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Abstract

Let G be a finite abelian group and A C G. For n € G, denote by r4(n) the number of ordered pairs
(a1, a2) € A? such that a; + a; = n. Among other things, we prove that for any odd number ¢ > 3, it is not
possible to partition G into ¢ disjoint sets Ay, Ay, ..., A; Withry, =r4, =+ =r4,.
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1. Introduction

We use N to denote the set of nonnegative integers. Let G be an abelian semigroup
with an arbitrary total ordering. For any subset A C G and n € G, let

ra(n) = #{(ar,a2) € A* 1 ay + ay = n),
ri(n) = #{(a, az) €A’ a1 +ar=n, a < a}

and
ry(n) = #(ar, ay) € A% 1 ay +ay = n, a) < ay},

respectively. These representation functions have been studied by many authors (see,
for example, the survey paper [7] for a picture of results in this area). An important
problem is the inverse problem for representation functions, which seeks to understand
sets A, B € G with the same representation function.

Nathanson [4] determined all pairs of sets A, B € N such that r4 and rp eventually
coincide. Kiss ef al. [2] extended Nathanson’s result to 3-fold representation functions.
In [3, 6, 8], the authors classified all subsets A C N such that rX and rgj\ 4 (respectively
ry and " 4) eventually coincide. Nathanson [5] posed the following problem, which,
to the best of our knowledge, is still open.

ProBLEM 1.1. Let ¢ > 3. Does there exist a partition of the nonnegative integers into
disjoint sets Ay, Ay, ..., A, whose representation functions rzl , ’"Xz’ el rzt eventually
coincide? Characterise all such partitions if they exist. The same problem can be posed
for r;.
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Analogously, for a finite abelian group G, one may ask the following question.

ProBLEM 1.2. Let f > 2. Does there exist a partition of G into disjoint sets A1, As, ..., A;
whose representation functions ra,, 7a,, ..., s, coincide? Characterise all such
partitions if they exist. The same problem can be posed for r; and r;,.

For ¢ = 2, we have a complete classification.

TueoreM 1.3. Let G be a finite abelian group with |G| > 2 and A C G. Denote the
2-torsion subgroup of G by G, :={g € G : 2g = 0}. Then:

o 14 =rg\ if and only if |G| is even and |A| = |G|/2;
o ;= E\A (respectively r, = (‘;\A) if and only if |G| is even, and |A N H| = |H|/2
for every coset H of G.

We make some progress toward Problem 1.2 for r4 and ¢ > 3. Our main result is the
following theorem.

THEOREM 1.4. Let G be a finite abelian group and t > 3 an odd number. Then it is not
possible to partition G into t disjoint sets A1, Ay, ..., A Withra, =¥pa, =+ =14,

We also pose the following conjecture.

Consecturk 1.5. Let G be a finite abelian group and ¢ > 2. Suppose that A;, As, ..., A,
form a partition of G with r4, = r4, = --- = r4,; then ¢ divides |G,|.

Problem 1.2 was also asked in [1] for h-fold representation functions and
Theorem 1.4 gives a partial solution. Theorem 1.3 was also proved in [1]. We provide
a new proof here, since the ingredients in the proof are also needed for proving
Theorem 1.4.

2. Proof of results

Throughout this section, G is a finite abelian group. Our main tool is the generating
function in the group algebra C[G] associated to a set A C G. Recall that the elements

of C[G] are of the form
f) =) age,
geG
where q, is a complex number for every g € G. The multiplication in C[G] is given by
(Z agxg)(Z ngg) = Y bt = Z( D aglbgz)xg.
geG g€G 81,826G geG 51;%€_Gg
1 2=

For any subset A C G, write

A1) = ¥ e CIGl.

acA
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Then
B =Y 3 1= e, @1
neG (;111_,'_1/11122621‘31 neG
FiGP + i) = Y (ram + Y 1) = Y 2 22)
neG 2aae:(1;l neG
and
fu()? = £ = Z(VA(H) - Z 1)x" = Z 2ry(n)x". (2.3)
neG zaaegl neG

We use y,4 to denote the characteristic function of A, that is,
(x) = {1, X€EA,
XA =10, xeG\A.
For any function f : G - Z and map ¢ : G — G’, let f¥ : G’ — Z be defined as
frmy= > fim), ned'.
meg~!(n)
For any group homomorphism ¢ : G — G’, we have a natural induced homomorphism
of group algebras ¢, : C[G] — C[G’], namely
90*(2 agxg) = Zagxw(g) = Z( Z an)xg.
geG geG geG’ ne‘p‘l(g)
Proor or Tueorem 1.3. Let A C G and write B = G\A. If r4 = rp, then
AP = > ratm) = > rp(m) = 1B 24)
neG neG
and hence |A| = |B| = |G|/2. Now suppose that |G]| is even and |A| = |G]/2. It follows
from (2.1) that r4 = rp if and only if
fa(x)? = fa(x)?
or, equivalently,
(fa(x) = fp())(fa(x) + fp(x)) = 0. (2.5)

To see that (2.5) holds, decompose G into a direct sum of cyclic groups, say

G = ézm,,.
i=1

Fixing a generator g; of Z, for every i and setting x% = x;, we thus obtain an
isomorphism

CIG] = C[)cl,)cz,...,xk]/(xrln1 - l,xgl2 - l,...,x;?" - 1.

