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ABSTRACT 
Human-artificial intelligent (AI) - assisted teaming is becoming a strategy for coalescing the 
complementary strengths of humans and computers to solve difficult tasks. Yet, there is still much to 
learn regarding how the integration of humans with AI agents into a team affects human behavior. 
Accordingly, this work begins to inform this research gap by focusing specifically on how the 
communication structure and interaction changes within AI-assisted human teams. The underlying 
discourse data for this work originates from a prior research study in which teams solve an 
interdisciplinary drone design and path-planning problem. Several metrics are employed in this work 
to study team discourse, including count, diversity, content richness, and semantic coherence. Results 
show significant differences in communication behavior in AI-assisted teams including more diversity 
and frequency in communication, more exchange of information regarding principal design parameters 
and problem-solving strategies, and more cohesion. Overall, this work takes meaningful steps towards 
understanding the effects of AI agents on human behavior in teams, critical for fully building effective 
human-AI hybrid teams in the future. 
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1 INTRODUCTION 

As technology and data fuse across boundaries of specialized domains, human society is increasingly 

challenged by multifaceted problems. It is difficult for humans to tackle these complexities alone. On 

one hand, advances in artificial intelligence (AI) have shown great potential in solving task-

specialized, computation-intensive problems. On the other hand, AI is also not able to solve these 

interdisciplinary tasks alone as it still lacks the problem-solving behaviours to deal with uncertainty 

and creative thinking (Lake et al., 2017). To tackle this shortcoming, human-AI collaboration is 

recognized as a promising strategy to integrate the complementary capabilities of humans and AI to 

augment each other (Dellermann et al., 2019). Prior studies have shown human teams assisted by AI 

outperform human-only teams across a variety of domains (Roll et al., 2014; Liew, 2018). In fact, 

previous research by the authors corroborates these studies, having shown that AI-assisted human 

teams achieved considerably better performance in solving an interdisciplinary drone design and 

operations problem. To fully grasp these aforementioned results, there exists a need to understand how 

AI assistance changes team dynamics and behaviours. To date, little attention has been paid to the 

influence of AI on the problem-solving behaviours of the human team members assisted by AI. 

 Behavioural analyses in that previous work by the authors revealed that AI-assisted teams 

exhibited greater agility in adapting to structural shocks, performed fewer but more meaningful design 

actions, and explored more of the design space than human-only teams (Song et al., 2020). While only 

a preliminary analysis on team communication was conducted, this current work aims to expand that 

analysis to deepen the understanding of this fundamental process of AI-assisted human teams, 

specifically focusing on the discourse among the human team members. Team communication is a 

critical component for efficient knowledge distribution, sharing, and integration, particularly when 

solving complex, multi-disciplinary tasks (Hendry, 2004). Analyses of team communication provide 

indicators to capture this knowledge exchange and common understanding between team members, 

which can significantly influence team performance (Zhang et al., 2016). Thus, gaining a better 

understanding of how the process of communication is affected through AI boasts major insights to 

human-AI collaboration. This work includes a comprehensive set of analyses, including count, 

distribution, content richness, and semantic analyses, to dive deeper into this gap in the research. 

2 BACKGROUND 

2.1 Human-AI collaboration 

Human-AI collaboration is expected to achieve superior outcomes by taking advantage of the 

complementary strengths of humans and AI. A strand of research in this area focuses on the 

effectiveness of human-AI collaboration in augmenting the ability of humans and/or AI in solving 

complex problems. Among them, Hu and Taylor (2016) show that a computer-aided design intelligent 

tutor helps students apply their learned knowledge to solve novel problems, providing suggestions and 

guiding their exploration. Instructional design agents support novice designers in exploring complex 

design spaces through a design study with a solar farm design problem (Schimpf et al., 2019). Song et 

al., (2020) report that the assistive of AI agents can effectively improve the performance of AI-assisted 

human teams in the configurational and operational design of drones. Other contexts showing the 

effectiveness of AI assistance include tutoring and education (Roll et al., 2014), job shop scheduling 

(Higgins, 1999), and clinical imaging (Liew, 2018). However, it has also been reported that AI does 

not always boost the performance of human teams assisted by AI (Zhang, et al., 2020) 

 Moreover, many efforts work towards the understanding, design, and improvement of human-AI 

interaction to facilitate collaboration (Dellermann et al., 2019; Gunning et al., 2019). For example, 

according to the information flow and role distribution between humans and AI, a group of researchers 

classify human-AI collaboration into two forms, human intelligence in the loop of artificial 

intelligence (human-in-the-loop) and AI in the loop of human intelligence (AI-in-the-loop) to clarify 

the required characters of interactive AI (Dellermann et al., 2019). In terms of AI design, the common 

language and the explainability and transparency of AI are considered essential to improve humans' 

understanding of and trust towards AI (Gunning et al., 2019; Ezer et al., 2019). Van Den Bosch and 

Bronkhorst (2018) study human-AI collaboration in complex decision making, categorizing six levels 

according to the type of interaction and level of collaboration. Yang, Steinfeld, and Rosé (2020) 

identify design challenges of human-AI interaction and propose strategies for addressing them. Sill, 
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how AI specifically reshapes the interactions and behaviours between human team members remains 

an open question, and one this current work moves towards. 

