
A THEORY OF NORMAL CHAINS 

CHRISTINE WILLIAMS AYOUB 

Introduction. In this paper we deal with a group-theoretic configuration of 
the following type: G is an additive group (not necessarily abelian) for which 
an operator system M and a complete lattice <£ of M admissible subgroups are 
defined; we call G and M-4> group. In §1 we make various definitions and note 

that analogues of some of the classical theorems of group theory hold. 

Our main interest is in ttie normal chains for an M-b group. We first ulSCUSS 
normal chains in general, and obtain results which hold if the factors of the chain 
fulfil suitable conditions (§3). In the remainder of the paper these results are 
applied to three particular types of normal chain and the relation between these 
chains is discussed. 

The first type of chain discussed is the so-called Loewy chain. This type is of 
especial importance because it is intimately related to the other two types con
sidered. It is shown how the existence of a Loewy chain connecting the group 
to 0 may be used in place of chain conditions. Furthermore, if such a chain 
exists for a nilpotent group, then it is actually a central chain. 

We have adopted Hirsch's definition of solubility (or rather its analogue for 
M-4> groups) rather than the customary definition. For the chains usually 
employed do not meet "the general requirements needed to apply our theory. 
On the other hand, the chains introduced by Hirsch do satisfy these require
ments, provided that the group possesses a Loewy chain connecting it to 0. 

1. Definitions and basic theorems. Let G be an additive group which is 
not necessarily abelian. If Aa, for each a in a set St, is a subgroup of G, then we 
denote the intersection of the Aa by f\Aa(a G SI). The subgroup of G generated 
by the Aa we call the compositum of the Aa and denote this subgroup by 
C Aa(a £ 21). In the case of a finite number of subgroups, Ai} . . . , An, we 
denote the intersection and compositum by 

n n 

AiC\...C\An (or fl Ai) and {Au . . . , An) (or C At) 

respectively. 
Let M be a system of operators for G, so that each element of M induces an 

endomorphism in G, i.e., we have: 
(i) ag is in G, whenever a is in M and g is in G. 

(ii) a(gi ± £2) = agi dz ag2, for a in M and gh g2 in G. 
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We let (aft)g = a(/3g), for a and fi in M and g in G. 
A subgroup 5 of G is called 1 / admissible if 1/5 C 5. We shall restrict our 

attention to a family of 1 / admissible subgroups 0 which form a complete lattice 
relative to intersection and compositurn, i.e., we assume about the subgroups 
of <t> that: 

(i) If A is in 0, A is 1 / admissible. 
(ii) 0 and G are in 0. 

(iii) If Aa is in 0, for each a in the set 21, then (\Aa(a Ç 21) is in 0. 
(iv) If ^4a is in 0, for each a in the set 21, then C Aa(a c 21) is in 0. 

We note that if the subgroups of 0 satisfy the descending chain condition, (iii) 
may be replaced by (iii')» and if.they satisfy the ascending chain condition, 
(iv) may be replaced by (iv'), where: 

(iii') If A and B are in 0, then A C\ B is in 0. 
(iv') If A and B are in 0, then {A, B\ is in 0. 
We call G an 1/-0 group if a particular system of operators 1/, and a particular 

complete lattice 0 of 1 / subgroups are to be distinguished; if 0 consists of all 
1 / admissible subgroups we call G an 1 / group. If a subgroup 5 belongs to 0, 
we say that 5 is a 0 subgroup of G; we note that 5 is also an 1/-0 group. If G 
is an 1/-0 group, we denote by \f/ the set of all normal 0 subgroups of G; since 
the 0 subgroups of G form a complete lattice, the normal 0 subgroups of G also 
form a complete lattice. Hence we may also consider G as an M-\p group. We 
make the following definitions: 

Definition. If the 0 subgroup 5 of G has no normal 0 subgroups, 5 is 0 simple. 
Definition. Let G and G' be 1/-0 groups, a is an M-<j> isomorphism (homo

morphism) of G onto G' if 
(i) o- is an isomorphism (homomorphism) of G onto G'. (Hence G' = Go-). 

(ii) (ag)<r = a(g<r), for all a in 1 / and for all g in G. 
(iii) If 5 is a 0 subgroup of G, 5o- is a 0 subgroup of G'; if 5 ' is a 0 subgroup 

of G', the inverse image of 5', 5V_ 1 is a 0 subgroup of G. We say that G is 
1/-0 isomorphic to G' if there exists an 1/-0 isomorphism of G onto G', and we 
write G ^ G ' ( I f - 0 ) . 

Definition. Let G and G be 1/-0 groups, a is an J/-0 isomorphism (homo
morphism) of G into G if Go- C G' and a is an 1/-0 isomorphism (homomorphism) 
of G onto Ga. 

In the last two definitions, the systems of distinguished 1 / admissible sub
groups for the groups G and G are both denoted by 0, although in general they 
are different systems. At first sight this would seem to lead to confusion, but 
it is always clear from the context what is meant and the notation proves to be a 
convenient one. 

Let G be an M-<j> group, and N a normal 0 subgroup. Then G/N is an M 
group, and a system of 1 / admissible subgroups 0 in G/N may be defined in this 
way: if U/N is an M admissible subgroup of G/N and U is in 0, then U/N is 
in 0. It is clear that this system of subgroups of G/N forms a complete lattice 
and hence G/N is an 1/-0 group. 
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The following analogues to the classical theorems hold : 

THEOREM 1.1 (The Homomorphism Theorem). / / a is an M-<t> homomorphism 
of the M-(j) group G onto the M-<j> group G, then the kernel N is a normal </> subgroup 
of G and G/N is M^ isomorphic to G'. Conversely, if N is a normal 4> subgroup 
of the M-4> group G, then there exists an M-<t> homomorphism r of G onto G/N; 
r maps g onto the coset N + g y for all g in G, and is called the natural mapping of 
G onto G/N. 

THEOREM 1.2 (The First Isomorphism Theorem). If S and T are <j> subgroups 
of the M-<f> group G, and if S is normal in {S, T\, then S C\ T is a normal 4> sub
group of T and 

{S, T}/S^T/Sr\T (J1/-0). 

THEOREM 1.3 (The Second Isomorphism Theorem). Let G be an M-<j> group 
and N} H normal <f> subgroups of G with N C H, then we have: 

G/N G 
H/N—H 

(!/-</>). 

Definition. Let A and B be <t> subgroups of the M-<t> group G with A Ç B. If 
there exists a chain 

(0) A = AoQ . . . QAtQAi+1Q . . .QAn = B, 

where At is a normal 4> subgroup of Ai+\ (i = 1, . . . , n — 1), (0) is called a 
normal <j> chain from A to B, or s. normal <j> chain connecting A and B. If 
Ai ^ Ai+\ for each i, (0) has length n; the M-(j> groups Ai+i/Ai are called the 
factors of (0). If all the factors of (0) are <j> simple, (0) is called a 0 composition 
chain. 

Definition. Let G be an M-<j> group. A normal <f> chain (0 composition chain) 
connecting.,0 and G is called a normal </> chain for G (</> composition series). 

Definition. Let G be an M-(j> group. The <t> subgroup S of G is M-cf> character
istic if every M-4> automorphism (M-<t> isomorphism of G onto itself) leaves 5 
invariant, i.e., if Sa = 5 for every M-<t> automorphism a of G. S is M-<j> fully 
invariant if every M-<j> endomorphism of G (M-<£ homomorphism of G into itself) 
leaves 5 invariant, i.e., if ST ÇI 5 for every M-(j> endomorphism r of G. 

It is important to notice that the inner automorphisms of a group are not 
necessarily M-<t> automorphisms and hence a 0 subgroup may be M-<j> character
istic without being normal. In some of our arguments we consider the map of a 
</> subgroup under an inner automorphism. Thus in some cases we make the 
assumption that <£ contains conjugates, i.e., if 5 is in 0 and g is any element of G, 
then — g + 5 + g is in </>. If <£ contains conjugates, we say that <f> is normal. 

2. K-chains. Let (K) be a property which has meaning for each 0 subgroup 
of an M-<t> group, i.e., if S is a <f> subgroup of the M-<f> group G, then one of the 
following statements must be true; ,S satisfies (K) in G; S does not satisfy (K) 
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in G. We shall consider properties (K) which satisfy some or all of the following 
conditions: 

(ki) If G is an M-$ group, then the 0 subgroup 0 satisfies (K) in G. 
(k2) If for each a in a set^i, Aais a normal <j> subgroup of the M-4> group G which 

satisfies (K) in G, then C Aa(a G 21) satisfies (K) in G. 
(k3) If A and Aa, for each a in the set 21, are normal <j> subgroups of the M-<j> 

group G with A D Aa, and if A/Aa satisfies (K) in G/Aa, for each a in $1, then 
A/ 0 Aa(a e 21) satisfies (K) in G/ (\ Aa(a 6 %). 