Using this isomorphism,

k
f)+ fs) = > " = [ [+ x4+ 2, (2.6)
i=1

neG
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Let ?A,}_‘B € C[xy, x2, ..., x¢] be an inverse image of f, fp respectively under the
projection map

m:Clxp, x, .., = Clay, .o, /(" = Lx0? = 1, 2% = 1),

The value of f 4(1,1,...,1) does not depend on the choice of TA, since the difference of

my

two choices is a polynomial in the ideal (x|" — 1, x5” — 1,...,x — 1), which vanishes
at (1,1,...,1). Thus, we see that

FaL L =) 1=4
neA
and similarly _
fe(L,1,...,1)=|B|.
It follows that _ _
fa, ) = fe(1,1,...,1) =|A] - |B| = 0. (2.7)

Hilbert’s Nullstellensatz states that if P € C[xy, x», ..., x¢] and P vanishes at some
(a1, aa,...,ar) € CK then P is in the maximal ideal (x| —ay, x2 —az, ..., Xk — a).
By (2.7) and Hilbert’s Nullstellensatz, f, — fg € (x; — 1, x2 — 1,..., xx — 1); in other
words,

k
fa—fp= Z(xi —= Dh; (2.8)
i=1

for some hy, hy, ..., h € Clxy, xa, ..., x;]. Applying the projection map = to (2.8) and
multiplying by (2.6),

k k
(fa—fe)(fa + f) = (Z(xi - l)n(h,-)) l—[(l X xT’_l)
i=1 j=1

= Zk:((xin' = Dn(hy) l_[ (I+xj+--+ x;”j—l))

i=1 1<j<k
Jj#i

=0€Clxp,....,x]/(x" = LX) = 1,...,x" = 1).

Hence, (2.5) holds.
If r} = r} (respectively r, = rp), then

A 1 Bl +1
Cg)=2aw=2@w=cg)

neG neG
or, respectively,
Al - - B
(2=me=z%w=2
neG neG

and again we have |A| = |B|. Now suppose that |G| is even and |A| = |G|/2. Noting
that we have already proved that fj = f;, it follows from (2.2) and (2.3) that r}; = r}
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(respectively r, = rp) if and only if fa(x?) = fz(x*). Consider the homomorphism
¢ : G — 2G given by ¢(x) = 2x for x € G, where 2G := {2x : x € G}. The kernel of
piskero =G, ={g e G:2g =0}. Since

F = Y = 3 (Y )= Y om,
neG me2G nep(m) me2G

and similarly

o) = D xepm = > xgma,

neG me2G
it follows that f4(x?) = fg(x?) if and only if
x4 (m) = x5 (m)
for every m € 2G. Note that

xsm = > xam=1Ang (m)

nep1(m)
and similarly Xz(m) =|B N ¢ '(m)|. Thus, f1(x?) = fz(x?) if and only if
[ANH|=|BNH|=|H|/2
for every coset H = ¢~ (m) of G,. This completes the proof of Theorem 1.3. O

We now proceed to prove Theorem 1.4. Our strategy is to study f4 under projections
of G onto various cyclic groups.

LemmA 2.1. Let t > 3 be an odd integer. Suppose that Ay, As, ..., A, form a partition
of G with ry, = ra, = ++- =ra,. Then for any cyclic quotient map ¢ : G — Z, with q a
prime power, )(: is a constant function on Z, for everyi=1,2,...,1.

Proor. Write ¢ = p* with p prime and k > 0. With the same argument as in (2.4), we

first conclude that [A;| = |A3| = - - - = |A;]. The lemma is proved by induction on k.
Fork =1, let
gn =0 fa) = Y@ = 33 dam) = > xf o
2€G n€Z, mep='(n) nez,

in C[Z,] = C[x]/(x” — 1). In treating the divisibility of polynomials, we can consider
g4, as a polynomial in C[x] by taking an inverse image in C[x]. Since f/i = fjl_ in C[G],
we have g3 = gﬁj in C[Z,], that is, x” — 1 | g} — gij. In particular, ®,(x) | g5 — gﬁj,
where @,,(x) denotes the mth cyclotomic polynomial. Note that ®,(x) is irreducible
over Z, and g4, also has integral coefficients; therefore, either ®,(x) | g4, — ga; or
(Dp(x) | 8A; T 84;-

Note that
p-1

84 84, = ()(X_(n) i/\(ﬁj(n))x" (mod x” — 1)
n=0
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and @,(x) = 1+ x+ -+ x"~". Thus, ®,(x) | ga, + ga, if and only if y} i)(/fj is a
constant function on Z,. Since

