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The conjugate of a smooth Banach space

D. G. Tacon

A Banach space X is smooth if at every point of the unit sphere

there is only one supporting hyperplane of the unit ball; and

strictly convex, or rotund, if the unit sphere contains no line

segment.

Although there is a strong duality between these notions, Klee

has produced a smooth space whose conjugate is not rotund.

However there is no known example of a smooth space with

conjugate not isomorphic to a rotund space.

The main purpose of this note is to show that if X is a smooth

space with a certain property, X* is isomorphic to a rotund

space. This will follow from a mapping theorem which implies the

existence of a set T and a continuous one-to-one linear map T

of X* into eQ(r) .

1. Introduction and summary

Throughout this paper we assume X to be a real infinite dimensional

Banach space with X* and X** denoting its first and second conjugate

spaces respectively. If x is an element of X we denote by x the

element of X** defined by x(f) = fix) for f (. X* . If Z is smooth

for x 6 X we denote by f the unique element of X* such that

||/ || = |M| and / (as) = ||f ||||x|| . It is well known [3, p. 300] that if

X is smooth and x -»• x in the norm topology then / -»• / in the
n
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416 D.G. Tacon

weak* topology. We say that a Banach space has property A if it is

smooth and if, whenever x -*• x in norm, / -*• f in the weak topology.

n xn x

In par t i cu la r i t follows that strongly smooth spaces have property A

[9 , p . lUOD, as do smooth Grothendieck spaces. However, not a l l smooth

spaces have property A , as can be seen from Lemma 6.

The main resu l t of t h i s note i s the following mapping theorem:

THEOREM 1. Let X be a Banach space with property A . Then there

exist a set V and a bounded one-to-one linear map T from X*1 into

We recall at this point that c (F) is the Banach space consisting

of the real-valued functions f on T which vanish at infinity; i.e.,

such that {y : y € V, \f(y)\ > E} is finite for every e > 0 .

The theorem should be compared with the following powerful theorem

of Lindenstrauss [//]: If X is a reflexive Banach space, then there

exist a set T and a continuous one-to-one linear map T of X into

a (T) . In fact Theorem 1 follows from this result if we assume X to be
o

a conjugate space, for then X is reflexive by a generalisation of a

result of Smulian (see, for example, [7, Theorem 21). More generally Amir

and Lindenstrauss [7] have shown that if X is the closed linear span of

a weakly compact subset of X , then there exist such a set V and

mapping T .

We prove our other stated result as a corollary to Theorem 1 at this

point.

COROLLARY. Let X be a Banach space with property A . Then X*

is isomorphic to a rotund space.

Proof. By the main theorem there exist a set F and a one-to-one

bounded linear map T : X* -* cQ(r) . Now by Day [5, p. 523] C Q ( F )

admits an equivalent strictly convex norm | • | . We renorm X* by

putting |/| = Il/H + |T/| . It is readily checked that |-| is an

equivalent strictly convex norm on X* and so the result follows.

We comment that this clarifies a point made in Day [5, p. 518] and
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Cudia [4, p. 88]. We point out that though we consider spaces over the

reals the proofs need only slight modifications in the complex case.

2. Proof of Theorem 1

The proof is based on techniques developed by Lindenstrauss [JO and

77]. It is long and is broken up by a series of lemmas.

The first result is due to Lindenstrauss [7 7, p. 967].

LEMMA 1. Let X be a Banach space and let B be a finite

dimensional subspace of X . Let k be an integer and suppose e > 0 .

Then there is a finite dimensional subspace Z of X containing B such

that for every subspace X of X containing B with dimy/B = k there

is a linear operator T : Y -*• Z with ||5*|| £ 1+e , and Tb = b for all

b £ B .

We denote by X the space of homogeneous functionals on X which

are bounded on the unit ball of X . For f i A we define a norm by

11/11 = sup{|/0c)| : ||x|| = 1} . It is easily seen by a slight

generalisation of the Banach-Alaoglu theorem, or by a direct application

of Tychonoff's theorem, that the unit ball of X is compact in the

^-topology. If T is a map from C* into X* , where C is a subspace

of X , we denote by T the extension map of T from X* into X*

defined by ?(/) = T(£) , where £ is / restricted to C . We retain

this notation for the remaining lemmas.