2.2 Team communication in design problem solving 

Team communication is a fundamental component of complex engineering design processes. It 

enables team members to integrate specialized knowledge, bridge gaps, and negotiate differences 

across domains (Toft, Howard, and Jorgensen, 2003). Communication plays a boundary spanning role 

that supports design knowledge sharing, exploration, collaboration, and coordination (Sonnenwald, 

1996; Hendry, 2004). Prior studies recognize communication as a prime success factor of shared 

leadership in teams (Kratzer, Leenders, and Van Engelen, 2010), impacting team creativity (Wu and 

Cormican, 2016). In design teams aiming at complex problem solving, the effectiveness of 

interpersonal communication influences team efficiency, performance, and progress toward their 

design (Zhang et al., 2016). Inadequate or ineffective communication can hinder task and team 

achievements (Safoutin et al., 1993). Moreover, studies on team communication facilitate our 

understanding of team cognitive processes. As such a critical component to team performance in 

complex engineering design, understanding how the integration of AI agents into human design teams 

affects team communication requires further attention. 

 A variety of techniques exist to analyse and model language-based communications, including 

content coding and sequential analysis (Bowers et al., 1998), hidden Markov models (Stolcke et al., 

2000), classification (Sexton and Helmreich, 2000), Latent Semantic Analysis (LSA) (Dong, Hill, and 

Agogino, 2004; Gorman et al., 2003), and topic modelling (Blei, Ng, and Jordan, 2003; Gyory, 

Kotovsky, and Cagan, 2020). As a fully automatic method of analysing, representing, and quantifying 

semantic information from text, LSA (Deerwester et al., 1990) is a powerful tool to measure cognition 

and knowledge construction within teams through modelling the semantic meaning in sentences. For 

instance, Dong, Hill, and Agogino (2004) utilize LSA as a quantitative measure to model knowledge 

acquisition and representation through language-based communication within engineering design 

teams. Gorman et al. (2003) develop LSA-based methods of communication content modelling to 

categorize team communication, calculate its task relevance, and track task-relevant topic shifts. LSA 

has also been applied to modelling semantic meaning in communication in various contexts for 

assessing effectiveness of communication (Kane et al., 2020), trust between participants (Vrana et al., 

2018), and emotions of participants (Inrak and Sinthupinyo, 2010). In this work, LSA compares the 

content of discourse across AI-assisted human teams and human-only teams and interactions among 

task-specialized disciplines. 

3 METHODOLOGY 

3.1 Drone Design Study 

To study the overarching research goal of this work, a large-scale human design study was jointly 

conducted between researchers at Carnegie Mellon University and Pennsylvania State University. The 

study, approved by the Institutional Review Board at Carnegie Mellon University, recruited 395 

participants representative across 18 different universities in the United States. The experiment, run via 

an online platform named HyForm™, simulates a real-world problem which merges business, drone 

design, and operations problems, in which teams aim to maximize their profit by operating designed 

drones to deliver parcels for customer markets. Teams consist of six individuals across three respective 

disciplines including business, operations, and design. The business discipline, consisting of a business 

manager, operations manager and design manager, focuses on market targeting; the operations 

discipline, consisting of two operations specialists and one operations manager, focuses on drone path 

planning; while the design discipline, consisting of one design specialist and one design manager focuses 

on drone design. More detailed descriptions regarding the experimental platform, problem statement, 

roles, and experimental methodology can be found in related work (Song et al., 2020). 

 The team roles under each distinct discipline are provided with and have access to separate 

information regarding the overall problem (e.g., the operations discipline has access to the market 

information but no access to the drone configurations). Thus, to obtain maximum performance, team 

members must be able to effectively communicate with each other to share information and build 

common understanding of constraints and goals. In the experiment, text-only communication is enabled 

https://doi.org/10.1017/pds.2021.65 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.65


654  ICED21 

through embedded communication channels. Figure 1 depicts two different team structures employed: 

the open team structure (Figure 1A) and the restrictive team structure (Figure 1B). The labelled 

communication channels in the figure designate who can directly interact with whom. For example, in 

the Operations channel in the open communication structure, the operations manager and operations 

specialists can all directly communicate with one another, but not directly with the design specialist. 