(k4) If A, B, C are normal <j> subgroups of the M-</> group G with A Z) B, and 
if A IB satisfies (K) in G/B, then A H C/B P C satisfies (K) in G/B P C. 

(k5) If A j B, C are normal <£> subgroups of the M-<f> group G with A Z) B, and 
if A/B satisfies (K) in G/B, then {A, C}/{B, C) satisfies (K) in G/{B, C}. 

Let G be an M-(j> group and ^ the lattice of normal 4> subgroups of G. UN 
is in x//, G/N is an M-<f> group and hence (K) is defined not only for the <t> sub
groups of G (in G) but for the <f> subgroups of G/N (in G/N). 

We now consider two chains. We construct first the ascending chain: 

(i) o = r 0 ç r 1 ç . . . ç r i ç Ti+l c ..., 
where, for i — 0, 1, 2, . . . , T f+i is the compositum of all À7in \j/ such that N ID Tt 

and N/Ti satisfies (K) in G/Tt. Then Ti+i/Ti satisfies (K) in G/Tt by (k2). 
Ti+X is well defined, since by (ki), TJTi satisfies (K) in G/Tt. We note that 
in order to construct the chain (1), we need only use the properties (ki) and 
(k2) of (K). Similarly, we construct the descending chain: 

(2) G = So 2 Si 2 . . . 2 S j 2 Sj+l 2 . . . , 

where, for j = 0, 1, 2, . . . , Sj+i is the intersection of all N in \p such that N C Sj 
and Sj/N satisfies (K) in G/N. Then SJ/SJ+I satisfies (K) in G/Sj+1 by (k3). 
Sj+i is well defined, since by (ki), SJ/SJ satisfies (K) in G/Sj. For the con
struction of the chain (2) only (ki) and (k3) are used. 

THEOREM 2.1. Let G be an M-<t> group. 
(i) Assume that the property (K) satisfies (ki) and (k2). If the \j/ subgroups of 

G satisfy the ascending chain condition, and if for A in \//, A ^ G, there exists a 
subgroup B in \// such that B D A and B/A satisfies (K) in G/A, the chain (1) is 
finite and Tt = G for some integer t. 

(ii) Assume that the property (K) satisfies (ki) and (k3). If the \p subgroups of 
G satisfy the descending chain condition, and if for B in \p, B ^ 0, there exists a 
subgroup A in \// such that A C B and B/A satisfies (K) in G/A, the chain (2) is 
finite and Ss — 0 for some integer s. 

Proof, (i) The groups Tt of (1) are \p subgroups of G by definition. Hence 
by the ascending chain condition, there exists an integer t such that Tt = Tt+i. 
If Tt is different from G, there exists a \p subgroup TV of G such that N/Tt satisfies 
(K) in G/Tt and N' ~2> T\; but this is impossible, since then Tt+i would be 
different from Tt. Hence Tt = G. (ii) is established in a similar fashion. 
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Definition. Let G be an M-cj> group. A chain 

(3) A0 C N, C . . . Ç Nt C iV,+1 C . . . , 

where, for i = 0, 1, . . . , A\ is in ̂ , and Ni+Ï/Ni satisfies (K) in G/Nu is called a 
K-chain for G (an ascending K-chain). A chain 

(4) Mo D J l / i D . . . 2 M, 2 Jlf^fi 2 • • • , 

where, for j = 0, 1, . . . , Mj is in ^, and Mj/Mj+i satisfies (K) in G/Mj+h will 
also be called a K-chain for G (a descending K-chain). The K-chain 

(5) A T o C A 7 i C . C A r
i C . . C ^ 

has length n, if for i = 0, . . . , n — 1, Nt j* Ni+i. The chains (1) and (2) are 
called the upper and lower /C-chains for G. 

THEOREM 2.2. Let G be an M-<i> group. 
(i) Assume that (K) satisfies (ki), (k2), a»d (k5). If 

0 = No Q . . . C Nt C A m C . . . 

w a» ascending K-chain for G, then, for i = 0, 1, . . . , Ni: C Tt, ^/^/-e the Tt are 
the terms of the upper K-chain (1). 

(ii) Assume that (K) satisfies (ki), (k3), and (k4). / / 

G = Jl/o 3 . . . 2 3f, 2 ^ + i 2 . . • 

i\v a descending K-chain for G, then, for j = 0, 1, . . . , Mj 3 S;-, w/zere //ze Sj are 
the terms of the lower K-chain (2). 

Proof, (i). We prove by induction on i that Ni Q Tt for i = 0, 1, . . . . Since 
0 = No = To, it is obvious that N0 C T0. Assume that Nt C 7\. Ni+i/Nt 

satisfies (K) in G/Nt\ therefore, by (k5), 

iNt+1,Tt}/{Nt,Tt} = {Ai+1, 7 \ } / r , 

satisfies (K) in G/Tt. Hence by the definition of 7\+i> {Ni+i, 1\} Ç 7\+i, or 
Ni+l C r i + i . Thus A, C 7\ for i = 0, 1, 

(ii). We prove by induction on j that Mj ^2 Sj for j = 0, 1, . . . . 
G = i/o = So; hence 3 / 0 2 S0. Assume that MfD. Sj. Mj/Mj+i satisfies (K) 
in G/Mj+i; therefore, by (k4), Mj C\ Sj/Mj+i P> Sj satisfies (K) in G/Mj+l Pi SK 

But Mj r\ Sj = Sj by the induction assumption. Hence by the definition of 5 ; + i 

sj+1 c Mj+l r\ Sj c j / i + 1 . 
Thus 5 ; C Af, forj = 0, 1, 

COROLLARY 2.1. Le/ C7 be an M-<t> group and assume that (ki)-(k5) hold for the 
property (K). Then if there exists a {finite) K-chain which connects 0 and G, the 
upper and lower K-chains are K-chains of shortest length connecting 0 and G. If 

0 = To C • • . C Ui C . . . C Un = G (of length n) 

is any K-chain of shortest length, Sn-i £ V\ Çj Tl} for i = 1, . . . , n. 
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THEOREM 2.3. Assume that (ki)-(k5) hold for the property (K). Let G be an 
M-<f> group and assume that G has upper and lower K-chains of length n connecting 
0 and G. Then the chains 

(6) o = To r\ 5.-1 c Tt n sn-2 c ... c Tt n 5.-̂ 1 c . - . c ^ n ^ o 
= Tn-i C G 

and 

(7) 0 C {To, Sn-i} = 5*-i C . . . C {Tit Sn-«-i} C . . . C {Tn-lf 50} = G 

are K-chains for G. 

Proof. To show that (6) is a K-chain, we have to verify that Tt+i P\ 5»_i_2 
/7\- Pi 5n-i-i satisfies (K) in G/Tt P\ Sn-*-i for i = 0,. . . , n — 2. By the defi
nition of Ti, Ti+i/Tt satisfies (K) in G/Tt for i = 0, . . . , n — 1. Therefore, 
by (k4), 

^n—i—2 

satisfies (K) in G/Tt O Sn-i-2. By the definition of Sjt 5,
n_f_2/5n_i_i satisfies 

(K) in G/Sn-i-i for i = 0, . . . , n — 2. Therefore, by (k4), 

7\+i Pi Sn-i-2/Ti+i D Sn-i—i 

satisfies (K) in G/Ti+i H 5„_f_i. Hence, by (k3), 

7\+i n Sn-t-2/Tt r\ Sn-t-2 n Ti+1 n 
satisfies (K) in G/Ti C\ Sn-t-u and (6) is a K-chain for G. 

To show that (7) is a K-chain, we have to verify that {Tt+i, Sn_*_2}/7\, S„_z-_i} 
satisfies (K) in GI\TU -Sn-i-i} for i = 0, .•. . , w — 2. Since Ti+i/Ti satisfies 
(K) in G/Tit we deduce from (k5) that 

Î Tf+i, Sn-i-i 
} / { 

7\-, O^-f-i) 
satisfies (K) in G/{TU Sn-t_i}. Also since Sn-i_2/5n_i_i satisfies (K) in G/Sn-i-i, 
{Ti, Sn-i-2}/{Tit Sn-i-i} satisfies (K) in G/{TU 5n_z_i}. Hence by (k2), 

{{Ti+i, Sn-i-i\, {Ti} Sn-i-z})/{Tu Sn-i-\) = {Ti+i, Sn-i-2}{/Tiy Sn-i-i} 

satisfies (K) in G/{Tit 5rt_*_i}, and (7) is a K-chain for G. 
The K-chains (1), (2), (6) and (7) are shown in the accompanying Hasse 

diagram. 

