The conjugate of a smooth Banach space

D. G. Tacon

A Banach space X is *smooth* if at every point of the unit sphere there is only one supporting hyperplane of the unit ball; and *strictly convex*, or *rotund*, if the unit sphere contains no line segment.

Although there is a strong duality between these notions, Klee has produced a smooth space whose conjugate is not rotund. However there is no known example of a smooth space with conjugate not isomorphic to a rotund space.

The main purpose of this note is to show that if X is a smooth space with a certain property, X^* is isomorphic to a rotund space. This will follow from a mapping theorem which implies the existence of a set Γ and a continuous one-to-one linear map T of X^* into $c_o(\Gamma)$.

1. Introduction and summary

Throughout this paper we assume X to be a real infinite dimensional Banach space with X^* and X^{**} denoting its first and second conjugate spaces respectively. If x is an element of X we denote by \hat{x} the element of X^{**} defined by $\hat{x}(f) = f(x)$ for $f \in X^*$. If X is smooth for $x \in X$ we denote by f_x the unique element of X^* such that $\|f_x\| = \|x\|$ and $f_x(x) = \|f_x\| \|x\|$. It is well known [3, p. 300] that if X is smooth and $x_n \to x$ in the norm topology then $f_{x_n} \to f_x$ in the

Received 7 March 1970. The author thanks Dr R.W. Cross, under whose supervision this work was done towards a doctoral thesis at the Australian National University.

weak* topology. We say that a Banach space has property A if it is smooth and if, whenever $x_n \to x$ in norm, $f_{x_n} \to f_x$ in the weak topology.

In particular it follows that strongly smooth spaces have property A [9, p. 140], as do smooth Grothendieck spaces. However, not all smooth spaces have property A, as can be seen from Lemma 6.

The main result of this note is the following mapping theorem:

THEOREM 1. Let X be a Banach space with property A. Then there exist a set Γ and a bounded one-to-one linear map T from X* into $c_0(\Gamma)$.

We recall at this point that $c_0(\Gamma)$ is the Banach space consisting of the real-valued functions f on Γ which vanish at infinity; i.e., such that $\{\gamma : \gamma \in \Gamma, |f(\gamma)| > \varepsilon\}$ is finite for every $\varepsilon > 0$.

The theorem should be compared with the following powerful theorem of Lindenstrauss [11]: If X is a reflexive Banach space, then there exist a set Γ and a continuous one-to-one linear map T of X into $c_0(\Gamma)$. In fact Theorem 1 follows from this result if we assume X to be a conjugate space, for then X is reflexive by a generalisation of a result of Smulian (see, for example, [7, Theorem 2]). More generally Amir and Lindenstrauss [1] have shown that if X is the closed linear span of a weakly compact subset of X, then there exist such a set Γ and mapping T.

We prove our other stated result as a corollary to Theorem 1 at this point.

COROLLARY. Let X be a Banach space with property A. Then X* is isomorphic to a rotund space.

Proof. By the main theorem there exist a set Γ and a one-to-one bounded linear map $T: X^* \to c_0(\Gamma)$. Now by Day [5, p. 523] $c_0(\Gamma)$ admits an equivalent strictly convex norm $|\cdot|$. We renorm X^* by putting |f| = ||f|| + |Tf|. It is readily checked that $|\cdot|$ is an equivalent strictly convex norm on X^* and so the result follows.

We comment that this clarifies a point made in Day [5, p. 518] and

416

Cudia [4, p. 88]. We point out that though we consider spaces over the reals the proofs need only slight modifications in the complex case.

2. Proof of Theorem 1

The proof is based on techniques developed by Lindenstrauss [10 and 11]. It is long and is broken up by a series of lemmas.

The first result is due to Lindenstrauss [11, p. 967].

LEMMA 1. Let X be a Banach space and let B be a finite dimensional subspace of X. Let k be an integer and suppose $\varepsilon > 0$. Then there is a finite dimensional subspace Z of X containing B such that for every subspace Y of X containing B with dimY/B = k there is a linear operator $T: Y \neq Z$ with $||T|| \leq 1+\varepsilon$, and Tb = b for all $b \in B$.

