for any $u, v \in F^{n}$, there exists $x \in F^{n}$ such that $x-u$ and $B x-v$ are nowhere-zero vectors.

3. A generalization of AJT matrices

The following theorem was proved in [5]. The proof is rather long. Theorem 3 generalizes this result and provides a short and simple proof for it.
Theorem. Suppose that $A \in M_{m, n}(F)$, with $|F|=q$, and $q>m+1$. There is a vector $x \in F^{n}$ such that neither x nor $A x$ has any zero entries if and only if no row of A is zero.

Theorem 3. Let $A \in M_{m, n}(F)$, with $|F|>m+1$. Then for any $u \in F^{n}$ and $v \in F^{m}$ there exists $x \in F^{n}$ such that $x-u$ and $A x-v$ are nowhere-zero vectors if and only if A has no zero row.

Proof. One direction is clear. For the other direction, let S be a finite subset of F with at least $m+2$ elements, containing all entries of u. Hence, there are $(|S|-1)^{n}$ vectors x in S^{n} such that $x-u$ is a nowhere-zero vector, and since A has no zero row, the product of at most $(|S|-1)^{n-1}$ of these vectors and the i th row of A is equal to the i th entry of $v, 1 \leq i \leq m$. Obviously, $(|S|-1)^{n}>m(|S|-1)^{n-1}$ implies the existence of $x \in F^{n}$ such that $x-u$ and $A x-v$ are nowhere-zero vectors.

Remark 4. The previous theorem does not hold for $|F|=m+1$. For example, consider the $m \times 2$ matrix

$$
B=\left(\begin{array}{cc}
f_{1} & 1 \\
\vdots & \vdots \\
f_{m} & 1
\end{array}\right)
$$

where $F=\left\{0, f_{1}, \ldots, f_{m}\right\}$ and u, v are zero vectors. Then for any nowhere-zero vector $x=\left(x_{1}, x_{2}\right)^{t}, B x$ has a zero component, since the equation $x_{1} z+x_{2}=0$ in z, takes a nonzero solution in F. For $|F|=m+1$, the mean of the number of zero entries of $A x$, say M, is less than or equal to $\left(m m^{n-1}\right) / m^{n}=1$, where the mean is taken over all nowhere-zero vectors x. If the number of nonzero entries in at least one row of A is not equal to 2, then $M<1$ and A is an AJT matrix. If $M=1$ and A has at least three nonzero columns, then there exists a nowhere-zero vector x such that $A x$ has more than one zero. Hence, there exists a nowhere-zero vector y such that $A y$ has less than
one zero, that is, A is an AJT matrix. Hence, if the number of nonzero entries in at least one row of A is not equal to two, or if A has at least three nonzero columns, then A is an AJT matrix over a field F of size $m+1$. Thus, all $m \times n$ matrices with no zero row which are not AJT matrices over a field F of size $m+1$ are obtained from B by adding zero columns to it, permuting, or multiplying its rows by nonzero scalars from F. This too follows from the probabilistic method used in [3, Proof of Theorem 1].

Corollary 5. Let F be an infinite field and $A \in M_{m, n}(F)$. Then for any $u \in F^{n}$, $\operatorname{ker}(A)$ contains a vector x such that $x-u$ is a nowhere-zero vector if and only if the row space of A contains no vector $e_{i}=(0,0, \ldots, 1,0, \ldots, 0)$, where the ith component is 1 .

Proof. One direction is obvious. For the other direction, note that the row space of A has no e_{i} if and only if the reduced row echelon matrix of A, say R, has no vector e_{i} as one of its rows. Let R_{f} be the submatrix of R obtained from the columns corresponding to the free variables of $R x=0$ with the possible zero rows removed. Now, according to Theorem 3, there exist x_{f} and y_{f} such that $x_{f}-u_{f}$ and $y_{f}-\left(-u_{p}\right)$ are nowhere-zero vectors and $R_{f} x_{f}=y_{f}$, where u_{f}, u_{p} is the partitioning of u into components corresponding to the free and pivot variables of $R x=0$, respectively. It suffices to take $-y_{f}$ for the pivot variables of $R x=0$, and this determines a vector x in the null space of R with the desired property.

REMARK 6. The proof of Corollary 5 gives a necessary and sufficient condition for the kernel of a matrix to contain a nowhere-zero vector over an arbitrary field: $\operatorname{ker}(A)$ contains a nowhere-zero vector if and only if R_{f} is an AJT matrix.

