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Abstract

Let G be a finite abelian group and A ⊆ G. For n ∈ G, denote by rA(n) the number of ordered pairs
(a1, a2) ∈ A2 such that a1 + a2 = n. Among other things, we prove that for any odd number t ≥ 3, it is not
possible to partition G into t disjoint sets A1, A2, . . . , At with rA1 = rA2 = · · · = rAt .
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1. Introduction
We use N to denote the set of nonnegative integers. Let G be an abelian semigroup
with an arbitrary total ordering. For any subset A ⊆ G and n ∈ G, let

rA(n) = #{(a1, a2) ∈ A2 : a1 + a2 = n},
r+

A(n) = #{(a1, a2) ∈ A2 : a1 + a2 = n, a1 ≤ a2}

and
r−A(n) = #{(a1, a2) ∈ A2 : a1 + a2 = n, a1 < a2},

respectively. These representation functions have been studied by many authors (see,
for example, the survey paper [7] for a picture of results in this area). An important
problem is the inverse problem for representation functions, which seeks to understand
sets A, B ⊆ G with the same representation function.

Nathanson [4] determined all pairs of sets A, B ⊆ N such that rA and rB eventually
coincide. Kiss et al. [2] extended Nathanson’s result to 3-fold representation functions.
In [3, 6, 8], the authors classified all subsets A ⊆ N such that r+

A and r+
N\A (respectively

r−A and r−N\A) eventually coincide. Nathanson [5] posed the following problem, which,
to the best of our knowledge, is still open.

Problem 1.1. Let t ≥ 3. Does there exist a partition of the nonnegative integers into
disjoint sets A1, A2, . . . , At whose representation functions r+

A1
, r+

A2
, . . . , r+

At
eventually

coincide? Characterise all such partitions if they exist. The same problem can be posed
for r−A.
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Analogously, for a finite abelian group G, one may ask the following question.

Problem 1.2. Let t ≥ 2. Does there exist a partition of G into disjoint sets A1,A2, . . . ,At

whose representation functions rA1 , rA2 , . . . , rAt coincide? Characterise all such
partitions if they exist. The same problem can be posed for r+

A and r−A.

For t = 2, we have a complete classification.

Theorem 1.3. Let G be a finite abelian group with |G| ≥ 2 and A ⊆ G. Denote the
2-torsion subgroup of G by G2 := {g ∈ G : 2g = 0}. Then:

• rA = rG\A if and only if |G| is even and |A| = |G|/2;
• r+

A = r+
G\A (respectively r−A = r−G\A) if and only if |G| is even, and |A ∩ H| = |H|/2

for every coset H of G2.

We make some progress toward Problem 1.2 for rA and t ≥ 3. Our main result is the
following theorem.

Theorem 1.4. Let G be a finite abelian group and t ≥ 3 an odd number. Then it is not
possible to partition G into t disjoint sets A1, A2, . . . , At with rA1 = rA2 = · · · = rAt .

We also pose the following conjecture.

Conjecture 1.5. Let G be a finite abelian group and t ≥ 2. Suppose that A1, A2, . . . , At

form a partition of G with rA1 = rA2 = · · · = rAt ; then t divides |G2|.

Problem 1.2 was also asked in [1] for h-fold representation functions and
Theorem 1.4 gives a partial solution. Theorem 1.3 was also proved in [1]. We provide
a new proof here, since the ingredients in the proof are also needed for proving
Theorem 1.4.

2. Proof of results

Throughout this section, G is a finite abelian group. Our main tool is the generating
function in the group algebra C[G] associated to a set A ⊆ G. Recall that the elements
of C[G] are of the form

f (x) =
∑
g∈G

agxg,

where ag is a complex number for every g ∈ G. The multiplication in C[G] is given by(∑
g∈G

agxg
)(∑

g∈G

bgxg
)

=
∑

g1,g2∈G

ag1 bg2 xg1+g2 =
∑
g∈G

( ∑
g1,g2∈G
g1+g2=g

ag1 bg2

)
xg.

For any subset A ⊆ G, write

fA(x) =
∑
a∈A

xa ∈ C[G].
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Then

fA(x)2 =
∑
n∈G

( ∑
a1,a2∈A
a1+a2=n

1
)
xn =

∑
n∈G

rA(n)xn, (2.1)

fA(x)2 + fA(x2) =
∑
n∈G

(
rA(n) +

∑
a∈G
2a=n

1
)
xn =

∑
n∈G

2r+
A(n)xn (2.2)

and
fA(x)2 − fA(x2) =

∑
n∈G

(
rA(n) −

∑
a∈G
2a=n

1
)
xn =

∑
n∈G

2r−A(n)xn. (2.3)

We use χA to denote the characteristic function of A, that is,

χA(x) =

{1, x ∈ A,
0, x ∈ G\A.