We denote by X^{α} the space of homogeneous functionals on X which are bounded on the unit ball of X. For $f \in X^{\alpha}$ we define a norm by $\|f\| = \sup\{|f(x)| : \|x\| = 1\}$. It is easily seen by a slight generalisation of the Banach-Alaoglu theorem, or by a direct application of Tychonoff's theorem, that the unit ball of X^{α} is compact in the \hat{X} -topology. If T is a map from C^* into X^* , where C is a subspace of X, we denote by \tilde{T} the extension map of T from X^* into X^* defined by $\tilde{T}(f) = T(f)$, where f is f restricted to C. We retain this notation for the remaining lemmas.

LEMMA 2. Let X be a Banach space and let B be a finite dimensional subspace of X. Then there exist a separable subspace C of X and a linear operator $T : C^* \rightarrow X^*$ such that ||T|| = 1 and $\tilde{T}^*\hat{x} = \hat{x}$ for all $x \in B$.

Proof. Let $C_n \supset B$, n = 1, 2, ... be the subspaces of X given by Lemma 1 for k = n, $\varepsilon = 1/n$, and let $C = \overline{sp} \begin{pmatrix} \infty \\ \cdot U \\ n=1 \end{pmatrix}$. If E is a subspace of X containing B, such that $\dim E/B = n$, then there is a linear operator $T_E : E \to C$ such that $||T_E|| \le 1 + 1/n$, $T_E x = x$ for all $x \in B$. We extend T_E to a map (not linear) $T'_E : X \to C$ by defining $T'_{F}x = 0$ if $x \in X \setminus E$.

We consider the adjoint map $T_E^{\prime \star} : C^{\star} \to X^{\alpha}$. In the space of all bounded linear maps $C^{\star} \to X^{\alpha}$ we take the pointwise topology, and on X^{α} the \hat{X} -topology. As the unit ball of X^{α} is \hat{X} -compact, Tychonoff's theorem ensures that the net $\{T_E^{\prime \star} : E \supset B\}$ (here we order the subspaces E by inclusion) has a limit point $T : C^{\star} \to X^{\alpha}$.

It is straightforward to check that $T: C^* \to X^*$, and that it satisfies the conditions of the lemma.

If Y is a closed subspace of X we denote by $D_{X^*}(Y)$ the set of $f \in X^*$ which attain their norm on the unit sphere of Y. If $D_{X^*}(X)$ is norm dense in X^* , X is said to be subreflexive. E. Bishop and R.R. Phelps [2] have shown that all Banach spaces are subreflexive. We couple this result with smoothness to obtain:

LEMMA 3. Let X be a smooth space, let x_i , i = 1, ..., n, and f_j , j = 1, ..., m, be finite sets in X and X* respectively, and let $\varepsilon > 0$. Then there exist a separable subspace C of X and a linear operator $T : C^* \to X^*$ such that $\|\tilde{T}\| = 1$, $\tilde{T}^* \hat{x}_i = \hat{x}_i$, i = 1, ..., n, and $\|\tilde{T}f_j - f_j\| < \varepsilon$, j = 1, ..., m.

Proof. By subreflexivity there exist y_j , j = 1, ..., m, such that $\|f_j - f_{y_j}\| < \varepsilon$, j = 1, ..., m.

By Lemma 2 there exist a separable subspace C and a linear operator $T: C^* \rightarrow X^*$ such that ||T|| = 1, $\tilde{T}^* \hat{x}_i = \hat{x}_i$, $i = 1, \ldots, n$, $\tilde{T}^* \hat{y}_j = \hat{y}_j$, $j = 1, \ldots, m$. As $\tilde{T}^* \hat{y}_j = \hat{y}_j$, $j = 1, \ldots, m$, we have $f_{y_j} = \tilde{T}f_{y_j}$, $j = 1, \ldots, m$, so that $||\tilde{T}f_j - f_j|| < \varepsilon$, $j = 1, \ldots, m$.