 

Figure 1. The two different team structures showing the channels of communication and the 
team roles: (A) Open team structure and (B) Restrictive team structure. 

 The experimental design split team problem-solving into two 20-minute sessions. Teams either 

started with the open team structure or the restrictive team structure and then switched between the 

two sessions, with changes only in the configuration of communication channels. Two AI agents, that 

can respectively design drones using character-recurrent neural networks (Stump et al., 2020) and 

generate path plans based on linear programming search, are also incorporated into the HyForm™ 

platform to collaborate with during problem solving. By controlling teams' access to the AI agents, the 

experiment consists of four experimental conditions: teams with no access to the AI agents (human-

only teams) and those with access to the AI agents (AI-assisted human teams), and whether the teams 

start with the open or restrictive communication structures in the initial design session. In total, 

participants are randomly assigned to 44 teams with 11 teams in each of the experimental conditions 

(Zhang et al, 2021). 

3.2 Extraction and pre-processing of raw discourse data 

During the problem-solving sessions, team members communicate with each other through the 

channels dictated by the two team structures in Figure 1. The raw chat data is separated into 

documents according to these channels, each containing all communication within that channel. For 

example, the open team structure consists of an All channel in which all six team members can 

communicate directly with each other. Thus, the document for that channel contains all discourse 

between any of the members that utilize that channel to communicate. During the experiment, 

participants can communicate with the experimenter when needed through a Help channel. All 

discourse via that channel is removed from the text analyses.  

 The raw chat data goes through a few post-hoc pre-processing steps, common through natural 

language processing pipelines. The first step includes tokenization of the documents, in which each 

document is represented as a vector of words. The length of the vector is the number of words in the 

corpus and the value in the vector is the number of times a specific word appears in a document, i.e., 

word frequency. Words identified in the Natural Language Toolkit (NLTK) as stop words are removed 

from the corpus (Bird, Klein, and Loper, 2009). Punctuation are removed as well as short words (those 

words that have two or fewer characters) in order to eliminate noise in the data. Finally, words are also 

stemmed and lemmatized so that they return to the same tense and their dictionary forms.  

3.3 Latent Semantic Analysis model 

Following the pre-processing steps, a LSA model is trained on the discourse documents. Conceptually, 

LSA measures the similarity of text documents by comparing the frequency of terms across documents 

and across the entire text corpus (Landauer, Foltz, and Laham 1998). This natural language processing 

technique assumes that words semantically similar in meaning will appear in similar documents, thereby 

measuring the similarity of the documents themselves. Mathematically, LSA decomposes documents 
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into a lower-dimensional space via singular value decomposition. Once tokenized (represented as a 

vector of word frequencies), the singular value decomposition can be computed as defined in Equation 1:  

                (1) 

where   is an         occurrence matrix (describing the occurrence of words in the documents) with 

  number of words and   channel documents,   is an         concept vector matrix with rank  ,   

is an         singular values matrix, and   is an         channel matrix. The LSA model treats each 

channel as a distinct document, for example, the content from Designer 1 would be a single document. 

This includes all discourse from the respective roles within the channel as dictated by the team 

structures in Figure 1. As such, the cohesion analysis is done at the discipline and team levels, not at 

the role level.  Once reduced into this space, the cosine similarity between document vectors (  ) 

computes the similarity between documents. Although in this work, the cosine distance,  , compares 

the cohesion (or lack thereof) across conditions, which is computed as the complement of the cosine 

similarity, as shown in Equation 2, for all  ,   pairs of documents vectors:   

         
        

‖  ‖ ‖  ‖
                   (2) 

4 RESULTS & DISCUSSION 

With the methods outlined in Section 3, this section investigates the influence of the incorporation of 

AI agents on team communication. Section 4.1 studies the communication count, distribution, and 

content richness of the team discourse as well as providing a temporal perspective. Then, in Section 

4.2, an LSA model measures discourse coherence on the communication content. These analyses are 

done post-hoc to the collection of the data in real-time during the experiment.    

4.1 Count, distribution and content richness of team communication 

In this section, a set of statistical analyses are used to assess the count, distribution, and content 

richness of the team communication. First, the communication count is compared between the AI-

assisted and the human-only teams. Here, any line of discourse, or turn, counts as a distinct 

interaction/count. Overall, the AI-assisted teams (  ̅  156  13  do not communicate significantly 

more than the human-only teams ( ̅  137   12  on average    = 0.16). However, a temporal analysis 

shows that the counts do become significant over time. Figure 2 presents a one-minute sliding window 

average of team communication frequency. It shows that close to the entirety of the second 

experimental session, the AI-assisted teams have a significantly higher communication frequency than 

the human-only teams, occurring after the teams experience a team structure change.  