THEOREM 2.4. Let (K) be a property for which (k4) holds. If the M-<j> group G 
has a K-chain connecting 0 and G, let 

(8) 0 = U0 C • • . C Ut C Ui+i C...CUH = G, 

and 

(9) 0 = 7 o C . . . C ^ C Vi+i C • . • C Vu = G 

be K-chains of shortest length. Then Ut+i not Ç Vi, for i = 0, . . . , n — 1. 
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Î T . - So-G 

T-S^-O 

Proof. Suppose that Ui+\ C Vu then 

o = Vo r\ ui+1 c ... c F, n J7̂ I ç ... c F, Pi £/,+1 
= f/i+i C J7<+2 C - . . C P » = G 

is a K-chain, and its length is less than n. But this is impossible and hence 
Ui+1 not C F«. 

Consequently if G has a K-chain connecting 0 and G we have for the upper 
and lower K-chains, provided that (K) satisfies (ki)-(k5): 

(i) Sn-i-inot C Tt 

(ii) 7V1 not C Sn-t 

(i = 0, . . . , n - 1), 
(i = 0 , . . . , n - l ) . 

The properties (K) which we shall discuss are also invariant under M-<t> 
isomorphisms of the group. That is: 
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(k6) Let G be an M-<\> group and a an M-<i> isomorphism of G. Then if the normal 
4> subgroup A satisfies (K) in G, A a satisfies (K) in Ga. 

The conditions (k5) and (k6) are equivalent to the following condition: 

(k'5) Let G be an M-<t> group and 77 an M-<t> homomorphism of G. If A and B 
are normal <t> subgroups with A 3 B, and if A/B satisfies (K) in G/B, then ATJ/BTJ 

satisfies (K) in Grj/Brj. 

Proof. Clearly (k'5) implies (k6). We show next that (k'5) also implies (k5). 
We assume that A and B are normal <t> subgroups of the M-$ group G with 
A D B and that A/B satisfies (K) in G/B. If C is a normal <t> subgroup of G, 
let 7j be the natural mapping of G onto G/C. Then At) = {A, C}/C and 
By = {B,C}/C. Thus by (k'5), 

^ C " C satisfies (K) in G'C 

{B,C}/C — v - y - {B,C}/C 

But (K) is invariant under M-<t> isomorphism and hence {A, C\/{B, C] satisfies 
(K) in G/{B,C}. 

Conversely, we show that (k5) and (k6) imply (k'5). Assume that A and B 
are normal <£ subgroups of the M-<j> group G with A Z) B and that A/B satisfies 
(K) in G/B. Let rj be an M-<t> homomorphism of G, and let C be the kernel of 77. 
Then C is a normal <f> subgroup of G and the natural homomorphism of G onto 
G/C takes A onto {A, C} /C and B onto {B, C}/C. Hence by the Homomorphism 
Theorem there exists an M-4> isomorphism of Grj onto G/C which takes Arj onto 
{A, C}/C and B onto {5, C}/C. 

By the Second Isomorphism Theorem there exists an M-<f> isomorphism of 

G/C 
\B1C}/C 

which takes 

onto G/{B, C} 

j | ^ onto \A,C\/\B.C\. 

Therefore, there exists an M-<f> isomorphism <r of G/{B, C) onto Grj/Brj with 

Ar,/Bv= ({A,C}/{B,C})*. 

By (k5), {A, C}/{B, C] satisfies (K) in G/{B, C], and from (k6) it follows that 
A-q/Br] satisfies (K) in Grj/Br). 

THEOREM 2.5. Let G be an M-<f> group and (K) a property for which (ki)-(k6) 
hold. The terms of the upper and lower K-chains are M-<j> characteristic. 

Proof. We prove by induction that the terms of the upper K-chain are M-<t> 
characteristic. T0 = 0 and hence is M-<j> characteristic. Assume that Tt is 
M-<t> characteristic ; and let rj be an M-(j> automorphism of G. Then rj induces 
an M-<f> automorphism 77 of G/Th since Tw = Tt. We deduce from (k6) that 

Ti+irj/Ti = (Ti+1/Ti)r) 
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satisfies (K) in GIT i = (G/Ti)r\. Hence by the definition of 7Vi> Ti+iV Ç Ti+i. 
Similarly, TViij-1 C Ti+i so that Ti+ir] = Tt+i. 

We prove by induction that the terms of the lower K-chain are M-<j> character
istic. So = G and hence is M-<t> characteristic. Assume that Sj is M-<t> character
istic and let 77 be an M-<t> automorphism of G. By (k'5), Stf/Sj+ïn satisfies (K) 
in G-q/Sj+i-q which implies that Sj+i Q Sj+iT]. Since a similar argument shows 
that Sj+i C Sj+ir}~1, Sj+i7j = S/+i. 

In this section we have often made the hypothesis that the property (K) 
satisfies certain ones of the conditions (ki)-(k6). It may happen, of course, that 
(K) satisfies these (kf) for some M-<j> groups but not for others. In the following 
sections we shall often restrict the class of M-<j> groups considered, and discuss 
particular properties (K) for this class. It is clear that the results of this section 
may be applied to this class of groups, provided that (K) satisfies suitable con
ditions (ki) for groups in this class, and provided that the \p subgroups and 
quotient groups of a group in the class also belong to the class. 

3. Loewy chains. The first property (K) which we shall consider gives 
rise to the so-called Loewy chains [2, pp. 506-509]. Following Remak, we make 
the following definitions: 

Definition. Let G be an M-<j> group. If JF is a minimal normal 4> subgroup 
( ?± 0) of G, we call F a foot of G. 

Definition. The compositum of all feet of the M-<j> group G is called the socle 
and is denoted by S — 5(G). (If G has no feet, the socle is defined to be 0.) 

Before defining Loewy chains we state the following results [7] : 

LEMMA 3.1. If T is a normal <j> subgroup of the M-<f> group G and if 
T = C F (a G 31) where Fa is a foot of G for each a of the set 21, then there exists a 
subset S8 0/ 2( such that T = ^°F$(l3 £ 33). (The notation £ ° is used for direct sum.) 

Remak proves this in the case where 2f is finite. The same method of proof 
is valid in the infinite case, using transfinite induction. 

COROLLARY 3.1. Let G be an M-<f> group with socle 5 ^ 0 . S is the direct sum 
of feet of G. 

LEMMA 3.2. / / N is a normal </> subgroup of the M-<f> group G contained in the 
socle S of G, N is the direct sum of feet of G. Furthermore, there exists a normal <f) 
subgroup Nf of G such that S = N ® N'. 

Proof. Let K be the compositum of all feet F of G with F C N. By Lemma 
3.1, there exist sets 2( and 33 such that 

A - = £ ° F a ( a G U > , 5 = if 0 ]C°-P> (/3 e SB) 

where Fa and F$ are feet of G for a in 21 and /3 in 33 respectively. A7 Z) A' and 
hence N = K 0 (N n £ ° F?(3 ^ SB)). 

Assume that N C\ J^°Fs ^ 0 (0 c 33). Let x be a non-zero element of 
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i V H ^ Fp(P Ç 33) ; then x = / i + . . . + fn, where, for i = 1, . . . , n, ft is in 
F ĵ. and @t is in S3. Hence 

L = T V n f > > . ^ 0 . 
n 

52° TV ^s a ^ subgroup of G and its ^ subgroups satisfy the minimum condi
tion. Hence there exists a minimal \p subgroup F ^ 0 contained in L. Thus 
T7 is a foot of G and is contained in TV. But this is impossible because 
then F C K and T£ H £ = 0. Therefore 

Nr\^OF0 = 0 ( 0 G $),TV = T £ = X ° J F a ( a e 21), 

so that TV is the direct sum of feet of G. 
Let TV' = E ° FfiiP € 53) ; then TV' is a normal 0 subgroup of G and 5 = TV 0 TV'. 

COROLLARY 3.2. If N is normal <j> subgroup of the M-<f> group G contained in the 
socle S of G y then S/N is the direct sum of feet of G/N. 

Proof. By Lemma 3.2, S = TV 0 TV' and TV' = L ° FfiiP 6 33), where T^ is a 
foot of G, for fi in S3. 5/TV is therefore M-yp isomorphic to TV' and hence is the 
direct sum of feet of G/N. 

Consider now the following property of <f> subgroups of an M-<t> group: 

(R). Let A be a <f> subgroup of the M-<j> group G. A satisfies (R) in G if A is 
contained in the socle of G. 

Definition. A normal <j> subgroup TV of the M-<j> group G is fully reducible 
with respect to G if it is the compositurn of feet of G. (We assume that 0, which 
is the sum of no feet, is fully reducible.) 

From Lemma 3.2 we see that a normal </> subgroup satisfies (R) in G if and 
only if it is fully reducible with respect to G. 