For any function f : G→ Z and map ϕ : G→ G′, let f ϕ : G′ → Z be defined as

f ϕ(n) =
∑

m∈ϕ−1(n)

f (m), n ∈ G′.

For any group homomorphism ϕ : G→G′, we have a natural induced homomorphism
of group algebras ϕ∗ : C[G]→ C[G′], namely

ϕ∗

(∑
g∈G

agxg
)

=
∑
g∈G

agxϕ(g) =
∑
g∈G′

( ∑
n∈ϕ−1(g)

an

)
xg.

Proof of Theorem 1.3. Let A ⊆ G and write B = G\A. If rA = rB, then

|A|2 =
∑
n∈G

rA(n) =
∑
n∈G

rB(n) = |B|2 (2.4)

and hence |A| = |B| = |G|/2. Now suppose that |G| is even and |A| = |G|/2. It follows
from (2.1) that rA = rB if and only if

fA(x)2 = fB(x)2

or, equivalently,
( fA(x) − fB(x))( fA(x) + fB(x)) = 0. (2.5)

To see that (2.5) holds, decompose G into a direct sum of cyclic groups, say

G �
k⊕

i=1

Zmi .

Fixing a generator gi of Zmi for every i and setting xgi = xi, we thus obtain an
isomorphism

C[G] � C[x1, x2, . . . , xk]/(xm1
1 − 1, xm2

2 − 1, . . . , xmk
k − 1).

Using this isomorphism,

fA(x) + fB(x) =
∑
n∈G

xn =

k∏
i=1

(1 + xi + · · · + xmi−1
i ). (2.6)
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Let f A, f B ∈ C[x1, x2, . . . , xk] be an inverse image of fA, fB respectively under the
projection map

π : C[x1, x2, . . . , xk]→ C[x1, . . . , xk]/(xm1
1 − 1, xm2

2 − 1, . . . , xmk
k − 1).

The value of f A(1,1, . . . ,1) does not depend on the choice of f A, since the difference of
two choices is a polynomial in the ideal (xm1

1 − 1, xm2
2 − 1, . . . , xmk

k − 1), which vanishes
at (1, 1, . . . , 1). Thus, we see that

f A(1, 1, . . . , 1) =
∑
n∈A

1 = |A|

and similarly
f B(1, 1, . . . , 1) = |B|.

It follows that
f A(1, 1, . . . , 1) − f B(1, 1, . . . , 1) = |A| − |B| = 0. (2.7)

Hilbert’s Nullstellensatz states that if P ∈ C[x1, x2, . . . , xk] and P vanishes at some
(a1, a2, . . . , ak) ∈ Ck, then P is in the maximal ideal (x1 − a1, x2 − a2, . . . , xk − ak).
By (2.7) and Hilbert’s Nullstellensatz, f A − f B ∈ (x1 − 1, x2 − 1, . . . , xk − 1); in other
words,

f A − f B =

k∑
i=1

(xi − 1)hi (2.8)

for some h1, h2, . . . , hk ∈ C[x1, x2, . . . , xk]. Applying the projection map π to (2.8) and
multiplying by (2.6),

( fA − fB)( fA + fB) =

( k∑
i=1

(xi − 1)π(hi)
) k∏

j=1

(1 + x j + · · · + xm j−1
j )

=

k∑
i=1

(
(xmi

i − 1)π(hi)
∏

1≤ j≤k
j,i

(1 + x j + · · · + xm j−1
j )

)
= 0 ∈ C[x1, . . . , xk]/(xm1

1 − 1, xm2
2 − 1, . . . , xmk

k − 1).

Hence, (2.5) holds.
If r+

A = r+
B (respectively r−A = r−B), then(

|A| + 1
2

)
=

∑
n∈G

r+
A(n) =

∑
n∈G

r+
B(n) =

(
|B| + 1

2

)
or, respectively, (

|A|
2

)
=

∑
n∈G

r−A(n) =
∑
n∈G

r−B(n) =

(
|B|
2

)
and again we have |A| = |B|. Now suppose that |G| is even and |A| = |G|/2. Noting
that we have already proved that f 2