Now, we state the following trivial but useful lemma.
Lemma 7. Given $u, v \in F^{n}$ and a triangular matrix $A \in \mathrm{GL}_{n}(F)$, with $|F| \geq 3$, there exists $x \in F^{n}$ such that $x-u$ and $A x-v$ are nowhere-zero vectors.

Proof. Since $\operatorname{Per}(A)=\operatorname{det}(A) \neq 0$, we can apply [2, Proposition 2].
REMARK 8. Clearly, for every permutation matrix P and Q, A is an AJT matrix if and only if $P A Q$ is an AJT matrix. More generally, for any $u, v \in F^{n}$, there exists $x \in F^{n}$ such that $x-u$ and $A x-v$ are nowhere-zero vectors if and only if, for any $u, v \in F^{n}$, there exists $y \in F^{n}$ such that $y-u$ and $P A Q y-v$ are nowhere-zero vectors. So, using Lemma 7, we can find other families of invertible AJT matrices by permuting rows and columns.

Let us generalize Lemma 7 in the following theorem which immediately implies that every upper or lower Hessenberg matrix $H \in \mathrm{GL}_{n}(F)$, with $|F| \geq 4$, is an AJT matrix.

THEOREM 9. Let $A=\left(a_{i j}\right)$ be a matrix in $\mathrm{GL}_{n}(F)$, with $|F| \geq 4$, such that $a_{i j}=0$ for $i>j+2$ (or similarly $a_{i j}=0$ for $j>i+2$). Then, given $u, v \in F^{n}$, there exists $x \in F^{n}$ such that $x-u$ and $A x-v$ are nowhere-zero vectors.

Proof. The two cases $|F|=4$ and $n<4$ follow from [2, Proposition 1] and Theorem 3, respectively. So, we may suppose that $|F| \geq 5$ and $n \geq 4$. According to Remark 8, we may rearrange the rows of A to obtain a matrix R such that for each $k, 1 \leq k \leq n-1$, the nonzero leading entry of the $(k+1)$ th row of R is in the same column as the nonzero leading entry of its k th row or in a column to the right of it and prove the theorem for R. Note that $r_{i, i-2}=r_{i, i-1}=0$ implies that $r_{i i} \neq 0$. Otherwise,

$$
\operatorname{det}(R)=\operatorname{det}\left(\begin{array}{cc}
B & C \\
0 & D
\end{array}\right)=0
$$

where B is an $(i-1) \times(i-1)$ matrix, and D is an $(n-i+1) \times(n-i+1)$ matrix whose first column is zero, contradicting our hypothesis that A is invertible. Thus, each column of R contains at most three nonzero leading entries. This fact, together with $|F| \geq 5$, enables us to make a vector $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$ such that $x-u$ and $R x-v$ are nowhere-zero vectors by assigning a proper value to x_{k} and finding proper values for x_{k-1} and x_{k-2}, where $k=n, n-1, \ldots, 3$.

Our next two theorems show how the problem of the existence of a nowhere-zero vector in the image of a mapping is related to the problem of determining whether a given matrix is an AJT matrix.

Theorem 10. Suppose that $A \in M_{m, n}(F)$ has no zero row and $\operatorname{rank}(A)=r<m$. Without loss of generality, assume that the first r rows of A are linearly independent, and $A_{i}=b_{i-r, 1} A_{1}+\cdots+b_{i-r, r} A_{r}, i=r+1, \ldots, m$, where A_{k} denotes the kth row of A. Then $\operatorname{im}(A)$ contains a nowhere-zero vector if and only if $B=$ $\left(b_{i j}\right)_{r+1 \leq i \leq m, 1 \leq j \leq r}$ is an AJT matrix.
Proof. Clearly, B has no zero row. Assume that $\operatorname{im}(A)$ contains a nowhere-zero vector, that is, there exists $x \in F^{n}$ such that $A x$ is a nowhere-zero vector. Let $z=\left(A_{1} x, \ldots, A_{r} x\right)^{t}$. Then $B z$ is a nowhere-zero vector, and therefore B is an AJT matrix. Now, suppose that B is an AJT matrix, that is, there exists $y \in F^{r}$ such that y and $B y$ are nowhere-zero vectors. Let $A=(C \mid D)^{t}$ be a partitioning of A into $C \in M_{r, n}(F)$ and $D \in M_{m-r, n}(F)$. Then $\tau_{C}: F^{n} \rightarrow F^{r}$, the linear operator corresponding to C, is surjective. Therefore, there exists $x \in F^{n}$ such that $\tau_{C}(x)=y$. Clearly, $D x$ and therefore $A x$ are nowhere-zero vectors too.