 

Figure 2. Temporal analysis of average communication frequency in one-minute intervals 

between the AI-assisted and the human-only teams. Error bars show    standard error. 

 The communication counts are further compared across the distinct channels. Figure 3 depicts the 

distribution of team communication across these channels for both team conditions. Corresponding to 

the open team structure (All, Designer, Business, and Operations channels), the AI-assisted teams 
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communicate in the All channel, relative to the discipline specific channels, more than the human-only 

teams do. That is, the participants working with AI communicate information with the whole team 

rather than only with the discipline specific members, indicating that the AIs enable the AI-assisted 

teams to process a larger amount of information. Corresponding to the restrictive team structure 

(Business, Designer 1 & 2 and Operations 1 & 2 channels), the AI-assisted teams present a different 

effect, with an even communication distribution between these channels compared with the human-

only teams. Moreover, the Operations 1 & 2 channels see significantly greater communication in the 

AI-assisted teams than in the human-only teams (  < 0.01). The experimental data shows that the 

operations specialists use the operations AI agent (42 times) significantly more than the design 

specialists use the design AI agent (14 times) (  < 0.002). This allows the roles in the Operations 1 & 

2 channels to devote more time to communication, which forms a critical pathway of communication 

between the management team and the design specialists in the restrictive team structure. In addition, 

Figure 3 shows a significantly larger proportion of the communication across both experimental 

conditions occurs in the Business channel (  << 0.01), which includes the managers across both team 

structures. While not different across team conditions, it does indicate that the inter-discipline 

discourse among the managers constitutes a significant proportion of the overall team discourse and 

thus flow of information throughout the problem-solving process.  

 

Figure 3. Average proportion of communication between the AI-assisted and the human-
only teams across the communication channels. Error bars show    standard error. 

 Next, the content richness of team communication is measured in terms of both the total number 

of tokens and the total number of unique tokens. This richness provides an additional dimensionality 

for assessing communication than merely count, indicating the amount and diversity of the discourse 

content itself. Table 1 displays the average number of total tokens for both the AI-assisted and human-

only teams as well as the average number of unique tokens. Both the total number of tokens and the 

number of unique tokens exhibit significant effects between the AI-assisted and human-only teams. 

Across all channels, the AI-assisted team discourse contains, on average, 513 total tokens while the 

human-only teams' discourse contains 409 total tokens (  = 0.042). For the number of unique tokens, 

the AI-assisted teams use, on average, 196 unique words while the human-only teams use 166 unique 

words (  = 0.052). That is, the AI-assisted teams present a higher communication richness than the 

human-only teams indicated by the total and unique number of tokens contained in their 

communications.  

Table 1. The number of total and average tokens and total (left) and average of unique 
tokens (right) between the AI-assisted teams and human-only teams 
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 Motivated by this result, two categories of discourse information are further analysed to deepen 

the understanding of the difference in content between the AI-assisted and the human-only teams. The 

first category (Table 2) contains topic tokens and their counts representative of principal design 

parameters, such as drone metrics (e.g., flying range, velocity, cost), market and operations plan 

information (house, customer, food), and budget. The second category (Table 3) consists of tokens that 

indicate the descriptors of the strategies of teams' problem-solving process, including trend verbs and 

adjectives indicating qualitative requirements for the design parameters. Statistical tests show that the 

AI-assisted teams use these two categories of tokens significantly more frequently than the human-

only teams (  = 0.003). This result illustrates that the AI-assisted teams exchange greater information 

regarding the principal topics of the complex problem and their problem-solving directions or 

strategies regarding the topics, and thereby providing evidence for more effective discourse. 

Table 2. Frequency of occurrence of the principal design parameters topic tokens. 

 

Table 3. Frequency of occurrence of the descriptive strategics topic tokens. 