We call an R-chain a Loewy chain. The property (R) obviously satisfies 
(ki) and (k2) so that the upper Loewy chain may be constructed. We denote 
the upper Loewy chain by: 

(10) 0 = So C . . . ç St c St+i Ç . . . . 

We verify that (R) satisfies (k5) : 

THEOREM 3.1. Let A, B, and C be normal <j> subgroups of the M-<j> group G with 
A D B. If A jB is fully reducible with respect to G IB, then {A, C}/{B, C\ is fully 
reducible with respect to G/{B,C\. 

Proof. Since A/B is fully reducible with respect to G/B, A/B = C (Aa/B) 
(a z %), where AJB is a foot of G/B, for each a in the set 3[. 

\A,C\ {ÇA^ÇI Ç_M.,_q , ,. qn 
{B, C} \B, C} {B, C) ya ' a ' 

Now 
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{Aa,C} = {A„{B,C}}„ Aa  

{B, C] {B,C} -Aar\{B,C) l J j " ^ j ' 

Aa is a minimal \p subgroup of G which contains B. Hence since Aa H {B, C\ 
is a \p subgroup of G and B Ç Aa C\ {B, C\ Q Aa, either 

B = AaC\ {B,C\ or Aa = AaC\ {B, C) so t h a t ^ a Ç {B, C}. 

In the first case, 

{B, C}~ B [J1 xp) 

and hence {Aa, C}/{B, C) is a foot of G/{B, C}. In the second case, 
{Aay C] = {B} C\. Therefore, {A, C}/{B, C) is fullv reducible with respect to 
G/\B,C\. 

Thus the condition (R) satisfies (ki), (k2), and (k5) and hence as a consequence 
of Theorem 2.2 we have: 

THEOREM 3.2. Let G be an M-<j> group which possesses a Loewy chain 

0 = No C . . . C Ni C Ni+l ç . . . 

(//̂ a/ w, 7Vf is normal in G, and Ni+i/Nt is fully reducible with respect to G/N u for 
i = 0, 1, . . . ), then Nt Cj Siy where the St are the terms of the upper Loewy chain. 
Hence if Nn — G for some integer n, Sn = G so that the upper Loewy chain connects 
0 and G and has length ^ n. 

If J is a maximal \f/ subgroup of the M-<j> group G, then G/J is <j> simple and 
hence is fully reducible with respect to G/J. Hence if (k3) were satisfied by (R) 
we should have G/N fully reducible (with respect to G/N) for N the intersection 
of maximal x// subgroups of G. That this is not in general the case is shown by a 
simple example: 

EXAMPLE 3.21. Let G be the additive group of integers, M void and let </> 
consist of all subgroups of G. Then if p is any prime, (p), the group generated 
by p} is a maximal normal subgroup of G. Furthermore, 

CO 

(\(pi) = 0 
1 = 1 

if pu p2, • . . is an infinite sequence of different primes. But G contains no 
minimal subgroups, and hence is certainly not fully reducible; in fact, the upper 
Loewy chain has as its only term 0. 

We shall need the following theorem to show that (k3) holds for the property 
(R) in an M-<f> group G, provided that the \f/ subgroups of G satisfy the minimum 
condition: 

THEOREM 3.3. Let A and B be normal <j> subgroups of the M-<j> group G with 
A~2) B. If A/B is fully reducible with respect to G/B, then B is the intersection 
of maximal \p subgroups of A. 
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Proof, (i) Assume that B = 0. By Lemma 3.1, there exists a set 33 such 
that A = 2° A9{& ~ 33) where, for 0 in 33, 4/? is a foot of G. For 5 in S define 

Then 4̂ = Js ® A5, and Ja is a maximal \f/ subgroup of A. 
LetK = fl JV, K is a \p subgroup of A and hence if K ^ Q,K = 2M7(7 G S), 

where S is non-void, and S C 93. If y is in £, 4 y C f| / , = K (5 G 93) so that 
in particular ^47 Ç̂  Jy. But this is impossible. Therefore, K = fl /§ = 0, and 
5 = 0 is the intersection of maximal yf/ subgroups of A. 

(ii) In the general case if we apply the result of (i) to the quotient group, 
G/B, we have: There exists a set 93 such that B/B = fl (Jy/B) (T €93), 
where J"7/i3 is a maximal ^ subgroup of A/B> for 7 in 33. But then 

^ = n /7I 

and / 7 is a maximal ^ subgroup of A, for 7 in 93. 

THEOREM 3.4. Assume that the yp subgroups of the M-<j> group G satisfy the 
minimum condition. Let A, Aa be \f/ subgroups of G for each a in the set 21, with 
A a C A. Then if A/Aa is fully reducible with respect to G/Aaifor ain$L,A/(\Aa 

is fully reducible with respect to G/ fl Aa. 

Proof. By Theorem 3.3, Aa is the intersection of maximal \p subgroups of A. 
Hence fl Aa is the intersection of maximal ip subgroups of A, and is therefore 
the intersection of a finite number of maximal \j/ subgroups of A, since the xp 
subgroups of G satisfy the minimum condition. 

Let 

C = fl Aa = flMu 

where Mt (i = 1, . . . , n) is a maximal \f/ subgroup of A, and assume that n > 1 
and that 

Kj = f\Mt* C (J = 1, . . . , n). 

Then since Mi is a maximal \p subgroup of A and Ki is not contained in Jl/i, 
A = [Ki, Mi}. Mi has the maximal ty subgroups 

Mi r\ M,, . . . , Mi C\ Mnt] and K2 = fl (Mi P .1/,) 

so that the same argument applied to Mi shows that Mi = {K2, Mi P M2}-
Continuing in this manner we obtain 

n 

A = C Kj. 

Hence 
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A/C-C^Kj/Q, 

C Kjr\Mj- Mj KM'*} 

= A/M,, 

which is \[/ simple. Thus Kj/C is a foot of G/C, so that A/ (]Aa = A/C is 
fully reducible with respect to G/C. 

Hence (R) satisfies (k3) for M-$ groups whose \p subgroups satisfy the mini
mum condition, and the lower Loewy chain may be constructed for these groups. 
We denote the lower Loewy chain by: 

(11) G = i ^ o 2 . . . 2 ^ 2 Rj+i 3 

THEOREM 3.5. Assume that the $ subgroups of the M-<t> group G satisfy the 
minimum condition. Let A and B be \f/ subgroups of G with B C A. If A/B is 
fully reducible with respect to G/B, then A P\ C/B C\ C is fully reducible with 
respect to G/B O C. 

Proof. By Theorem 3.3, 

B = 0 Mif 

where Mt (i = 1, . . . , n) is a maximal \f/ subgroup of A. Hence 

5nc=(l(Minc). 

AC\C = Anc _ j iunc) 
Mtr\c Mir\(Ar\Q— M, K ^h 

which is yp simple. Hence Mt P\ C is a maximal ^ subgroup of A C\ C\ and 
Theorem 3.4 shows that A C\ C/B Pi C is fully reducible with respect to 
G/B C\ C. 

COROLLARY 3.3. If the $ subgroups of the M-4> group G satisfy the minimum 
condition, then for G the property (R) satisfies the conditions (ki)-(k5). 

Hence we have: 

THEOREM 3.6. Let G be an M-$ group whose ̂  subgroups satisfy the minimum 
condition, and assume that G possesses a Loewy chain: 

G = Ko^ . . . 2 ^ 2 Kj+1 2 . . . 

(that is, Kj is in \p, and Kj/Kj+\ is fully reducible with respect to G/Kj+i, for 
j = 0, 1, . . .) Then Kj~D Rj for j = 0, 1, . . . , where the R, are the terms of the 
lower Loewy chain (11). Hence if Kn = 0 for some integer n, Rn = 0 so that the 
lower Loewy chain connects G and 0 and has length ^ n. 

https://doi.org/10.4153/CJM-1952-016-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-016-1


A THEORY OF NORMAL CHAINS 175 

COROLLARY 3.4. Under the hypotheses of the preceding theorem (that is, the i/ 
subgroups of G satisfy the minimum condition and Kn = 0 for some integer n), the 
upper and lower Loewy chains connect 0 and G and have equal lengths. 

THEOREM 3.7. Let G be an M-<t> group and assume that the upper Loewy chain 
connects 0 and G so that 

0 = So C . . . C St C . . • C Stt = G. 

Then if we define the chain 

G = Jl/o 2 . . . 2 il/, 2 Mj+i 2 . . . , 

where Mj+i is the intersection of Mj with all maximal \p subgroups of Mj, there 
exists an integer m ^ n such that Mm = 0. 

