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ABSTRACT. Water in po1ycrystalline ice at its melting
point forms a system of veins at the three-grain junctions.
The veins join together at nodes, which are the four-grain
junctions. The shape of a node, a tetrahedron with
non-spherical faces and open corners, is determined
completely by the dihedral angle for water in contact with
a grain boundary. Using the observed value for this angle,
namely 33.60

, the paper computes the tetrahedral shape.
This is a surface-tension problem with initially unknown
boundaries. The result shows that the ratio of vein volume
to node volume is R = 0.072 I/d, where I is the average
length of a vein between two nodes, and d is the vein
diameter measured between edges. For example, in a
specimen of ice grown from the melt in the laboratory R
was 18.

1. PURPOSE OF THE PAPER

Thermodynamical reasoning suggests (Nye and Frank,
1973) that polycrystalline ice at its melting point should
contain water in the form of a three-dimensional network
of veins. The veins lie along the lines where three ice
grains meet (Fig. I). At the points where four grains meet,

Fig. I. The vei/l-node system. (Modified from Smith. 1948;
/lot to scale.)

the water veins come together in fours to form junctions
called nodes. The main purpose of this paper is to compute
from surface-energy considerations the detailed shape of a
node. One can then deduce the relative volumes of water in
the veins and in the nodes. Our conclusions on this topic
appear at the end of section 4. Section 5 describes the
details of the computation.

2. THE VEIN SYSTEM AND ITS SIGNIFICANCE

The vein structure predicted by theory can be readily

observed with a low-power magnifier, or even with the
naked eye, in ice grown from the melt in the laboratory. It
has also been observed and carefully studied in temperate
glacier ice (Raymond and Harrison, 1975). In both cases,
some water is also found at other locations within the grain
structure, for example, as lenses at the grain boundaries
(Nye and Mae, 1972), and Raymond and Harrison observed
a few three-grain junctions without veins. Air and
water-vapour bubbles are also seen.

There are several reasons why the vein structure is
worthy of study. The first concerns the absolute scale of
temperature. The triple-point temperature of water is the
fixed point chosen to establish the size of the degree, and
standard triple-point cells use polycrystalline ice (e.g.
McAllen, 1982). Therefore, the effect of the high curvature
of the vein walls in lowering the equilibrium temperature is
one of the potential variables that needs to be considered in
achieving reproducibility. Another is the fact that impurities
are likely to be preferentially concentrated in the veins and
nodes, where they will have a disproportionate effect in
lowering the equilibrium temperature.

In glaciers, a connected vein system can make the ice
permeable to water on a microscopic scale, and a continuum
theory of moisture transport can be based on this
mechanism (Fowler, 1984). How efficient the mechanism is
depends on the size of the veins and on the extent to
which they may be mechanically blocked by air bubbles or
strain (Liiboutry, 1971, 1976; Raymond and Harrison, 1975;
Hantz and Liiboutry, 1983), or effectively sealed by thermal
effects arising from bubbles and impurities (Raymond,
1976). The permeability of the basal ice in a glacier may
have an influence on the basal sliding process by providing
an additional path for the movement of water involved in
regelation (Robin, 1976; Liiboutry, 1986). When fresh-water
lake ice melts, the veins may enlarge to macroscopic
channels and allow vertical movement of water (Browman,
1974). Likewise, the ice layers in a snow-pack become
permeable to water as it reaches the melting temperature by
enlargement of the veins, and the permeability effectively
disappears if the prevailing temperature should drop, thus
reducing their size (Langham, 1974).

Water, both in veins and in other locations, may also
affect the creep rate of polycrystalline ice (Duval, 1977).
Similarly, the steady deformation taking place in a glacier
may redistribute the water between the veins and the grain
boundaries, driving the system away from thermodynamic
equilibrium (Nye and Mae, 1972); from this point of view,
undeforming ice in the laboratory may not be altogether
representative of glacier ice.

In glaciers the veins play another role by being about
a thousand times richer in impurities than the grains
themselves, and they thereby have a correspondingly
important effect on the melting point. However, because of
their relatively small volume in coarse-grained ice, the
impurities they carry may be only about 1% of the total. In
fine-grained ice this can increase to about 40% (Harrison
and Raymond, 1976). As grain growth and recrystallization
occur, gas inclusions or other impurities are transferred
away from the grain interiors (Berner and others, 1977;
Glen and others, 1977). One envisages a two-stage process;
first, an impurity is swept up by a moving grain boundary,
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and then the grain boundary itself is swept by a moving
vein. By this scavenging mechanism the veins would be
expected progressively to purify the ice.