A = f 2
B , it follows from (2.2) and (2.3) that r+

A = r+
B
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(respectively r−A = r−B) if and only if fA(x2) = fB(x2). Consider the homomorphism
ϕ : G → 2G given by ϕ(x) = 2x for x ∈ G, where 2G := {2x : x ∈ G}. The kernel of
ϕ is kerϕ = G2 = {g ∈ G : 2g = 0}. Since

fA(x2) =
∑
n∈G

χA(n)x2n =
∑

m∈2G

( ∑
n∈ϕ−1(m)

χA(n)
)
xm =

∑
m∈2G

χ
ϕ
A(m)xm,

and similarly
fB(x2) =

∑
n∈G

χB(n)x2n =
∑

m∈2G

χ
ϕ
B(m)xm,

it follows that fA(x2) = fB(x2) if and only if

χ
ϕ
A(m) = χ

ϕ
B(m)

for every m ∈ 2G. Note that

χ
ϕ
A(m) =

∑
n∈ϕ−1(m)

χA(n) = |A ∩ ϕ−1(m)|

and similarly χϕB(m) = |B ∩ ϕ−1(m)|. Thus, fA(x2) = fB(x2) if and only if

|A ∩ H| = |B ∩ H| = |H|/2

for every coset H = ϕ−1(m) of G2. This completes the proof of Theorem 1.3. �

We now proceed to prove Theorem 1.4. Our strategy is to study fA under projections
of G onto various cyclic groups.

Lemma 2.1. Let t ≥ 3 be an odd integer. Suppose that A1, A2, . . . , At form a partition
of G with rA1 = rA2 = · · · = rAt . Then for any cyclic quotient map ϕ : G→ Zq with q a
prime power, χϕAi

is a constant function on Zq for every i = 1, 2, . . . , t.

Proof. Write q = pk with p prime and k > 0. With the same argument as in (2.4), we
first conclude that |A1| = |A2| = · · · = |At |. The lemma is proved by induction on k.

For k = 1, let

gAi := ϕ∗( fAi ) =
∑
g∈G

χAi (g)xϕ(g) =
∑
n∈Zp

( ∑
m∈ϕ−1(n)

χAi (m)
)
xn =

∑
n∈Zp

χ
ϕ
Ai

(n)xn

in C[Zp] � C[x]/(xp − 1). In treating the divisibility of polynomials, we can consider
gAi as a polynomial in C[x] by taking an inverse image in C[x]. Since f 2

Ai
= f 2

A j
in C[G],

we have g2
Ai

= g2
A j

in C[Zp], that is, xp − 1 | g2
Ai
− g2

A j
. In particular, Φp(x) | g2

Ai
− g2

A j
,

where Φm(x) denotes the mth cyclotomic polynomial. Note that Φp(x) is irreducible
over Z, and gAi also has integral coefficients; therefore, either Φp(x) | gAi − gA j or
Φp(x) | gAi + gA j .

Note that

gAi ± gA j ≡

p−1∑
n=0

(χϕAi
(n) ± χϕA j

(n))xn (mod xp − 1)
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and Φp(x) = 1 + x + · · · + xp−1. Thus, Φp(x) | gAi ± gA j if and only if χϕAi
± χ

ϕ
A j

is a
constant function on Zp. Since∑

n∈Zp

χ
ϕ
Ai

(n) =
∑
n∈Zp

χ
ϕ
A j

(n) = |Ai| = |A j| = |G|/t,

χ
ϕ
Ai
− χ

ϕ
A j

is constant if and only if χϕAi
= χ

ϕ
A j

, and χϕAi
+ χ

ϕ
A j

is constant if and only if

χ
ϕ
Ai

+ χ
ϕ
A j

=
2|G|
tp

,

that is,

χ
ϕ
A j

=
2|G|
tp
− χ

ϕ
Ai
. (2.9)

Suppose on the contrary that χϕAi
is not a constant function. Assume that there are a

sets A j among A1, A2, . . . , At satisfying χϕA j
= χ

ϕ
Ai

, and the remaining A j satisfy (2.9);
then

χ
ϕ
G =

t∑
j=1

χ
ϕ
A j

= aχϕAi
+ (t − a)

(2|G|
tp
− χ

ϕ
Ai

)
=

2(t − a)|G|
tp

+ (2a − t)χϕAi
.

Since t is odd, 2a − t , 0; we conclude that χϕG is not a constant function, which is
clearly a contradiction.