Proof. We use induction to prove that Mt C S„-t. Since Sn-i is the inter
section of maximal yp subgroups of G, M\ £ S„-i. Assume that Mj C Sn-j] by 
Theorem 3.3, Sn-j-i is the intersection of maximal \p subgroups of Sn-j so that 
there exists a set ?l such that Na is a maximal \p subgroup of Sn-j for a in 21, and 

S^j-i = PI .V. (a e 21). 

Either {Mj, Na\ = Na or Sn-j. In the first case, MjHNa = Mj\ in the 
second, Mj C\ Na is a maximal ^ subgroup of Mjt since 

which is ^ simple. Thus 

a 

is the intersection with Mj of maximal ^ subgroups of M} so that 

MJ+1 ç f| (il/, H A7.) ç fl N. = 5 ^ , . 
a a 

Hence M* C 5n_* (i = tf, 1, . . . , n). In particular, Mn Ç 5 0 = 0 and Mn = 0. 
As we have seen the converse of Theorem 3.7 is not true, for Example 3.21 

shows that even if Mi = 0, there may be no Loewy chain connecting 0 and G. 
Under the hypothesis of Theorem 3.7, it is not possible to prove that if Mm = 0, 
S,n — G, as the following example shows: 

EXAMPLE 3.71. Let W be the direct sum of the cyclic groups generated by b, 
bu • • • , bu . . . , elements of prime order p; thus 

W = (b) © (bi) © . . . © (bt) © . . . . 

Let M consist of the endomorphisms pu where pt(b) = bu pi(bl) = bt and 
Pi(bj) = 0 (j 9e i). Let <t> consist of all M admissible subgroups of W. 

Then V = (bi) © . . . © (bt) © . . . is the socle of W and 0 C V C IL is the 
upper Loewy chain for W. If 

Vi = (fti) © . . . © (^_i) © (b - bt) © (bi+1) © . . . , 
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V'i is a maximal </> subgroup of W, and 
n 

fl Vt = (b - bi - . . . - bn) ® (bn+1) + . . . , 

so that 

n 7, = o. 
i = i 

Hence although the length of the shortest Loewy chain for W is 2, the inter
section of all maximal (normal) <j> subgroups is 0. 

4. Central chains. The centre of an M-<t> group G is not necessarily a 4> 
subgroup of G. However, if for a in the set 21, Sa is a <j> subgroup contained in 
the centre of G, the compositum of the Sa is a <j> subgroup which is contained in 
the centre of G. 

Definition. Let G be an M-</> group. The </> centre of G is the compositum of 
all the <t> subgroups which are contained in the centre of G, and is denoted 
by Z0(G). 

The </> centre is the uniquely determined greatest (j> subgroup of G all of whose 
elements are centre elements, and is obviously normal in G. 

In this section we shall consider Z-chains, or central chains, where the property 
(Z) is defined by : 

(Z) The 0 subgroup A of the M-<t> group G satisfies (Z) in G if A C Z<f>(G). 

Clearly (ki) and (k2) hold for (Z). 

THEOREM 4.1. If A and B are normal </> subgroups of the M-<t> group G with 
A Z) B, and if A/B is contained in Z(f>(G/B), then for any M-<f> homomorphism rj 
of G, Arj/Brj is contained in Z^CGrj/Brj). Hence (kr

5) holds for (Z). 

Proof. Let a be an element of A, g an element of G; then 

- arj - gr\ + at] + gr] = ( -a - g + a + g)rç, 

which is in Brj, since — a — g + a + g is in B. Hence Arj/Brj C Z^(Grj/Br]). 
Definition. Let G be an M-4> group. We make the inductive definition: 

Zo = Z0(G) = 0, Zv+l/Zv = ZV+1(G)/ZV(G) = Z^G/ZV) 

for all ordinals v > 0, and 

Zx = ZX(G) = C Z,(G), 

for limit ordinals X. 
The groups Zu for positive integral i, are the terms of the upper central chain 

and hence are M-<j> characteristic by Theorem 2.5; it is easily verified (by 
transfinite induction) that Zv is normal and M-ct> characteristic, for each ordinal v. 

THEOREM 4.2. Assume that the M-<j> group G possesses a central chain, 

0 = ,V0 Ç . . . £ Nt C Ni+1 C . . . , 
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then Ni C Zu for i = 0, 1, . . . . If Nn = G for some integer n, the upper central 
chain is finite of length c ^ n, and connects 0 and G. 

Proof. It has been shown that (k'6) implies (k5) so that (Z) satisfies (ki), 
(k2), and (k5). Hence the theorem follows from Theorem 2.2 (i). 

Definition. Let A and B be normal <f> subgroups of the M-<j> group G. Then 
(A, B) is the intersection of all normal </> subgroups of {A, B] which contain 
— a — b + a + b, for all a in A and all b in B. 

Thus (A, B) is the smallest normal <j> subgroup of {A, B\ which contains 
all the commutators — a — b + a + b. 

LEMMA 4.1. Let A and B be normal 0 subgroups of the M-<j> group G with B C A. 
A/B is contained in Z<t>(G/B) if and only if {A, G) is contained in B. 

Proof. Assume that A/B Ç Z^G/B). If a and g are elements of A and G 
respectively, — a — g + a + g is an element of B. Thus B is a normal <t> sub
group of G = {Aj G) which contains — a — g + a + g, for all a in A and all 
g in G; hence (̂ 4, G)Ç1B. Conversely, if 5 D ( i , G), the element 
— a — g + CL + g is in B} for all a in A and all g in G; hence 

a + i = & + a (mod 5 ) , 
o r i / 5 Ç Z ^ ( G / 5 ) . 

THEOREM 4.3. Let G be an M-<t> group. 
(i) If A and Aa, for each a in the set 21, are normal <j> subgroups with A Z) Aai 

and if A/AaQ Z^G/AjJor a in 21, then 

A/(]AaQZ,(G/(\Aa); 

hence (k3) holds for (Z). 
(ii) If A ,B and C are normal <t> subgroups with A Z) B} and if A/B Ç Z$ (G/B), 

then 

Ar\c/Br\CQ Z+(G/B r\ c); 

hence (k4) holds for (Z). 

Proof, (i) By Lemma 4.1, Aa 3 (4 , G), for a in 21; therefore, f\Aa^ (A,G) 
so that 

A/(\AaQZ,(G/dAa). 

(ii) Since, by Lemma 4.1, (A, G) Ç 5 , ( i H C, G) Ç (il, G) Ç B. Since C 
is normal in G, the element — c — g + c + g is in C, for ail c in C and g in G. 
Thus {A niC,G)Q C. Therefore, (A H C, G) ç J5 H C, and by Lemma 4.1, 

i n C / J 5 H C Ç Z 0(G/£ H C). 

Definition. Let G be an ikf-0 group. We define by transfinite induction: 

G°(G) = G, C"+1(G) = (C'(G)f G) 

for all ordinals v > 0, and 
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C\G) = fl C\G) 

for limit ordinals X. 
The groups Ci(G)J for positive integral i, are the terms of the lower central 

chain. For by Lemma 4.1, Ci+1(G) is the smallest normal </> subgroups of G in 
C\G) such that Ci(G)/Ci+1(G) is contained in Z^G/C+^G) ). It is easily 
verified (by transfinite induction) that CV(G) is M-</> fully invariant for each 
ordinal v\ CV+1(G) is normal in G (by definition) and, for X a limit ordinal, 
CX(G) is obviously normal in G. 

LEMMA 4.2. If N is a normal $ subgroup of the M-fy group G, the?: 

C\G/N) = {C\G),N}/N {i = 0, 1, . . .). 

Proof. We use induction on i. The lemma is true for i = 0, since 

C\G/N) = G/N = {G,N}/N = {C\G)}N}/N. 

Assume that the lemma is true for i = j , that is, assume that 

C\G/N) = {Cj(G),N}/N, 

and let Ci+1(G/N) = K/N. Then 

Cj(G/Nl_ ( G/N \ 
Cj+1(G~/N) ~ \Cj + 1(G/N)J 

or 
{C\G),N}/N (G/N). 

K/N ~ *\K/N/ ' 

hence {C'{G), N)/K Q Z^G/K). Thus 

K 2 ({CJ(G),N},G) 3 (C'(G),G) = Ci+\G) 

so that 
(12) i £ 3 {Cm(G),iVÎ. 

On the other hand, since CJ(G)/Cj+1(G) is contained in Z^(G/Cj4rl{G) ), we 
deduce from property (k5) that 

JÇ^G^Nl ( _ G V 
{Ci+\G),N} ~ *\{Ci+1(G),N}/' 

hence 
\Ci(G),N\/N ( G/N \ 

{Ci+1(G),N}/N- *\{Cj+1(G),N}/Nj-
Thus 

(13) CJ+1(G/N) Q {Ci+1(G),N}/N, 

and combining (12) and (13) we obtain K/N = Ci+1(G/N) = \CM{G), N\/N. 
The induction is thus complete, and Cl{G/N) = \C{(G), N\/N (i = 0, 1, . . .). 