Before continuing we note an easy result.

LEMMA 4. Let Y be a closed subspace of X. If $\overline{D_{Y*}(Y)}$ is a

418

linear subspace, then it is isometric to Y*.

Proof. Let $T: \overline{D_{X^*}(Y)} \to Y^*$ be the restriction map. T is a linear norm preserving map of $\overline{D_{X^*}(Y)}$ into Y^* . That T is onto follows from the Hahn-Banach theorem as Y is subreflexive.

By the *density character* of a Banach space we mean the minimal cardinality of a dense subset.

LEMMA 5. Let X be a smooth space and M be an infinite cardinal number. Suppose Z, W are subspaces of X, X* respectively of density character not greater than M. Then there exists a subspace C of X of density character not greater than M which contains Z, together with a linear operator $T: C^* \rightarrow X^*$ such that $P = \tilde{T}$ is a bounded linear projection satisfying ||P|| = 1, Pf = f for all $f \in W$, $P^*\hat{x} = \hat{x}$ for all $x \in C$, and such that $PX^* = \overline{D_{X^*}(C)}$; in particular, PX^* is isometric to the conjugate of C.

Proof. The proof is by transfinite induction. Initially we assume that $\{f_j; j = 1, 2, ...\}$ is dense in W, and that $\{x_j; j = 1, 2, ...\}$ is dense in Z. By Lemma 3 we can construct inductively a sequence $\{C_n; n = 1, 2, ...\}$ of separable subspaces of X and a sequence $\{T_n; n = 1, 2, ...\}$ of linear operators $T_n: C_n^* + X^*$, such that

 is f restricted to C_n , n = 1, 2, ... Following the technique of Lemma 2 we let T be a limit point in the \hat{X} -operator topology of the net $\{T'_n; n = 1, 2, 3, ...\}$ and put $P = \tilde{T}$. It follows then that ||P|| = 1, P is linear and $P^*\hat{x}_i^k = \hat{x}_i^k$ for all i, k, so that $P^*\hat{x} = \hat{x}$ for all $x \in C$. As $P^*\hat{x} = \hat{x}$ for all $x \in C$ and ||P|| = 1 we obtain Pf = f for all $f \in D_{\chi^*}(C)$ as X is smooth. As C is subreflexive it is now easily seen that $\overline{D_{\chi^*}(C)} = PX^*$ and that P is a projection. The last remark follows from Lemma 4.

We can assume now that the lemma holds for all cardinals less than M; we let Ω be the well-ordered set of ordinals less than M. There are closed subspaces $\{Z_{\alpha} : \alpha \in \Omega\}$ of Z, $\{W_{\alpha} : \alpha \in \Omega\}$ of W with $Z_{\alpha} \in Z_{\beta}$, $W_{\alpha} \in W_{\beta}$ for $\alpha < \beta$, such that the density characters of Z_{α} , W_{α} are at most the cardinality of α , for infinite α and such that $Z = \bigcup_{\alpha \in \Omega} Z_{\alpha}$, $W = \bigcup_{\alpha \in \Omega} W_{\alpha}$. By the induction hypothesis we can construct inductively for every $\alpha \in \Omega$ a subspace C_{α} of X whose density character is at most the cardinality of α for infinite α and such that $C_{\alpha} \geq Z_{\alpha} \cup \bigcup_{\beta \leq \alpha} C_{\beta}$, together with a linear operator

$$T_{\alpha}: C_{\alpha}^* \to X^*$$

such that $P_{\alpha} = \tilde{T}_{\alpha}$ satisfies the conditions $||P_{\alpha}|| = 1$, $P_{\alpha}^* \hat{x} = \hat{x}$ for all $x \in C_{\alpha}$, $P_{\alpha}f = f$ for all $f \in W_{\alpha}$ and $P_{\alpha}X^* = \overline{D_{X^*}(C_{\alpha})}$. We let $C = \overline{\bigcup_{\alpha \in \Omega} C_{\alpha}}$ and consider the extensions of $T_{\alpha}, T'_{\alpha} : C^* \to X^*$ for each α . Again for T we take a limit in the \hat{X} -operator topology of the net $\{T'_{\alpha}; \alpha \in \Omega\}$. T and C satisfy the conditions of the lemma.