Liquid veins may exist even in polar ice. For example,
in Antarctic ice, subsquently cooled to -160·C, the scanning
electron microscope gives evidence that sulphuric acid is
preferentially concentrated at the three-grain junctions
(Mulvaney and others, 1988; Wolff and others, 1988), which
suggests that in nature the junctions would contain liquid in
spite of the low Antarctic temperatures. Indeed, Wolff and
Paren (1984) attribute the d.c. conductivity of polar ice
essentially to conduction along such liquid veins.

4. THE DETAILED GEOMETRY

Fig. 3. Cross-sectioll of a water veill at a triple-graill
junction.
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Consider first the asymptotic cross-section of a vein
(Fig. 3). The distance d between the corners of the triangle
is related to the radius of its sides rv by

curvature or by the presence of neighbours at a finite
distance. The computation described in this paper finds the
shape of an isolated node when 260 = 33.6·.

An answer can then be given to the question: what
proportion of the water in the vein-node system resides in
the veins rather than in the nodes? And to the related
question: if some extra water is provided in the system by
melting, how much of it will appear in the veins and how
much in the nodes? To see that the questions are not
trivial, consider for a moment the hypothetical case when
260 = 60·. Then, as discussed in Nye and Frank (1973), the
nodes become spherical-faced concave tetrahedra. The
tetrahedral edges, which are then arcs of circles, meet
tangentially at the corners and the veins close up
completely. So, if 290 were 60·, the proportion of water in
the veins would be zero, and any new melt water would go
exclusively into the nodes. On the other hand, observations
suggest that, with 290 taking its measured value of 33.6·, a
substantial proportion of the water in the vein-node system
is in the veins. One of our purposes is to establish by
computation what proportion this is.

Because the nodes shade continuously into the veins,
the distinction between the two is not a sharp one.
However, as they leave the nodes the veins approach their
asymptotic form so fast that the potential difficulty of
defining precisely where one stops and the other begins in
fact makes little quantitative difference.

Our discussion has been about pure polycrystalline ice.
In practice, as was mentioned in section 2, the impurities in
a polycrystalline specimen formed from the melt are
preferentially concentrated in the veins and nodes, where
they will lower the melting point. This will be a uniform
effect throughout the vein-node system, because the
concentration of impurities in the liquid will tend to
become uniform. Therefore, the overall effect will be
simply to lower the melting point; for a given volume of
liquid, the geometry of the system will not be affected. We
do not assume that all the water in a pOlycrystalline
specimen resides in the vein-node system. The question we
are concerned with is how the water which is in this
system is distributed between the veins and the nodes.

It is useful to define an equivalent radius r0' by

The area of cross-section can be expressed in terms of rv
as ocr~, where

grain 2

grain 1

Fig. 2. Showing the dihedral angle 290 for water in contact
with a grain boundary.

The shape of the cross-section of a vein and the shape
of a node are both dictated by surface energy, specifically
by the ratio of the surface energy of an ice-water interface
to that of a grain boundary (Nye and Frank, 1973). If we
neglect any crystal anisotropy in these energies, water at a
grain boundary has to penetrate it at a definite angle 260
(Fig. 2), which by measurement (Walford and others, 1987)
is 33.6:1: 0.7·, with no observable influence of crystal
orientation. Moreover, because the melting temperature of a
curved ice-water interface depends on its total curvature
(the sum of its two principal curvatures) and because in
equilibrium the temperature must be uniform, it follows that
the total curvature of the entire ice-water interface is
uniform throughout the polycrystalline specimen. Thus, all
the faces of both the veins and the nodes have the same
total uniform curvature.

3. THE GENERAL GEOMETRY OF THE VEIN SYSTEM

These are powerful constraints. They imply that, given
the grain structure, and given the total volume of water
contained in the veins and nodes, this channel system, in
equilibrium, has an essential uniformity.

The veins must have three-fold symmetric
cross-sections and the nodes must have the symmetry of a
regular tetrahedron. Moreover, for thermodynamic
equilibrium, each node must be identical to every other,
and, similarly, the veins must all have identical
cross-sections. Complete equilibrium would also require the
veins to be straight, but in fact no three-dimensional grain
structure exists that allows this (Figure 1 is misleading in
this respect). Therefore, so long as the ice remains poly-
crystalline, the veins, and also the grain boundaries, must
necessarily be curved. The tendency for the veins to become
straight and for the grain boundaries to become flat entails
a much slower process than the local re-adjustments that
make the individual nodes and veins symmetric and
uniform.