LEMMA 2. Let X be a Banach space and let B be a finite

dimensional subspace of X . Then there exist a separable subspace C

of X and a linear operator T : C* •* X* such that \\T\\ = 1 and

T*x = x for all x d B .

Proof. Let C D B , n = 1, 2, ... be the subspaces of X given

f °° )
by Lemma 1 for k = n , C = l/n , and let C = sp U C . If E is a

*-n=l •'

subspace of X containing B , such that dimE/B = n , then there is a

linear operator T' : E •* C such that \\T \\ 5 1 + l/n , T^c = x for

all x i B . We extend !"„ to a map (not linear) T' : X •+ C by
hi tt
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defining Tlx = 0 if a; € X\E .

We consider the adjoint map T'* : C* •*• Xa . In the space of all
hi

bounded linear maps C* •* Xa we take the pointwise topology, and on Xa

the ^-topology. As the unit ball of Xa is X-compact, Tychonoff's

theorem ensures that the net {T1* : E 3 S} (here we order the subspaces

E by inclusion) has a limit point T : C* -*• X® .

It is straightforward to check that T : C* •* X* , and that it

satisfies the conditions of the lemma.

If Y is a closed subspace of X we denote by Dy^{Y) the set of

f i X* which attain their norm on the unit sphere of Y . If £>„*(#) is

norm dense in X* , X is said to be subreflexive. E. Bishop and R.R.

Phelps [2] have shown that all Banach spaces are subreflexive. We couple

this result with smoothness to obtain:

LEMMA 3. Let X be a smooth space, let x. , i = 1, ..., n } and

f. , J = 1 m , be finite sets in X and X* respectively3 and let

3

e > 0 . Then there exist a separable subspace C of X and a linear

operator T : C* -*• X* such that \\T\\ = 1 , T*x. = x. , i = 1, ..., n ,
and \\Tf. - f .|| < e , j = l m .

v d

Proof. By subreflexivity there exist y . , j = 1, ..., m , such
0

t h a t \\f. - f II < e , Q = 1 m .

J

By Lemma 2 t h e r e e x i s t a separable subspace C and a l i n e a r

o p e r a t o r T : C* ->• X* such t h a t \\T\\ = 1 , T*x. = x. , i = 1 , . . . , n ,

T*y. = y . , J = 1 , . . . , m . As T*y . = y . , j = 1 , . . . , m , we have
Jo iJ %J

f,j = ^ 4 ' J = 1 . • • • . m > so t h a t \\Tf. - f.\\ < e , j = 1 , . . . , m .

Before c o n t i n u i n g we n o t e an easy r e s u l t .

LEMMA 4. Let Y be a closed subspace of X . If O ^ U ) is a
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linear subspace, then it is isometric to Y* .

Proof. Let T : DVAY) •* Y* be the restriction map. T is a linear

norm preserving map of 0-^(7) into Y* . That T is onto follows from

the Hahn-Banach theorem as Y is subreflexive.

By the density character of a Banach space we mean the minimal

cardinality of a dense subset.

LEMMA 5. Let X be a smooth space and M be an infinite cardinal

number. Suppose Z3 W are subspaces of X} X* respectively of density

character not greater than M . Then there exists a subspace C of X

of density character not greater than M which contains Z , together

with a linear operator T : C* •* X* such that P = T is a bounded linear

projection satisfying \\P\\ = 1 , Pf = f for all f i W , P*x = x for

all x € C 3 and such that PX* = DX^{C) ; in particular, PX* is

isometric to the conjugate of C .