Corollary 11. Suppose that $A \in M_{m, n}(F)$ has no zero row and that $\operatorname{rank}(A)=r$. If $|F|>m-r+1$, then $\operatorname{im}(A)$ contains a nowhere-zero vector.

Proof. Apply Theorem 3 to the matrix B in the above theorem.
REmARK 12. Suppose that $A \in M_{m, n}(F)$ and $\operatorname{rank}(A)=m$. Clearly, $\mathrm{im}(A)$ contains a nowhere-zero vector. Moreover, if $F=G F\left(p^{\alpha}\right), \alpha>1$, then according to [2] A is an AJT matrix, since it can be extended to an invertible matrix by adding $n-m$ rows to it.

It is well known that any matrix A has a $P L U$ decomposition [4], that is, there exist a lower triangular matrix L, an upper triangular matrix U, one of which is invertible, and a permutation matrix P, such that $A=P L U$. Hence, according to Remark 8, we may restrict our attention to $L U$ decomposable matrices only.

THEOREM 13. The following are equivalent for $q \geq 3$.
(1) $A J T_{n}(q)=\mathrm{GL}_{n}(q)$.
(2) Every $2 n \times n$ matrix of the form $(A \mid B)^{t}$ has a nowhere-zero vector in its image, where A, B are $n \times n$, invertible, upper and lower triangular matrices, respectively.
(3) $A J T_{n}(q)$ is closed under multiplication of matrices, that is, it forms a semigroup.

Proof. (1) \Rightarrow (2). Let $M=B A^{-1}$. By assumption, there are nowhere-zero vectors x, y such that $M x=y$. Now, if $z=A^{-1} x$, then $(A \mid B)^{t} z=(x \mid y)^{t}$.
(2) $\Rightarrow(1)$. Let $M \in \mathrm{GL}_{n}(q)$. There exists a permutation matrix P such that $P M=L U$, where L and U are lower and upper triangular matrices, respectively. By considering the matrix $\left(U^{-1} \mid L\right)^{t}$ and using the assumption, we are done.

On the other hand, (1) $\Leftrightarrow(3)$, because of Lemma 7 and the $P L U$ factorization of matrices.

Corollary 14. Let $A=L U$ be an $L U$ decomposition for $A \in \mathrm{GL}_{n}(F)$, with $|F| \geq 4$, such that the last column of U^{-1} and the first column of L are nowhere-zero vectors. Then A is an AJT matrix.

Proof. Set $z=(1,0, \ldots, 0, c)^{t}$ in the proof of Theorem 13 for a proper $c \in F$.

4. Nowhere-zero vectors in the kernel or the image of linear transformations

In this section we provide some criteria for the existence of nowhere-zero vectors in the null space and the image of a linear transformation.
THEOREM 15. Let $A \in M_{m, n}(F)$ be a matrix with no zero row and with at most k nonzero entries in each column. If $|F|>k+1$, then A is an AJT matrix, and if $|F|=k+1$, then $\operatorname{im}(A)$ contains a nowhere-zero vector.

Proof. Without loss of generality, assume that A has no zero columns. The proof is by induction on n. For $n=1$ the assertion is obvious. Suppose that the statement holds for all such A with less than n columns, $n>1$. Let \tilde{A} be the matrix obtained by omitting the last column of A with its possible zero rows removed. By the induction hypothesis, there exists an $x \in F^{n-1}$ such that $\tilde{A} x$ has the desired property. It is not hard to choose $a \in F$ such that $A y$ has the same property as \tilde{A}, where $y=(x \mid a)^{t}$.

REMARK 16. In [1] it is shown that every $(0,1)$ matrix with at most two ones in each of its columns and no zero row is an AJT matrix over F, for $|F| \geq 3$.

THEOREM 17. Let $A \in M_{m, n}(F)$ be a $(0,1)$ matrix with at most three ones in each of its columns and no zero row. Then $\operatorname{im}(A)$ contains a nowhere-zero vector over F, $|F| \geq 3$.