Before proceeding we require two simple properties of Banach spaces with property \boldsymbol{A} .

LEMMA 6. Let Y be a Banach space with property A . Then the density character of Y* is that of Y.

Proof. It is sufficient to check that the density character of Y^* is not greater than the density character M of Y. If Ω is the well-ordered set of ordinals less than M we may assume that $\{y_{\alpha} : \alpha \in \Omega\}$ is dense in Y. The set Φ consisting of all finite rational linear combinations of the elements $f_{y_{\alpha}}$ is a set of cardinality M. Furthermore Φ is dense in $D_{Y^*}(Y)$; for if $y \in Y$ there is a sequence $\{y_{\alpha_n} : n = 1, 2, \ldots\}$ such that $y_{\alpha_n} \neq y$ in norm, and hence, by property A, $f_{y_n} \neq f_y$ in the weak topology, showing that f_y belongs to the closure of Φ by a result of Mazur [6, p. 422]. The lemma now follows as Y is subreflexive.

LEMMA 7. Suppose X is a Banach space with property A , and that $Y_{\alpha} \subset Y_{\beta} \subset X$ for $\alpha < \beta < \gamma$. Then

$$D_{X^{\star}}\left[\overline{\bigcup_{\alpha<\gamma}} Y_{\alpha}\right] = \overline{\bigcup_{\alpha<\gamma}} D_{X^{\star}}\left(Y_{\alpha}\right) ,$$

provided $\overline{\bigcup_{\alpha < \gamma} D_{\chi^*}(Y_{\alpha})}$ is a subspace.

Proof. It suffices to show

$$D_{X*}\left(\frac{\bigcup Y}{\alpha<\gamma}\right) \subset \frac{\bigcup D_{X*}(Y_{\alpha})}{\alpha<\gamma}.$$

To establish this consider an element f_y where $y \in \bigcup_{\alpha < \gamma} Y_{\alpha}$. Then there exists a sequence $\{y_n ; n = 1, 2, \ldots\} \subset \bigcup_{\alpha < \gamma} Y_{\alpha}$ such that

$$y_n \rightarrow y$$
 in norm.

Property A ensures that $f_{y_n} \neq f_y$ in the weak topology. The result follows as in Lemma 6 [6, p. 422].

We are now in a position to prove a theorem whereby it will be possible to reduce the proof of Theorem 1 to the separable case.

THEOREM 2. Let X be a smooth space with property A. Let μ be

the first ordinal of cardinality the density character M of X. For every a satisfying $\omega \leq \alpha < \mu$, there is a subspace X_{α} of X of density character at most the cardinality of a together with a linear operator $T_{\alpha}: X_{\alpha}^{*} \to X^{*}$ such that $P_{\alpha} = \tilde{T}_{\alpha}$ is a bounded linear projection of X^{*} into X^{*} satisfying

1. $\|P_{\alpha}\| = 1$, 2. $P_{\alpha}X^{*} = \overline{D_{X^{*}}(X_{\alpha})}$, and is thus isometric to X_{α}^{*} , 3. $P_{\alpha}P_{\beta} = P_{\beta}P_{\alpha} = P_{\beta}$ where $\beta < \alpha$, 4. $\bigcup_{\beta < \gamma} P_{\beta+1}X^{*}$ is dense in $P_{\alpha}X^{*}$, for every $\alpha > \omega$.