THEOREM 4.4. Let G be an M-<j> group which possesses a central chain 

G = Mt 2 • • • 2 M, 2 Mj+l.... 
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then Mj Z> Cs(G),forj = 0, 1, . . . . If Mn = Ofor some integer n, then the lower 
central chain connects G and 0 and has length < n. 

Proof. Since (Z) satisfies (ki), (k3), and (k4), this follows from Theorem 
2.2 (ii). 

COROLLARY 4.1. If the M-<j> group G possesses a central chain of length n con
necting 0 and G, the upper and lower central chains are of equal length c < n and 
both connect 0 and G. 

Definition. The M-<t> group G is <t> nilpotent of finite class c, if the upper central 
chain connects 0 and G and has length c. 

THEOREM 4.5. / / the M-<t> group G is <j> nilpotent of finite class c, then 
(i) Any <t> subgroup S is <j> nilpotent of finite class < c. 

(ii) If N is a normal <t> subgroup of G, G/N is 4> nilpotent of finite class < c. 

Proof, (i) We prove by induction that Zj(G) H S C Zj(S) (J = 0, 1, . . . , c). 
Since Z$(G) C\S Q Z<f,(S), the assertion is true for j = 0. We assume that 
Zt(G) H 5 C Zi(S) and show that 

(G)r\SQ Zi+1(S). 

Let z and s be elements of Zi+i(G) P\ S and S respectively ; then — s — z-\-s + z 
is in S, and is in Zt{G), since 

(G, Z<+1(G)) C Z<(G). 

Hence — 5 — z + s + z i s a n element of Zt(G) H ^ C Z*(5) so that z is in 
Z*.i(S) and Zi+l{G) H 5 Ç Z i + i (5) . 

(ii) Since G is <£ nilpotent of finite class c, CC(G) = 0. By Lemma 4.2, 

C\G/N) = {CC(G),N}/N = N/N. 

Hence G/N is <t> nilpotent of finite class < c. 

THEOREM 4.6. Let G be an M-4> group. G is </> nilpotent of finite class if and 
only if a central chain connecting 0 and G may be obtained from any normal \[/ 
chain for G by a suitable refinement. 

Proof. Assume that Ze(G) = G and let 

(14) 0 = NoQ...QNtC Ni+l Q . . . Ç Nn = G 

be any yp chain for G. Consider the chain 

(15) 0 ç . . . ç Nt = {Nu Zo C\ Ni+1} c . . . ç {Nit Zj H iV,+1) 

ç {#„ Zmr\Ni+1] Q...QNi+l 

= {#„z cniv i + 1} = {#<+1,ZonTV,+2} C , „ C G . 

Clearfy {7Vf, Z^ O iV*+i} is normal in G. Furthermore, 

{Nt, ZmnNi+1}/{Ni9 ZjHNi+l} Ç Z^G/\NU ZjHN^}), 
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as can be seen by using properties (k4) and (k5). Hence (15) is a central chain. 
This proves that the condition is necessary. The sufficiency is obvious. 

COROLLARY 4.2. Assume that the M-(f> group G is <j> nilpotent of finite class. If 
the yp subgroups of G satisfy the double chain condition, then a \p composition series 
is necessarily a central chain. 

5. M-<p groups with a finite Loewy chain. We now consider an M-cfr group G 
which has a finite Loewy chain connecting 0 and G and show that in this case 
the upper and lower central chains are finite. Furthermore, if G is <f> nilpotent 
of finite class, the upper Loewy chain, if it exists, is a central chain. 

Definition. Let G be an M-cj) group. If r is the first ordinal such that 
ZT(G) = ZT+i(G), then ZT(G) is the hyper centre of G and is denoted by H(G). 
If a is the first ordinal such that C*(G) = Cff+1(G), then C'(G) is the hyper-
commutator of G and is denoted by H*(G). G is </> nilpotent if H(G) = G and 
H*(G) = 0. 

Let us suppose for the moment that G is an M-<t> group whose ^ subgroups 
satisfy the double chain condition. Then the hypercentre H(G) = Zn(G) for 
some integer n} and the hypercommutator H*(G) — Cm(G) for some integer m. 
Hence G is <f> nilpotent if and only if G is <j> nilpotent of finite class so that either 
of the following conditions is necessary and sufficient for G to be <j> nilpotent: 

(i) H{G) = G or (ii) H*(G) = 0. 

In this section we shall show that these results hold for an M-(j> group which 
possesses a Loewy chain connecting 0 and G. Furthermore, if G is <f> nilpotent 
then any Loewy chain connecting 0 and G (if one exists) is a central chain. This 
is an analogue to Corollary 4.2, which asserts that a \[/ composition series (if one 
exists) is a central chain. 

THEOREM 5.1. Let J be a minimal normal <t> subgroup of the M-<j> group G which 
is not contained in the hypercommutator of G, then J is contained in the <j> centre of G. 

Proof. J is contained in G = C°(G) but is not contained in H*(G) = Cff(G). 
Hence there exists a first ordinal v such that / is not contained in CV(G). Since 
J Q Cfi(G) for all n < v implies 

/cnC(G), 

v is not a limit ordinal. Let v = X + 1. Thus / is contained in CX(G) but not 
in CX+1(G). 

Since CX+1(G) is normal in G, J C\ CX+1(G) is a normal <j> subgroup of G. 
J C\ CX+1(G) is contained in the minimal normal </> subgroup / and is not equal 
to / , since J is not contained in Cx+l(G). Hence 

J r\ CX+\G) = 0. 

Let g be an element of <?, and a an element of / ; then 

- g - a + g + a = (~ g - a + g) + a 
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is in J", and is also in CX+1(G), since / Ç Cl(G). Therefore — g — a + g + a = 0, 
or a commutes with g. Thus / Ç Z^{G). 

COROLLARY 5.1. / / S(G) is the socle of the M-4> group G, 

5(G) QZ*(G) +H*(G). 

In particular, if G is <j> nilpotent, S(G) Q Z$(G). 

COROLLARY 5.2. If, for every \[/ subgroup N of the M-4> group G, G/N is <j> 
nilpotent, any Loewy chain is a central chain. In particular, if G is <t> nil potent 
of finite class, every Loewy chain is a central chain. 

Proof. Let 

(16) 0 = N0 Ç . . . Ç Nt Q Nt+1 Ç . . . 

be a Loewy chain. Then Ni+1/Nt Q S(G/Ni) Q Z^{G/N%), since G/Nt is <j> 
nilpotent. Hence (16) is a central chain. 

THEOREM 5.2. If the M-<j> group G has a Loewy chain of length n which connects 
0 and G, then H*(G) = Cn{G). 

Proof. From the theory of Loewy chains we know that the upper Loewy 
chain connects 0 and G and has length < n. Let 

0 = So C . . . C Sj C . . . C G 

be the upper Loewy chain. For each positive integer i, G/Cl{G) is <j> nilpotent 
of finite class since, by Lemma 4.2, 

C\G/C(G)) = {C\G),C\G)}/Ci{G) = Ci(G)/C\G). 

The chain 

{So, C\G))/C\G) Q . . . ç [Sjt C\G)\/C\G) ç \Sj+l, C\G)}/Cl{G) ç . . . 

ç {Sn,C(G)}/C{G) = G/C\G) 

is a Loewy chain (of length < n), since 

I ^ C ' t O l M G ) ^ {Sj+1,C\G)} 
{Si,C\G)}/C%G)- !5„C'(G)i v"-**' 

which is contained in the socle of G/{Sjy Ci{G)). By Corollary 5.2, this is a 
central chain for G/C^G). Hence G/Ci{G) is <j> nilpotent of finite class < n. 
Therefore 

Cn(G/C\G)) = G\G)/C\G). 

But on the other hand, by Lemma 4.2, Cn{G/Ci{G) ) = {Cn(G), Ci(G)}/Ci(G). 
Thus Cn(G) = C*(G)t for i > n, and H*(G) = Cn(G). 

COROLLARY 5.3. If the M-<t> group G has a Loewy chain of length n which 
connects 0 and G, and if II* (G) = 0, then G is <f> nilpotent of finite class < n. 

A theorem about maximal normal <j> subgroups analogous to Theorem 5.1 
about minimal normal <j> subgroups is: 
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THEOREM 5.3. If J is a maximal normal </> subgroup of the M-<j> group G which 
does not contain the hyper centre of G, then J contains C1(G). 

Proof. H(G) = ZT(G) is not contained in / . Hence there exists a first ordinal 
v such that ZV{G) not C / . Since Z/i(G) C / for all /x < v, 

C Z,{G) C / 

and therefore v is not a limit ordinal. Let v = K + 1. ZK{G) is contained in J 
but ZK+i(G) is not contained in J. ZK+\(G) is normal in G, and / is a maximal 
normal <j> subgroup of G; therefore 

G= J+ZK+1(G). 