Thus, the structure consists of identical regular
tetrahedra (the nodes) with concave non-spherical faces, and
with the corners opening out into nearly straight veins.
Asymptotically, the vein shape approaches a cylinder whose
cross-section (Fig. 3) is an equilateral curvilinear triangle
each of whose sides is an arc of a circle.

An essential point for this paper is that, once the
dihedral angle 260 is fixed, an isolated node has a unique
shape that is scale-free. In other words, changing the
proportion of water changes the size of a node but not its
shape. This means that the shape of an isolated node may
be computed once and for all; there are no free parameters.
Joining the nodes together results, as we have noted, in the
veins becoming curved, but, because the veins approach
their asymptotic form in such a short distance, the shape of
an individual node is hardly affected either by vein
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Thus, a circle of radius r0 would have the same area as the
vein cross-section.

Let us suppose that, on average, each section of vein
joining two nodes has length I, and suppose the total
number of nodes is n. By associating each node with four
veins each of length tl, we see that the total length of vein
is 2nl. Hence the total vein volume is 2nlllr~. We make an
arbitrary decision that a vein ceases to be called a vein
when its cross-section has flared out to a fraction I + E of
its asymptotic value. We shall find, as already mentioned,
that the exact value taken for E (0.1 or 0.05, for example)
makes little difference to the final result. With this
definition, since the shape of the node is independent of
scale, we can write its volume as ~, where /J. is a
dimensionless computable number. The total node volume is
nlU'~, and the ratio of vein volume to node volume is then
2nlllr~/nlU'~ = 21l111U'0'Thus, if we can estimate Ilro' the
ratio of vein length to radius, the proportion of water in
the veins depends only on /J., and this is the number we
have to compute. Note that, for given I, the narrower are
the veins the greater is the proportion of water they
contain.

In the computations td (Fig. 3) is taken as unit length,
and the node volume computed in these units is denoted by
Vn. Thus

Thus, in the above example, where R = 18, 12 times as
much new water would appear in the veins as would appear
in the nodes.

These are our main conclusions of physical interest.
The remainder of the paper describes how the detailed node
shape and the results of Table II were computed.

5. COMPUTATIONAL METHOD

The physical conditions to be obeyed by the ice-water
interface are first, that the sum of its two principal
curvatures at each point is a constant, and second, that at
the edges the two faces should meet at the constant angle
290, The problem is equivalent to the following one in
surface tension (Fig. 4). Consider three planes' A, B, C
whose normals are symmetrically arranged a~out an axis OZ
and which make equal angles' of cos-1(2/3) = 35.26· with
it. Into the corner thus formed (rather flatter than the
corner of a cube) place a drop of liquid and require that
the contact angle between liquid and solid (that is, anyone
of the planes) be 90, The liquid surface so formed has the
same shape as one face of our node. Thus, the three
contact lines, L say, of the liquid drop are the edges of
the node, and repeating this surface four times gives the
complete shape of the node. This equivalent version of the
problem is perhaps easier to vizuaIize and we shall use it in
what follows.

and by combining this with Equations (I) and (3) we find

where a and 13 are given. by Equations (2). Inserting the
measured value 2eo = 33.6 yields a = 0.06612 and

jI. = 3.900Vn·

In computing Vn the only adjustable parameter (apart
from the mesh size) is E, and the results are shown in
Table II. The computed value of Vn is found to be 70,
with the precise value depending on the choice of E, and
hence we conclude that

/J. = 3.900 x 70 = 270.

The ratio of vein volume to node volume is then

R
I

0.023 -.
ro

Fig. 4. A re-entrallt comer formed by three planes A,B,C.
whose normals make equal angles of 35.26· with the
normal to the diagram. A drop of liquid having contact
angle 90 lies in the comer. The contact lines are labelled
L. The liquid surface has the same shape as one face of
a node. The figure is drawn to scale, projected parallel
to OZ.