Moreover, U $P_{\alpha}X^*$ is dense in X^* . $\alpha < \mu$

Proof. By Lemma 6 we may assume $\{f_{\alpha} : \alpha < \mu\}$ is a dense subset of X^* . We construct $\{T_{\alpha} : \omega \le \alpha < \mu\}$ by transfinite induction; if $M = \aleph_0$, $T_{\omega} = P_{\omega} = I$ has the required properties. Assume now that $M > \aleph_0$. By Lemma 5 there is a separable space X_{ω} together with a map T_{ω} such that $P_{\omega} = \tilde{T}_{\omega}$ satisfies $||P_{\omega}|| = 1$, $P_{\omega}X^* = \overline{D_{X^*}(X_{\omega})}$ and $P_{\omega}f_{\alpha} = f_{\alpha}$ for $\alpha < \omega$. Assume that $\{T_{\beta} : \omega \le \beta < \gamma\}$ have been defined so that their extensions satisfy conditions 1 to 4.

If $\gamma = \alpha + 1$ we apply Lemma 5 to define X_{γ} and P_{γ} so that P_{γ} restricted to $P_{\alpha}X^* \cup \{f_{\alpha}\}$ is the identity and so that $X_{\alpha} \subset X_{\gamma}$. Lemma 5 is applicable by Lemma 6. It follows that $P_{\gamma}P_{\beta} = P_{\gamma}P_{\alpha}P_{\beta} = P_{\alpha}P_{\beta} = P_{\beta}$ for $\beta < \gamma$. Similarly $P_{\gamma\beta}^{*P*} = P_{\beta}^{*}$ follows as \hat{X}_{α} is ω^{*} -dense in X_{α}^{**} , [6, p. 425].

If on the other hand γ is a limiting ordinal, let $X_{\gamma} = \overline{\bigcup_{\alpha < \gamma} X_{\alpha}}$ and let $T'_{\alpha} : X^*_{\gamma} \to X^*$ be the extensions of T_{α} to X^*_{γ} for $\omega \le \alpha < \gamma$. For T_{γ} we then take a limit point in the \hat{X} -operator topology of the net $\{T'_{\alpha}; \omega \in \alpha < \gamma\}$. Properties 1, 2 and 3 follow without difficulty whilst 4 holds by virtue of Lemma 7.

The last part now follows as $f_{\alpha} \in P_{\omega}X^*$ for $\alpha < \omega$ and $f_{\alpha} \in P_{\alpha+1}X^*$ for $\alpha \ge \omega$.

LEMMA 8. Let X be a space with property A, and let $\{P_{\alpha} : \omega \leq \alpha < \mu\}$ be the set of projections of X* as in Theorem 2. Then for every $f \in X^*$ and every $\varepsilon > 0$ the set $\{\alpha : \|P_{\alpha+1}f - P_{\alpha}f\| \geq \varepsilon\}$ is finite.

Proof. Assume, on the contrary, that there is an infinite sequence of ordinals $\omega \leq \alpha_1 < \alpha_2 < \ldots < \mu$ such that $\|P_{\alpha_{i+1}} f - P_{\alpha_i} f\| > \varepsilon$, $i = 1, 2, \ldots$. We denote P_{α_i} by P_{2i-1} , $P_{\alpha_{i+1}}$ by P_{2i} . Let $\overline{\alpha_i}$ $X_{\omega} = \bigcup_{i=1}^{\infty} X_i$ and consider the extensions of $T_i, T_i' : X_{\omega}^* + X^*$, $i = 1, 2, \ldots$. If T_{ω} is a limit point in the \hat{X} -operator topology of the sequence $\{T_i'; i = 1, 2, \ldots\}$, then $P_{\omega} = \tilde{T}_{\omega}$ is a projection of X^* onto $\bigcup_{i=1}^{\infty} P_i X^*$ and $P_i P_{\omega} = P_i$, $i = 1, 2, \ldots$. If $h \in P_{\omega} X^*$, it follows that $\lim_i \|P_i h - h\| = 0$. For suppose that $g \in P_i X^*$ and that $\|g - h\| < \delta/2$. Then

$$||P_ih - h|| \le ||P_ih - P_ig|| + ||P_ig - g|| + ||g - h|| < \delta$$
 for $i > j$.