Proof. We apply induction on n. For $n=1$ the assertion is obvious. Let $n>1$ and let \tilde{A} be the matrix obtained from omitting a column of A. Now, we consider the following two cases.
(1) \tilde{A} has no zero row. Then, by the induction hypothesis, $\tilde{A} x$ is a nowhere-zero vector for some $x \in F^{n-1}$. Hence, if we assume without loss of generality that the last column of A is removed, then $A(x \mid 0)^{t}$ will be a nowhere-zero vector.
(2) \tilde{A} has at least one zero row, for every choice of the columns of A. Then, by a permutation of the rows, A will be in the form $\left(I_{n} \mid B\right)^{t}$, where B is a matrix with at most two ones in each of its columns, and hence by Remark 16 an AJT matrix. Clearly, A is also an AJT matrix.

REMARK 18. Let F be a finite field of characteristic 2 . Then there exists a $(0,1)$ matrix with no zero row and $|F|-1$ ones in each of its columns which is not an AJT matrix over F. Hence, we cannot generalize Remark 16 in this sense. Here, we give an example of such a matrix for $F=G F(4)$:

$$
A=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Clearly, the condition that the nowhere-zero vector x has distinct elements is necessary for $A x$ to be a nowhere-zero vector. Hence, A is not an AJT matrix over $G F(4)$, since this field has only three nonzero members. Generally, assuming that F is a finite field with $\operatorname{char}(F)=2$, the same method may be used to construct a matrix with $\binom{|F|}{2}$ rows and $|F|$ columns that is not an AJT matrix over F.

THEOREM 19.

(1) Suppose that any matrix with at most k nonzero entries in each of its columns and no zero row is an AJT matrix over a field of size $k+1$. Let A be a matrix with at most $k+1$ nonzero entries in each of its columns and no zero row. Then $\operatorname{im}(A)$ contains a nowhere-zero vector over a field of size $k+1$.
(2) Suppose that for any matrix A with at most l nonzero entries in each of its columns and no zero row over a field of size $l, \operatorname{im}(A)$ contains a nowhere-zero vector. Then any matrix B with at most $l-1$ nonzero entries in each of its columns and no zero row is an AJT matrix over a field of size l.

Proof. (1) The proof is similar to that of Theorem 17 and hence omitted.
(2) Suppose that B is an $m \times n$ matrix and define $A=\left(I_{n} \mid B\right)^{t}$. Then im (A) contains a nowhere-zero vector by hypothesis, and hence B is an AJT matrix.

Acknowledgements

The first, third and fifth authors are indebted to the School of Mathematics, Institute for Research in Fundamental Sciences (IPM), for support.

References

[1] S. Akbari, H. R. Dorbidi and M. Jamaali, 'A variation of Alon-Jaeger-Tarsi conjecture', submitted.
[2] N. Alon and M. Tarsi, 'A nowhere-zero point in linear mappings', Combinatorica 9(4) (1989), 393-395.
[3] R. D. Baker, J. Bonin, F. Lazebnik and E. Shustin, 'On the number of nowhere zero points in linear mappings', Combinatorica 14(2) (1994), 149-157.
[4] R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985).
[5] G. A. Kirkup, 'Minimal primes over permanental ideals', Trans. Amer. Math. Soc. 360(7) (2008), 3751-3770.
S. AKBARI, Department of Mathematical Sciences, Sharif University of Technology, PO Box 11155-9415, Tehran, Iran and
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5746, Tehran, Iran
e-mail: s_akbari@sharif.edu
K. HASSANI MONFARED, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), PO Box 15875-4413, Tehran, Iran
e-mail: k1monfared@gmail.com
M. JAMAALI, Department of Mathematical Sciences, Sharif University of Technology, PO Box 11155-9415, Tehran, Iran and
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5746, Tehran, Iran
e-mail: jamaali@mehr.sharif.edu
E. KHANMOHAMMADI, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic),
PO Box 15875-4413, Tehran, Iran
e-mail: ehssanlink@gmail.com
D. KIANI, Faculty of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), PO Box 15875-4413, Tehran, Iran and
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5746, Tehran, Iran
e-mail: dkiani@aut.ac.ir

[^0]: The research of the first author was in part supported by a grant from IPM (No. 88050212). The research of the fifth author was in part supported by a grant from IPM (No. 88050116).
 (C) 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