Let z and z' be elements of ZK+i{G)\ the element — z — z1 + z + z' is in 
ZK{G) C J. Hence G / / is abelian, or CX(G) C J. 

In Theorem 5.2 we have given a sufficient condition that the hypercommu-
tator, H*(G) equal Cn(G) for some integer n. We now find that under a some
what weaker condition the hypercentre, H(G) equals Zm(G) for some integer m. 
We need first a lemma. 

LEMMA 5.1. If the normal </> subgroup N of the M-<t> group G is contained in 
Zr(G) for some integer r, and if G possesses a chain 

G = A O . . . D 2>i D Di+i D . . . D Dm = 0, 

where Di+i is the intersection of maximal \[/ subgroups of Du then 

N r\ DJN C\ Dt+x C Z0(G/iV Pi Z>z-+1). 

Proof. For fixed /' (0 < i < m) consider the chain 

o = z0(G) n i v n z ) f ç . . . ç Zj(G) n i v n ^ ç . . . 

If J is a maximal ^ subgroup of N r\Dt, J contains the first subgroup of the 
chain but does not contain the last. Hence there exists an integer j such that 

Zj(G) r\NC\ Dt C / ; Zj+l(G) r\Nr\Di not C / . 

Thus J C (ZJ+1(G) r\Nr\Di) +JQNnDif and, since / is maximal, 

^ ,v n Dt = (zJ+1(G) nNr\ Dt). 
Let g and z be elements of G and Zj+i(G) C\ N (^ Di respectively. The 

element — g — z -\- g -\- z Is in N (^ Dt (since N and D t are normal subgroups 
of G)y and is also in Zj(G), since by definition 

ZJ+1(G)/Zj(G) = Z+{G/Zj(G)). 

Thus - g - z + g + z'ismZ j r\Nr\DfQ J. Hence J ^ (G, N r\Dt). But 
Nr\Dt+i is the intersection of maximal ^ subgroups of N C\Di. Therefore 

i Y n D m 2 (G,NnDi) 
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and thus by Lemma 4.1, N C\ DJN C\ Di+1 C Z+(G/N C\ Di+1). 

THEOREM 5.4. If the M-<j> group G possesses a chain 

G = D0D...DDtD Di+l D . . . D Dm = 0, 

where Di+i is the intersection of maximal \p subgroups of Du then H(G) = Zm(G). 

Proof. Let r be any positive integer and let ZT = Zr(G). Then by Lemma 5.1, 

zT n Djzr r\ ni+l c z,(G/zr r\ Di+l). 
Hence 

0 = No = Zr r\ Dm ç . . . C Nj= ZT r\ D»-, Q...QNm = Zrr\D0= Zr 

is a central chain for G; and by Theorem 4.2, Zr = Nm C Zm. But r was 
arbitrary so that the relation holds for each r. Hence Zw = Z r for r > m, and 
ff(G) = ZW(G). 

COROLLARY 5.4. / / the M-<j> group G possesses a Loewy chain of length n which 
connects 0 and G, H(G) — Zn(G). Hence if H{G) = G, G is <j> nilpotent of finite 
class < n, and the Loewy chain is a central chain. 

Proof. By Theorem 3.7, if G has a Loewy chain of length n connecting 0 and G, 
and if we define the chain 

G = Mo 3 . . . 2 Mj 3 Mj+i 2 . . . , 

where ikf;+i ^s the intersection of Af; with all maximal \f/ subgroups of Mjt 

there exists an integer m < n such that Mm = 0. Thus by Theorem 5.4, 
H(G) = Zm{G). But w > m, so that H{G) = Z„(G). 

6. (^-solubility. In this section we study another property of the type dis
cussed in §3. However, before defining the property, we prove some further 
results about $ nilpotency which we shall need. 

LEMMA 6.1. Let G be an M-<t> group and assume that <j> is normal. If N is a 
normal <t> subgroup of G which is <j) nilpotent of finite class, N is yj/ nilpotent of 
finite class. 

Proof. It is sufficient to show that the </> subgroups Zt(N) are normal in G. 
To show that Z^N) is normal in G, we note that Z^{N) is a subgroup of the 
centre Z(N) of iV, and that Z(N) as a characteristic subgroup of N is normal 
in G. Hence if g is any element of G, 

- g + Z,(N) + g Q - g + Z{N) + g = Z(N). 

Since 4> is normal, — g + Z^ (N) + g is a </> subgroup of G ; hence 

-g + Z,(N) + g = Z,(N). 

It may be shown by induction that Z*(A7) is normal in G. 

THEOREM 6.1. Let G be an M-§ group and assume that <j> is normal. If M and 

https://doi.org/10.4153/CJM-1952-016-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1952-016-1


181 CHRISTINE WILLIAMS AYOUB 

TV are normal <f> subgroups of G which are 0 nilpotent of finite class, then M + TV 
is <f> nilpotent of finite class. 

Proof, (i) Assume that M C\ TV = 0 so that M + N = M ® N. Since (by 
Lemma 6.1) M and TV are \p nilpotent, there exist chains: 

(17) 0 = TV0 C . . . c Nt c Ni+1 Q...QNn = N, 

(18) 0 = Mo C . . . C Mt ç Af i+1 C . . . C Mn = M, 

with Nf and M* yp subgroups of G (i = 1, . . . , n), and 

TVm/W* C Z^N/Nt); Mi+1/Mt C Z^M/Mt). 

Let w î + i , «i+i, ra, and w be elements of ikf*+i, TVi+i, M, and TV respectively; the 
element 

— (m + n) — (mi+i + » i+i) + (m + n) + (mi+i + ni+x) 

= — m — m î +i + m + mi+i — n — ni+i + n + ni+i 

is in Mi + Nt, since (M, Mi+i) C Tlf < and (TV, iV«+i) C TV*. Hence 

Mi+1 + Ni+1/Mi + Ni QZ*(M + N/Mt + Nt), 

and the chain 0 = M0 + N0 Q . . . Q M t + Nt C M"i+1 + 2V,+1 ç . . . Ç ¥ + iV 
is a central chain for M + N; thus M + N is <t> nilpotent of finite class. 

(ii) We consider the general case (i.e., no longer assume that M C\ N = 0). 
Since M/M H TV and N/M C\ N are <j> nilpotent of finite class, it follows from 
(i) that M + N/M C\ N is # nilpotent of finite class and hence there exists a 
chain 

(19) MC\N = Q o £ . . . Ç < 2 z ^ Qi+i Q . . . Q Qq = M + N, 

where Qt is in \f/, and Qi+i/Qt Q Z${M + N/Q%). By Theorem 4.6, there exists a 
chain 

(20) 0 = Ko C . . . C X , C i£y+1 C . . . Ç jft = ii" Pi TV, 

where Kù is in ^ and Kj+i/Kj Ç Z(f>(M/KJ), and there exists a refinement of (20) : 

(21) 0 = Xo = Ko,o C . . . C ^ = i^ , 0 C . . . Ç if,,, Ç . . . C i ^ 

= i £ m Ç . . . Ç M H TV, 

where KJtP is in \p, and KJtP+i/KjtP Ç Z4>{N/KjtP). Clearly, 

KJtP+1/KJtP Q Z*(M + N/KjtP). 

Combining (19) and (21) we obtain the chain 

0 = Ko Q . . . Ç KhV Q...QMr\N=Q0Ç:...QQiQ...QQQ 

= M + N. 

This is a central chain for M+N. Thus Tkf + TV is <j> nilpotent of finite class. 

COROLLARY 6.1. Let G be an M-4> group and assume that <j> is normal. If the 
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\p subgroups of G satisfy the ascending chain condition, the compositum of normal <£ 
nilpotent <j> subgroups of finite, class is <f> nilpotent of finite class. 

This result can also be obtained under the hypothesis that there exists a 
Loewy chain connecting 0 and G. 

THEOREM 6.2. Assume that the M-<t> group G possesses a Loewy chain connecting 
0 and Gj and assume that <j> is normal. If Aa, for each a in a set 2Ï, is a normal <j> 
subgroup of G which is <j> nilpotent of finite class, then C Aa(a Ç 21) is <t> nilpotent 
of finite class. 

Proof. Let 0 = So C . . . <Z Si: Ç . . . C Sn = G be a Loewy chain for G. If 

A = C 4 . (a G 21) 
the chain 

(22) 0 = A r\ So = To ̂  . . . Q A r\ Si == Tt Q . . . Q A C\ Sn = Tn = A 

is a Loewy chain for the M-\p group A, that is, each Ti+i/Ti is the sum of minimal 
\p subgroups of A/Tt. For 

Ti+\ A r\ Sj+i ^ {A r\ Sj+i, St} ,M v 
Ti An Si - Si ^ ^ 

which is the sum of minimal \j/ subgroups since it is contained in Si+i/Sf. We 
now show that the chain (22) is a central chain. 