For k > 1, we assume that the assertion holds for k − 1. Let α : Zpk → Zpk−1 be
the canonical projection and β = α ◦ ϕ. By the inductive hypothesis, χβAi

is a constant
function for i = 1, 2, . . . , t; thus,

1 + x + x2 + · · · + xpk−1−1 | β∗( fAi )

and therefore
1 + x + x2 + · · · + xpk−1−1 | gAi , (2.10)

where gAi = ϕ∗( fAi ). Since g2
Ai

= g2
A j

in C[Zq], we have xq − 1 | g2
Ai
− g2

A j
. It follows that

either Φq | gAi − gA j or Φq | gAi + gA j . By (2.10),

1 + x + x2 + · · · + xpk−1−1 | gAi ± gA j ,

and x − 1 | gAi − gA j , since gAi (1) − gA j (1) = |Ai| − |A j| = 0.
If Φq(x) | gAi − gA j , then xq − 1 | gAi − gA j . Since

gAi ± gA j ≡

q−1∑
n=0

(χϕAi
(n) ± χϕA j

(n))xn (mod xq − 1), (2.11)

χ
ϕ
Ai

= χ
ϕ
A j

. If Φq | gAi + gA j , then

1 + x + · · · + xq−1 | gAi + gA j .
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Again, by (2.11), χϕAi
+ χ

ϕ
A j

is a constant function and consequently

χ
ϕ
A j

=
2|G|
tq
− χ

ϕ
Ai
.

With the same argument as in the case k = 1, we see that χϕAi
is a constant function for

i = 1, 2, . . . , t. This completes the proof of the lemma. �

Lemma 2.2. Let G be a finite abelian group, |G| = pk with p prime and f : G → Z.
Assume that for any cyclic quotient map ϕ : G→ Zq, f ϕ is a constant function. Then f
is a constant function.

Proof. We use induction on k. For k = 1, G is cyclic and the result follows from the
assumptions.

Now let k > 1 and assume that the assertion holds for all smaller cases. We may
assume that G is not cyclic, otherwise the result again follows by assumption. For any
subgroup 0 , H <G, consider the quotient map ϕ : G→G/H. Applying the inductive
hypothesis to G/H and f ϕ, we conclude that f ϕ is a constant function. Thus, for any
x, y ∈ G, ∑

m∈(x+H)

f (m) =
∑

m∈(y+H)

f (m). (2.12)

Let H1,H2, . . . ,Hr be all subgroups of G of order p. Since G is not cyclic, G has at
least two direct summands; thus, r ≥ 2.

It is clear that Hi ∩ H j = {0} for all 1 ≤ i < j ≤ r. Let Gp < G be the p-torsion
subgroup. Every nonzero element of Gp belongs to exactly one Hi, while 0 belongs
to every Hi. Let x, y ∈ G be such that x − y ∈ Gp. Summing over all cosets of Hi
containing x,

r∑
i=1

∑
m∈(x+Hi)

f (m) = (r − 1) f (x) +
∑

m∈(x+Gp)

f (m) (2.13)

and similarly
r∑

i=1

∑
m∈(y+Hi)

f (m) = (r − 1) f (y) +
∑

m∈(y+Gp)

f (m). (2.14)

Applying (2.12) with H = Hi for i = 1, 2, . . . , r and summing,
r∑

i=1

∑
m∈(x+Hi)

f (m) =

r∑
i=1

∑
m∈(y+Hi)

f (m). (2.15)

Noting that x + Gp = y + Gp, it follows from (2.13)–(2.15) that f (x) = f (y), that is, f
is constant on each coset of Gp. For any x, y ∈ G, applying (2.12) with H = Gp yields

f (x) =
1
|Gp|

∑
m∈(x+Gp)

f (m) =
1
|Gp|

∑
m∈(y+Gp)

f (m) = f (y).

This completes the proof of the lemma. �
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We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose on the contrary that there exists a partition of G into
disjoint sets A1, A2, . . . , At such that rA1 = rA2 = · · · = rAt . It is clear that |Ai| = |G|/t for
all 1 ≤ i ≤ t. Let p be a prime divisor of t and

H := {g ∈ G : pk · g = 0 for some k > 0}.

Since H is a direct summand of G, let ϕ : G → H be the projection map. By
Lemma 2.1, (χϕAi

)ψ = χ
ψ◦ϕ
Ai

is a constant function for any cyclic quotient map
ψ : H→ Zq. By Lemma 2.2, we conclude that χϕAi

= c ∈ Z is a constant function. Thus,

|H| · c =
∑
n∈H

χ
ϕ
Ai

(n) =
∑
m∈G

χAi (m) = |Ai| =
|G|
t
. (2.16)

However, |G|/|H| is not divisible by p by definition of H, and p | t; hence, (2.16) cannot
hold. This completes the proof of Theorem 1.4. �
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