2
-R.
3

As a measure of vein size, the observable quantity is the
edge separation d (Fig. 3) rather than ro' and in terms of d
we find

As an example, in a specimen of ice grown from the
melt in the laboratory and allowed to heat up to the
melting point, d was measured as 20 jl.m and I was
estimated as 5 mm, yielding the ratio R = 18. For the water
to be equally distributed between the veins and the nodes,
melting would have to enlarge the veins to a width
d = 360 jl.m. This would be extreme; normally there will be
much more water in the veins than in the nodes.

The question was also asked: if a small amount of
extra water is made by melting, what proportion of it will
appear in the veins? Since Vv «r~ while Vn « r~, it follows
that

The main computational problem is that the shape of
the contact lines L (or node edges) is not known in
advance (although of course they have to lie in the relevant
planes). The method used is to start with a trial shape for
this line and to find the corresponding surface of constant
total curvature (a surface-tension problem) by a
finite-difference successive approximation procedure. This
yields a contact angle, 9 say, between liquid surface and
plane, that varies along the contact line. The line is then
adjusted normal to itself by an amount k(e - eo)' k being a
selected constant, to a new position, and the new surface of
constant curvature found. If the value of k has been well
judged, the new, but still non-uniform, contact angle will
now be closer to the required uniform value eo' The
process is repeated until no further improvement takes
place.

A potential problem with this procedure is that to
solve the surface-tension problem even with a given
boundary L requires a knowledge of the constant total
curvature, K say. If one starts by fixing the asymptotes of
L, which are the asymptotic vein edges, d, the distance
between them, is fixed and therefore also r v by Equation
.(1). Then, because one principal curvature at infinity is

I
0.072 -.

d
R
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Fig. 5. Coordinate system and grid used in the computation.

using Equation (1), and we fix the overall scale by taking
AC = 1.

Then L' is adjusted until e = 90, As a first trial L' was
taken as a straight line AAl (Fig. 5) and an arc of a circle
AtP parallel to OY at Al and perpendicular to Ox at P. AP
was always a smooth curve passing between grid points.

Boundary conditions. On OC symmetry dictates that
grad h(X.Y) is parallel to OY; thus hx = O. Similarly, on
OP grad h(X,Y) is parallel to Ox; thus hx/hy = (3) .

On AC, provided it is taken at large enough Y, the
surface is parallel to the vein axis, which provides the
condition hy = 1/2(2)1-. On the node edge L, which we
havf to adjust, the surface meets the plane Z = (I/2(2)~
«3) X + Y) and so pn L', its projection, the condition is
h(X,Y) = (1/2(2)1-)«3)t X + Yr.

After h(X,Y) has been computed, we need to calculate
on L' the angle e between the surface Z = h(X,Y) and the
plane Z = (1/2(2)1-)«3)1-X + Y) from the formula

zero, K = I/rv and so K is determined. But this could be
awkward numerically because L will actually be computed
only over a finite length rather than to infinity. However,
although this might have been troublesome in theory, L
turned out to approach its asymptote so' fast that in practice
there was no difficulty.

Because of the symmetry, it is sufficient to compute
only a representative one-sixth of each node face; repeating
this 24 times gives the complete figure. Figure 5 shows this
representative piece schematically viewed along a three-fold
axis of symmetry OZ, the origin a being taken at the
centre of the node. The axes OX, OY, perpendicular to
OZ, lie in the plane of the diagram, OY being the
projection of the vein axis, which runs at an angle to OZ
of cos-1(lj3) = 70.53 o. The auxiliary axis Ox is also in the
plane of the diagram and at 30 ° to OX. The edge L of the
node lies in a plare (B in Figure 4) whose normal makes
an angle cos-1(2/3) = 35.26 ° with OZ and is coplanar with
OZ and Ox. The line marked L' is the projection of this
edge L on to the plane of the diagram. The point A is
taken far enough up the vein to be effectively on the
asymptote, as we have just explained, and is fixed
throughout. The field to be computed is h(X.Y), the height
of the interface above the plane Z = 0, over the region
bounded by OCAPO.

cos 9
(3)!-hX + hy + 2(2)1-

{I2(hk + h~ + 1)}f
(5)

Differential equation. The condition is that Finite-difference scheme. The solution region was covered
by a rectangular grid (Fig. 5) with proportions chosen to
make Ox a line of grid points. The spacing parallel to OX
was uniform with N1 intervals in AC. The spacing along
OY was made non-uniform, as follows, so as to reach far
enough up the vein as economically as possible. OC was
divided into N3 sections. In the first section OCt there
were N2 intervals of equal length ll.Y, in the second section
N2 intervals of length 211.Y, and so on, doubling the interval
in each section to reach C.