By Lemma 3.1, Ti+i/Tt can be written as the direct sum of minimal \[/ sub
groups; let 

Ti+1/Ti=
yZ°Fx/Ti (7 G S), 

where Fy/Tif for each 7 in the set S, is a minimal \[/ subgroup. For fixed 7 in S 
and for fixed a in 21, we show that Tt 3 (Fyi Aa). Since Fy/Tt is a minimal \p 
subgroup, either 

Fy r\ (A + Ti) = Ti or Fy H (A + Ti) = Fy. 

In the first case, Fyr\AaQTi\ and (Fy, Aa) C Fy H A* so that (FT, i4a) C 7\. 
In the second case, 

FyQAa+ Ti or Fy/Tt Q Aa + Tt/Tt. 

Since Fy/Tt is a minimal ^ subgroup of the ^ nilpotent group Aa + Ti/Tu it is 
contained in Ztf>(.4a + Ti/Tt). Therefore, 04a + Tif Fy) C 7\ so that 
04a, F7) C T^ It follows that, for each 7 in S and for each a in 2Ï, (Aa, Fy) C 7\. 
It follows that, for each 7 in Ë, (C Aa, Fy) C 7\ or equivalently, Fy/Tt 

C Z<t,(A/Ti). This in turn implies that 

which shows that (22) is a central chain. Hence A = C ^4tt is <t> nilpotent of 
finite class. 
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THEOREM 6.3. Assume that the hyper commutator H* (G) of the M-<j> group G, 
is equal to Cn(G) for some integer n. IfNaisa normal 4> subgroup of G, for each a in 
the set SI, and if G/Na is <j> nilpotent of finite class, then G/ f) Na (a Ç SI) is <t> 
nilpotent of finite class. 

Proof. There exists a central chain for G of finite length na connecting Na to 
G, for each a. Hence 

Cn*(G) QNa. 
But 

H*(G) =Cn(G) c CHa(G) 

for each a. Hence H*(G) Q Na, for each a, and 

H*(G) QÇ)Na = N. 
a 

G/H*(G) is 4> nilpotent of finite class and hence G/N is </> nilpotent of finite 
class. 

COROLLARY 6.2. Under the hypotheses of the previous theorem, H*(G) is the 
intersection of all normal <j> subgroups N such that G/N is <f> nilpotent of finite class. 

LEMMA 6.2. Let A and B be normal <f> subgroups of the M-<f> group G with A Z) B. 
If A/B is <j> nilpotent of finite class, Arj/Br] is <j> nilpotent of finite class for any M-<f> 
homomorphism r\ of G. 

Proof. There exists a chain B = Bo C . . . Ç Bt C Bi+i C . . . C Bn = A, 
where B {is a normal <j> subgroup of A and B t+i/B iÇ-Z^A /B t). By Theorem 4.1, 

Bt+1r,/B<nÇZ+(Av/B*i), 

and thus Arj/Br) is </> nilpotent of finite class. 

It may be shown in a similar fashion that the following is a consequence of 
Theorem 4.3 (ii) : 

LEMMA 6.3. Let A, B, and C be normal </> subgroups of the M-4> group G with A D B. 
If A/B is <(> nilpotent of finite class, then A C\ C/B C\ C is <j> nilpotent of finite class. 

Consider now the property (S) of M-cj> groups: 

(S) The 0 subgroup A of the M-(j> group G satisfies (S) (in G), if it is <j> nilpotent 
of finite class. 

In order to apply our theory of normal chains we must verify that (S) satisfies 
the conditions (ki)-(k6). (ki) obviously holds. The validity of (k4) follows 
from Lemma 6.3. Lemma 6.2 shows that (k'5) holds; and (k'5) is equivalent to 
(k5) and (k6). In order to ensure that (k2) and (k3) hold we make further hy
potheses about the groups under consideration. 

Assume that 0 is normal. It follows from Corollary 6.1 that (k2) is satisfied 
if the ascending chain condition holds for the \[/ subgroups. On the other hand, 
in virtue of Theorem 6.3, (kz) is satisfied if the descending chain condition holds 
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for the \p subgroups. Hence (k2) and (k3) hold if we assume the double chain 
condition for \p subgroups. However, this condition may be replaced by the 
weaker condition that G possesses a Loewy chain connecting 0 and G. This 
follows from Theorem 6.2 (for (k2) ) ; and from Theorems 5.2 and 6.3 (for (k3) ). 
So we have : 

THEOREM 6.4. Let G be an M-4> group. Assume that <j> is normal and that G 
possesses a Loewy chain connecting 0 and G. Then (S) satisfies (ki)-(k6). 

Therefore, the upper and lower S-chains may be constructed, and the results 
of §2 hold for S-chains. The terms of the lower S-chain are: 

G 2 H*(G) 2 m(G) = H*[H*(G)] 2 . . . 2 H*+l(G) = H*[H*(G)] 3 . . . . 

This follows from Corollary 6.2. However, the terms of the upper S-chain are 
not necessarily the successive hypercentres, for the hypercentre H(G) is not 
necessarily the maximal <f> nilpotent normal <t> subgroup of G. 

Definition. If the M-<t> group G possesses an S-chain that connects 0 and G, 
G is </> soluble. 

THEOREM 6.5. Let G be an M-(j> group. Assume that <f> is normal and that G 
possesses a Loewy chain connecting 0 and G. If G is <f> soluble, any Loewy chain 
connecting 0 and G has abelian factors and consequently is an S-chain. 

Proof. Let 0 = Uo £ . . . £ Ut £ Ui+i £ . . . £ Um = G be a Loewy chain 
for G; then Ui+i/Ui is the direct sum of feet of G/Ui. Hence in order to show 
that Ui+i/Ui is abelian, it is sufficient to show that any foot of G/Ui is abelian. 

Let F/Ui be a foot of G/Ui. Since G is 0 soluble, there exists a chain 

Ut = To £ . . . ç Tj C Tj+1 C . . . ç Tm = G, 

where Tj is in \f/ and TJ+I/TJ is \f/ nilpotent of finite class. Choose j so that F is 
not contained in Tj but is contained in Tj+i. Then 

Ut £ F H T, C F 

and hence, since F/Ut is a minimal \[/ subgroup, U{ = F C\ Tj. Now F + Tj/Tj 
is a minimal \f/ subgroup of the \f/ nilpotent group Tj+i/Tj-, by Corollary 5.1, 
F + Tj/Tj is in the centre of Tj+i/Tj. This implies that F/Ui is abelian, since 

F/U^F+TJ/TJ. 

The definition of solubility that we have used was discussed by Hirch [6]. 
It is customary to proceed somewhat differently. 

Definition. For the M-4> group G we define 
s~i(0) /-< /^(n+l) /fin) f(n)\ 

for n > 0. 

(23) G = G(0) 2 . . . 2 G(i) 2 Gii+1) 2 . . . 

is a descending normal <t> chain, and the factors Gu+l)/GU) are abelian; in fact, 
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G(M-l) is the smallest normal <£ subgroup of G(z) such that the quotient group is 
abelian. However the dual construction does not yield an ascending normal <t> 
chain with abelian factors; for the compositum of abelian normal 0 subgroups 
is not necessarily abelian. 

The following theorem shows that the definition given for <j> solubility coincides 
with the customary one: 

THEOREM 6.6. The M-cfr group G is <j> soluble, if and only if G(s) = 0 for some 
integer s. 

Proof. The chain G = G(0) D . . . D GU) D . . . D G(s) = 0 has abelian 
factors and hence is an S-chain. 

Conversely, assume that G = Ro 2 • • • 2 Ri 2 Ri+i 2 • • • 2 Rn — 0 is an 
S-chain so that Rt/Ri+i is <£ nilpotent of finite class. Then the chain 

Ri/Ri+1 = C\Rt/Ri+1) 2 . . . 2 Cj(Rt/Ri+1) 2 . . . 2 C^Ri/Ri+i) 

— Ri+i/Ri+i 

joins Ri/Ri+i to Ri+i/Ri+i and has abelian factors. Hence if 

CJ(Ri/Ri+i) = Ritj/Ri+i, Ri,Ui = Ri+i, 
the chain 

G = Ro 2 . . . 2 -Ri 2 . . . 2 Ritj 2 . . . 2 Rt.nt = £*n 2 . . . 2 Rn = 0 

is a normal 4> chain for G with abelian factors. It is easy to verify that if there 
exist a normal </> chain with abelian factors connecting G and 0, then G(s) — 0 
for some integer s. 
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