Proof. The proof is by transfinite induction. Initially we assume

that {/. ; j = 1, 2, ...} is dense in W , and that
3

{x . ; o = 1, 2, ...} is dense in Z . By Lemma 3 we can construct
3

inductively a sequence {C ; n = 1, 2, } of separable subspaces of X

and a sequence {T ; n = 1, 2, ...} of linear operators T : C^ •*• X* ,

such that

(i) Hrjl = 1 , n = l, 2, ... ,

(ii) T*x. = x. , 1 < £ < n , n = 1, 2, ... ,
flu c-

T*xk. = xk. , 1 < i < w , 1 S & 2 n-X , and
Yl %> %

(iii) ||2y\ - f^\ < l/n , 1 5 i S n , n = 1, 2, ... ,

where {x. ; i = 1, 2, ...} is dense in C, , k = 1, 2

— f °° 1

We let C = sp U C and we consider the extensions of

Tn, T'n : C* * X* , n = 1, 2, ... , defined by T^f) = Tn(£) , where f_
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is f restricted to C , n = 1, 2 Following the technique of

Lemma 2 we let T be a limit point in the ^-operator topology of the net

{T'n ; n = 1, 2, 3, ...} and put P = T . It follows then that ||P|| = 1 ,

P is linear and P*x. = x. for all i, k , so that P*x = x for all
If Is

x f C . As P*x = x for all x (. C and ||P|| = 1 we obtain Pf = f for

all / i Dyt(C) as X is smooth. As C is subreflexive it is now

easily seen that £> ̂ (C) = PX* and that P is a projection. The last

remark follows from Lemma h.

We can assume now that the lemma holds for all cardinals less than

M ; we let U be the well-ordered set of ordinals less than M . There

are closed subspaces {Z ; a t fi} of Z , {W ; a € Q} of W with

Z c z. , f/ c f/_ for a < B , such that the density characters of
ot p a p

Z , W are at most the cardinality of a , for infinite a and such.

that Z = U Z , W = U W . By the induction hypothesis we can
a

construct inductively for every a t Q a subspace C of X whose

a

density character is at most the cardinality of a for infinite a and

such that C Q 3 Z Q u U Cg , together with a linear operator

T : C* •* X*
a a

such that ?a = T satisfies the conditions \\P || = 1 , P*x = x for all

We let

C = U C and consider the extensions of T , T' : C* •* X* for each
a a a

a . Again for T we take a limit in the .X-operator topology of the net

{2" ; a € 9,} . T and C satisfy the conditions of the lemma.

Before proceeding we require two simple properties of Banach spaces

with property A .

LEMMA 6. Let Y be a Banach space with 'property A . Then the

density character of Y* is that of Y .
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Proof. It is sufficient to check that the density character of Y*

is not greater than the density character M of Y . If fi is the

well-ordered set of ordinals less than M we may assume that

{y : a € ft} is dense in Y . The set 0 consisting of all finite

rational linear combinations of the elements / is a set of cardinality

M . Furthermore $ is dense in Dy^Y) ; for if y € Y there is a

sequence <,y ; w = 1, 2, ... V such that y •* y in norm, and hence,
*• n > an

by property A , f •+• / in the weak topology, showing that- f
yn y y

belongs to the closure of $ by a result of Mazur [6, p. 1*22]. The lemma

now follows as Y is subreflexive.

LEMMA 7. Suppose X is a Banach space with property A , and that

Y c Y c x for a < B < Y • Then
a p

Vv, U Y = U

provided U D A[Y ) is a subspace.
O<Y

Proof. It suffices to show

D. U c U

a<Y

To establish this consider an element / where y € U Y . Then there
y O<Y

exists a sequence {y ; n = 1, 2, ...} c U Y^ such that

a<Y

y -*• y in norm.

Property A ensures that / -*• f in the weak topology. The result

yn y
follows as in Lemma 6 [6, p. 1+22].

We are now in a position to prove a theorem whereby it will be

possible to reduce the proof of Theorem 1 to the separable case.

THEOREM 2. Let X be a smooth space with property A . Let u be
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the first ordinal of cardinality the density character M of X . For

every a satisfying w £ a < y , there is a subspace X of X of

density character at most the cardinality of a together with a linear

operator T : X* -*• X* such that P = T is a bounded linear projection

of X* into X* satisfying

1- IIPJI ' 1 >

2. P X* = DAlX J , and is thus isometric to X* ,

a B V a 6
 B < a >

k. U Pa+T%* i s dense in P X* 3 for every a > u .