Dxim = xi = 1Al =141 = 1Gl/r,

nez, nez,

X5 - )(jf/_ is constant if and only if x{ = x ¥, and x{ + x§ is constant if and only if
i y i j i j

2|G|
X X, = 0
that is,
2|G|
Y= T— —xY. 29
Xa; i A; (2.9)

Suppose on the contrary that )(f;_ is not a constant function. Assume that there are a
sets A; among Ay, A, ..., A; satisfying )(: :X/‘f, and the remaining A; satisfy (2.9);
J i
then

2G| w) _ 2(t - a)|G| N

t
K=Yt =axd + (- a)(? Xt (2a -1yt
J=1

Since ¢ is odd, 2a — t # 0; we conclude that ,\(é is not a constant function, which is
clearly a contradiction.
For k> 1, we assume that the assertion holds for k — 1. Let @ : Z,x — Z,+-1 be

the canonical projection and 8 = @ o ¢. By the inductive hypothesis, Xﬁv is a constant
function fori =1, 2,...,1t; thus,

k—1
T+x+ x>+ +x7 7V B(fa)

and therefore N
L+x+x+-+x7 ' ga, (2.10)

where g4, = ¢.(fa,). Since gf‘l_ = gﬁj in C[Z,], we have x7 — 1 | gil_ - gil_. It follows that
either © | g4, — ga, or ®, | ga, + ga,- By (2.10),

2 g P
l+x+x"+---+x | g4, £ 84,

and x — 1]ga, — ga;, since ga,(1) — ga,(1) = |A;| - 1A, = 0.
If ©,(x) | g4, — 84, then x7 — 1| ga, — ga,. Since

q-1
8A, £ 84, = Z(ij(n) ixjj(n))x" (mod x? - 1), @.11)
n=0
lei :X/fj' If D, | ga, + 8A;» then

1+x+'--+xq_1|gA[.+gA,..
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Again, by (2.11), )(fi + X,f, is a constant function and consequently

2|G|
¢ _ e
Xa; _tq XA,
With the same argument as in the case k = 1, we see that )(ff, 1s a constant function for
i=1,2,...,t This completes the proof of the lemma. O

Lemma 2.2. Let G be a finite abelian group, |G| = p* with p prime and f : G — Z.
Assume that for any cyclic quotient map ¢ : G — Z,, f¥ is a constant function. Then f
is a constant function.

Proor. We use induction on k. For k = 1, G is cyclic and the result follows from the
assumptions.

Now let k£ > 1 and assume that the assertion holds for all smaller cases. We may
assume that G is not cyclic, otherwise the result again follows by assumption. For any
subgroup 0 # H < G, consider the quotient map ¢ : G — G/H. Applying the inductive
hypothesis to G/H and f¥, we conclude that f¥ is a constant function. Thus, for any
x,yeq,

D, fam= > fom. (2.12)
me(x+H) me(y+H)
Let H, H,, ..., H, be all subgroups of G of order p. Since G is not cyclic, G has at
least two direct summands; thus, » > 2.

It is clear that H; N H; = {0} for all 1 <i< j<r. Let G, <G be the p-torsion
subgroup. Every nonzero element of G, belongs to exactly one H;, while 0 belongs
to every H;. Let x,y € G be such that x —y € G,. Summing over all cosets of H;

containing x,
,

DU fm=0-Dfw+ Y. fm) (2.13)
i=1 me(x+H,;) me(x+Gp)

and similarly
DT fm=-Dfm+ Y fom). (2.14)
i=1 me(y+H;) me(y+Gp)

Applying (2.12) with H = H; fori = 1,2, ..., r and summing,
DD fm=) > fom). (2.15)
i=1 me(x+H,) i=1 me(y+H;)

Noting that x + G, =y + G,, it follows from (2.13)-(2.15) that f(x) = f(y), that is, f
is constant on each coset of G,. For any x,y € G, applying (2.12) with H = G, yields

1 1
fO) = D fmy= e > fm) = fO).
| ”l me(x+G,) | f’l me(y+Gp)
This completes the proof of the lemma. O
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We are now ready to prove Theorem 1.4.

Proor or THEOREM 1.4. Suppose on the contrary that there exists a partition of G into
disjoint sets Ay, A, ..., A; such that r4, = ra, = --- = ry,. It is clear that |A;| = |G|/t for
all 1 <i <t Let pbe a prime divisor of # and

H:={geG:p~ g=0 for some k > 0}.

Since H is a direct summand of G, let ¢ : G = H be the projection map. By
Lemma 2.1, (,\(f_)”” = Xﬁfw is a constant function for any cyclic quotient map
Y :H — Z, By Lemma 2.2, we conclude that )(f: = ¢ € Z is a constant function. Thus,

G
H-e= S g = waom == (2.16)

neH meG t

However, |G|/|H| is not divisible by p by definition of H, and p | ¢; hence, (2.16) cannot
hold. This completes the proof of Theorem 1.4. O
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