 

4.2 Discourse Coherence 

An LSA model is then used to study the cohesion among the team discourse. The motivation behind 

this analysis is that the literature shows that more cohesive discourse indicates more shared knowledge 

representation, exchange, and can lead to better performance. To compare the impact of the AI agents 

across the disciplines themselves, the semantic distances between the AI-assisted and human-only 

teams' discipline documents are first computed. The documents for this analysis are combined in this 

way: "Design" combines all communication from the design-related channels, including Designer, 

Designer 1, and Designer 2; and "Operations" combines all communication from the corresponding 

operations-related channels. The computed cosine distances resulted in: All:   = 0.22, Business:     

0.098, Design:    0.078, and Operations:     0.11 (where   is the cosine distance between the AI-

assisted teams and human-only teams). This shows larger semantic disparities between the contents of 

the All channel between the AI-assisted and human-only teams rather than among the main disciplines 

themselves (i.e., business, design, and operations). Out of the main disciplines, the Operations 

channels experience the larger disparity between conditions, which as mentioned previously, relied 

more heavily on the AI agent.  

 Next, LSA is leveraged to also compare the semantic content between the channels. Figure 4 

presents heatmap matrices of the semantic distances between the AI-assisted teams' channels (Figure 

4A) and the human-only teams' channels (Figure 4B). These show all pairwise comparisons of the chat 

channels and therefore result in symmetric matrices. The main diagonals are zero as they define the 

semantic distance of a channel with itself. There exists high semantic similarity (small cosine distance) 

among the intra-discipline channels (i.e., Designer, Designer 1, and Designer 2 in the design 

discipline and Operations, Operations 1, and Operations 2 channels in the operations discipline). This 
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high similarity among the intra-discipline channels serves as a validation measure from the LSA 

model, as the discourse within the respective disciplines should be, and turns out to be, relatively more 

consonant with each other. 

 

Figure 4. The semantic distances between the communication channels of the AI-assisted 
teams (A) and the human-only teams (B). 

 The distance matrices reveal additional insights when analysing different pairs of channel 

interactions between the AI-assisted teams and the human-only teams. First, the global value between 

both sets of distance matrices is significantly different from each other (  = 0.037), with the AI-

assisted having greater overall cohesion (smaller cosine distances). The upper right (and lower left), 3 

  3, design-operations blocks reveal significant differences between the two conditions (  = 0.003), 

with the AI-assisted teams exhibiting higher similarity between the operations and design channels. 

The 3   3 block of operations-operations channel similarities are also more highly similar in content 

(  = 0.015), but not so for the inter-similarity of the design discipline (  = 0.68). Again, this common 

theme of larger effects on the operations discipline (due to their higher reliance on the AI agents) even 

emerges in the semantic content of the discourse. 

 The team structures and experimental design of the study underscore the criticality of effective 

communication, particularly between the operations and design disciplines. Neither has access to the 

constraints and goals of the other, so communication is imperative. The higher cohesiveness found in 

the AI-assisted teams indicate this passing of information and knowledge transfer. Recall that the AI-

assisted teams also present significantly higher content and diversity (more unique tokens) in 

communication (rather than just number of turns) as well as more discourse related to strategy and the 

design parameters. With the help of the AI agents, the human team members can expend more time to 

this information transfer and create more common knowledge and understanding of the design 

problem. Altogether, these results validate that incorporating the AI agents into human teams 

improves team communication effectiveness.  

5 CONCLUSION 

This work studies the effects of AI agents on the problem-solving behaviour of teams via team 

communication. The discourse data originates from a large-scale, human subjects study simulating a 

drone design and operations problem in which teams of six members need to coordinate across three 

task-specialized disciplines to produce as much profit as possible. Prior work by the authors revealed 

that the AI-assisted teams significantly outperformed the human-only teams in their overall team 

profit. As the sub-disciplines are highly coupled and team members need to communicate across these 

disciplines, this paper furthers previous work by taking a deeper dive into the team communication, 

gaining broader insight into how the AI agents reshape and improve team communication. 

 Results show that the integration of the AI agents into human teams enables increases in both the 

amount and richness of discourse content (not necessarily turns), with considerable effects exhibited 
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temporally as well. At the content level, AI-assisted teams also exchange more information regarding 

the principal design parameters and problem-solving strategies, providing evidence for increased 

communication effectiveness. Finally, LSA computationally models team discourse across team 

communication channels and shows increased semantic cohesiveness across discipline interactions. 

The operations discipline experiences the strongest effects on some of these measures, which affirms 

their significant reliance on the AI agents. The results of this work complement the prior work by the 

authors by uncovering detailed changes in team communication when incorporating AI agents. 

Overall, this work furthers the understanding of how the assistance of AI agents can reshape 

interactions between human team members in AI-assisted teams, which currently lacks in the literature 

on human-AI collaboration. Team communication, as a critical vehicle for effective information 

exchange in problem solving, needs to be better understood to fully harness the power of human-AI 

collaboration for the future. Future work by the authors addresses tracking some of these discourse 

measures continuously, to provide real-time updates into team problem-solving processes and 

recommendations for team efficiency. 
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