Moreover, U P X* is dense in X* .
a<y

Proof. By Lemma 6 we may assume {f ; a < y} is a dense subset of

X* . We construct {T ; u S a < y} by transfini te induction; if

M=H , T = P = I has the required properties. Assume now that
o to • to

M > K . By Lemma 5 there is a separable space X together with a map

T such that P = T sa t isf ies \\P \\ = 1 , P X* = Dv,lX J and

P f = f for a < u . Assume that {T ; u) 5 (3 < y} have been defined

so that their extensions satisfy conditions 1 to i

If Y = O + 1 we apply Lemma 5 to define X and P so that P

res t r ic ted to P X* u {f } i s the identity and so that X ^ X . Lemma
a J a ay

5 is applicable by Lemma 6. I t follows that P Po = P P PD = P Po = Po
Y P y O P o t p p

for B < Y • Similarly P*P* = P* follows as X is condense in X** ,

[6 , p. 1*25].

If on the other hand y i s a limiting ordinal, le t X = U X and
Y a<y

let T' : X* -*• X* be the extensions of T to ** for u 5 a < y . For
ay ay

T we then take a limit point in the ^-operator topology of the net
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{r1 ; u i a < y} . Properties 1, 2 and 3 follow without difficulty whilst

h holds by virtue of Lemma 7-

The last part now follows as f t. P X* for a < u and f t P X*

for

LEMMA 8. Let X be a space with, property A , and let

{P ; a) S a < u} be the set of projections of X* as in Theorem 2. Then

for every f € X* and every e > 0 the set {a : \\Pa+]f - Paf\\ - ^ is

finite.

Proof. Assume, on the contrary, that there is an infinite sequence

of ordinals w i O ! < a2 < ... < u such that IIP / - P /|| > e ,

i = 1, 2, ... . We denote P by P . , P by P . . Let
ai dv~L ai+l d%

X = U X. and consider the extensions of T., T'. : X* •* X* ,
u — J_

At

i = 1, 2 If T^ is a limit point in the .^-operator topology of

the sequence {T1. ; i = 1, 2, ...} , then Pm = T^ is a projection of X*

onto U P^X* and P ^ = P^ , i = 1, 2, ... .

If ^ € P^X* , i t follows that limllP^ - h\\ = 0 . For suppose that
i

g € P .X* and that ||g - h\\ < 6/2 . Then
3

||P.ft - h|| < ||P.fc - P.^H + IIP-? - 9 | | + ||ff - 7i|| < 6 f o r i > o • '

Hence lim||P̂ / - PJ\\ = lim^PJ - PJ\\ = 0 . But then

{P-f ; i = 1, 2, ...} is a Cauchy sequence contradicting our assumption.

Proof of Theorem 1. The proof is by transfinite induction on the

density character M of X or X* . If M = « the result is well

known; we may take {x ; n = 1, 2, ...} to be a dense subsequence of

the unit ball and put (T/)(rt) = f[x^)ln .
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We assume now that the theorem has been proved for all cardinals

smaller than M . Let {P ; u 5 a < p} be the set of projections

constructed in Theorem 2. As P X* is isometric to X* , the conjugate

of a smooth space with property A , by the induction hypothesis there is

a set T and a one-to-one linear operator T from P X* into
a a a

a (r ) . We may assume that the T are pairwise disjoint and that

\\T || 5 1 for a satisfying u> £ a < u .

We put r = N u U{T a + 1 ; a) < a < u} and define (Tf)(n) = [T P f)M

for n i N , and {Tf)y = 1/2 ̂ ( P ^ f - Pj)y for Y € r a + 1 . By

Lemma 8, T maps X* into c (T) , T is linear, and ||T|| 5 1 .

Furthermore if Tf = 0 then ? f = 0 and P f = P f for u 5 a < y .

As U POX* is dense in P X* for every limiting a > u , it follows by
B<a B

transfinite induction that P f = 0 for all a < u . But U P X* is
cr a

a<p

dense in X* so that / = 0 . Hence 2" is one-to-one and the theorem

is proved.
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