Hence $\lim \|P_i f - P_{\infty} f\| = \lim \|P_i P_{\infty} f - P_{\infty} f\| = 0$. But then $\{P_i f ; i = 1, 2, ...\}$ is a Cauchy sequence contradicting our assumption.

Proof of Theorem 1. The proof is by transfinite induction on the density character M of X or X^* . If $M = \aleph_0$ the result is well known; we may take $\{x_n ; n = 1, 2, \ldots\}$ to be a dense subsequence of the unit ball and put $(Tf)(n) = f(x_n)/n$.

We assume now that the theorem has been proved for all cardinals smaller than M. Let $\{P_{\alpha}; \omega \leq \alpha < \mu\}$ be the set of projections constructed in Theorem 2. As $P_{\alpha}X^*$ is isometric to X^*_{α} , the conjugate of a smooth space with property A, by the induction hypothesis there is a set Γ_{α} and a one-to-one linear operator T_{α} from $P_{\alpha}X^*$ into $c_{0}(\Gamma_{\alpha})$. We may assume that the Γ_{α} are pairwise disjoint and that $\|T_{\alpha}\| \leq 1$ for α satisfying $\omega \leq \alpha < \mu$.

We put $\Gamma = N \cup \bigcup \{\Gamma_{\alpha+1} ; \omega \le \alpha < \mu\}$ and define $(Tf)(n) = (T_{\omega} P_{\alpha} f)(n)$ for $n \in N$, and $(Tf)\gamma = 1/2 T_{\alpha+1} \{P_{\alpha+1}f - P_{\alpha}f\}\gamma$ for $\gamma \in \Gamma_{\alpha+1}$. By Lemma 8, T maps X^* into $c_0(\Gamma)$, T is linear, and $||T|| \le 1$. Furthermore if Tf = 0 then $P_{\omega}f = 0$ and $P_{\alpha+1}f = P_{\alpha}f$ for $\omega \le \alpha < \mu$. As $\bigcup P_{\beta}X^*$ is dense in $P_{\alpha}X^*$ for every limiting $\alpha > \omega$, it follows by $\beta < \alpha$ dense in X^* so that f = 0. Hence T is one-to-one and the theorem is proved.

References

- [1] D. Amir and J. Lindenstrauss, "The structure of weakly compact sets in Banach spaces", Ann. of Math. (2) 88 (1968), 35-46.
- [2] Errett Bishop and R.R. Phelps, "A proof that every Banach space is subreflexive", Bull. Amer. Math. Soc. 67 (1961), 97-98.
- [3] Dennis F. Cudia, "The geometry of Banach spaces. Smoothness", Trans. Amer. Math. Soc. 110 (1964), 284-314.
- [4] D.F. Cudia, "Rotundity", Proc. Sympos. Pure Math. 7, 73-97. (Amer. Math. Soc., Providence, R.I., 1963).
- [5] Mahlon M. Day, "Strict convexity and smoothness of normed spaces", Trans. Amer. Math. Soc. 78 (1955), 516-528.

- [6] Nelson Dunford and Jacob T. Schwartz, Linear operators, Part 1 (Interscience Publishers, New York, London, 1958).
- [7] J.R. Giles, "On a characterisation of differentiability of the norm of a normed linear space", J. Austral. Math. Soc. (to appear).
- [8] Victor Klee, "Some new results on smoothness and rotundity in normed linear spaces", Math. Ann. 139 (1959), 51-63.
- [9] Joram Lindenstrauss, "On operators which attain their norm", Israel J. Math. 1 (1963), 139-148.
- [10] Joram Lindenstrauss, "On reflexive spaces having the metric approximation property", Israel J. Math. 3 (1965), 199-204.
- [11] Joram Lindenstrauss, "On nonseparable reflexive Banach spaces", Bull. Amer. Math. Soc. 72 (1966), 967-970.

Australian National University, Canberra, ACT.