To program the boundary conditions, the values of h
obtained by extrapolation at exterior points (not shown in
Figure 5) were used, taking care to avoid schemes that
introduced instabilities. In the finite-difference approx-
imation (Fig. 6) to the differential equation (4) centred
differences were used for the first derivatives p,q. Then,
since the value of h at the central point appears only in
the second derivatives rand t, which occur linearly, we can
readily solve for h at the central point in terms of h at the
eight surrounding points.

Starting with a trial function h(X,Y) that fitted the
required boundary height on AP, the values of h at interior
mesh points were successively improved in this way.
Convergence was made faster by using over-relaxation, the
adjustment computed for h at the central point of Figure 6

are the two principal radii of curvature
= h(X,Y) at each point. Then, using a
(Bronshtein and Semendyayev, 1971,

2sin [~ - eo)/d
rv

K=

where p = hx, q = hy, r = hxx' s = hXY' t = hyy

and

where Rt and R2
of the surface Z
standard f~rmula
p. 311), we· find

Subscripts denote derivatives and note that no small-angle
approximation is used, The value of K is determined, as
explained above, from the relation
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TABLE I. COMPUTED VALUES OF hAT 0 AND OF OP
(AC = 1)

Table II also shows the volume of the sphere inscribed
within the node, and also of a sphere that touches each of
the six no~e edges L at its mid-point (the latter has a
radius (3/2) times OP).

Operating on the coordinates of the computed portion
of the node surface, first with two mirror planes to
produce a complete face, and then with diad axes, generates
the complete node as drawn in perspective in Figure 7a and
b.
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Fig. 7. Perspective views of a node. to scale. (a) is viewed
from a distance of 16 units and (b) from a distance of
20 units. (The curves outlining the cross-sections of the
veins lie accurately in the vein surfaces. but in planes
parallel to OZ and its repetitions. Thus. they differ very
slightly from plane cross-sections.)

TABLE II. VOLUME OF A NODE

ratio of cross-section of vein where it joins the
node to its asymptotic cross-section.
volume of node.
volume of sphere that touches node faces.
volume of sphere that touches node edges.
The unit of length is td = AC.

+ E

being increased by a factor f, usually taken as 1.9. The
solution, for a set position of AP, was regarded as achieved
when the adjustment at all grid points had decreased to less
than 10-5 (or 10-6 in some cases). Typically between 10 and
50 iterations over the grid were sufficient for this.

The contact angle 9 was then computed from Equation
(5) at mesh intervals along AP and compared with the
target value 00' The X coordinates of AP were increased by
k(O - °0), k being adjustable and typically 1 or ,0.7. Then
AP was slightly smoothed before finding the new solution
for h(X,Y) and repeating the procedure. The process was
stopped when there was no further decrease in I° - 00 I;
this needed 30-50 iterations.

Table I shows results for successively finer grid
spacings specified by N1 and N2• With the finest grid the
maximum discrepancy in contact angle I° - 00 I was 0.003
radian = 0.20

, which is less than the reported error (0.70
)

in the measurement of 00 itself. Table I contains values of
h at the origin, which is the radius of a sphere inscribed

Fig. 6. Illustrating the finite-difference scheme used in the
computation.

N1 N2 Ns h(O,O) OP

5 20 5 1.324 2.386
10 40 3 1.297 2.335
15 60 3 1.286 2.315

1.27 2.28

within the node, and of the length OP measured in the XY
plane. These values vary linearly with the interval, and
therefore we extrapolate to zero interval to obtain the final
result shown in the last line.

In the same way, the whole solution for h(X,Y) was
extrapolated to zero interval and then the various volumes
shown in Table II were computed (these refer to the whole
node, not just the representative piece). The volume of the
node depends, as pointed out in section 4, on making an
arbitrary choice of where the node ends and a vein begins.
If we choose this point as being where a vein has narrowed
to within 12% of its asymptotic area (line 1 of Table II),
the node volume is 67.4. The volume is not sensitive to the
exact criterion used: if the difference from the asymptotic
area is anywhere between 12 and 5%. the volume is
70 :I: 3.

E Vn V· Vo1

0.12 67.4 8.61 92.0
0.08 70.1 8.61 92.0
0.05 72.8 8.61 92.0

The final value of Vn is 70 :I: 3 within the range
0.05 < E < 0.12.
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