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ABSTRACT. This paper assesses a two-dimensional, vertically integrated ice model for its numerical
properties in the calculation of ice-sheet evolution on a sloping bed using the shallow-ice approxi-
mation. We discuss the influence of initial conditions and individual model parameters on the model’s
numerical behaviour, with emphasis on varying spatial discretizations. The modelling results suffer badly
from numerical problems. They show a strong dependence on gridcell size and we conclude that the
widely used gridcell spacing of 20 km is too coarse. The numerical errors are small in each single time-
step, but increase non-linearly over time and with volume change, as a result of feedback of the mass
balance with height. We propose a new method for the calculation of the surface gradient near the
margin, which improves the results significantly. Furthermore, we show that we may use dimension
analysis as a tool to explain in which situations numerical problems are to be expected.

1. INTRODUCTION

Since the 1970s, knowledge of the dynamical behaviour of
ice sheets and their interaction with climate has greatly
expanded through the development of ice-flow models,
which simulate the evolution of ice under changing climatic
conditions. All ice-sheet models are based on the principle
of mass conservation; the ice flows under its own weight
(e.g. Oerlemans and Van der Veen, 1984; Paterson, 1994).
However, a hierarchy of these models has evolved, with
models differing in many aspects, such as applied rheology,
treatment of the boundaries, coupling to the atmosphere and
numerical details, such as the use of finite-element or finite-
difference schemes. More fundamental differences come
from how many elements of the full system of equations are
actually solved. Besides solving the complete system, an
approach called the shallow-ice approximation (SIA) is
widely used (Hutter, 1983). This approximation is based on
the assumption that large ice bodies are mainly deformed by
basal shear stress, and therefore neglects longitudinal
stresses. Whereas solving the full system of equations
obviously results in more realistic results (especially near
the margin and ice divide), the SIA simulates the essential
processes of ice flow quite well (Leysinger Vieli and
Gudmundsson, 2004). The most important advantage of
models based on the SIA is their computational speed. It is
not yet possible to calculate the evolution of large ice sheets
throughout complete ice-age cycles with the full system of
equations, which is one of the reasons why the SIA is still
widely used today (e.g. Mahaffy, 1976; Oerlemans,
1981a, b; Fastook and Chapman, 1989; Huybrechts, 1990;
Calov and Hutter, 1996; Greve, 1997; Pollard and Thomp-
son, 1997; Pfeffer and others, 1998; Huybrechts and de
Wolde, 1999; Van de Wal, 1999; Van de Wal and others,
2001; Bintanja and others, 2002; Näslund and others, 2003;
Plummer and Philips, 2003). We are interested in the
modelling of large ice sheets throughout ice ages. Therefore,
we limit ourselves in this paper to a model using the SIA.

An attempt to compare and assess many different SIA ice
models on continental scales was made as part of the

European Ice-Sheet Modelling Initiative (EISMINT, funded by
the European Science Foundation). Several models were
evaluated for their physical properties and accuracy, using
tests with simplified geometries (Huybrechts and others,
1996; Payne and others, 2000). These tests, however, did
not focus on the numerical properties of the models. Greve
and Calov (2002) investigated numerical behaviour. They
focused on the use of different numerical schemes, whereas
the present paper addresses the behaviour of a single
numerical scheme as a function of varying spatial dis-
cretization. Greve and Calov (2002) only used two different
gridpoint spacings. More importantly, neither EISMINT nor
Greve and Calov (2002) combined any experiments for
numerical properties with mass-balance parameterizations,
which included the non-linear feedback with height.
Instead, mass balance was parameterized as a function of
distance only. This is an essential modelling element
(Oerlemans and Van der Veen, 1984), as numerical errors
can grow non-linearly over time due to this feedback
mechanism. The mass-balance feedback with height is
especially important for research which deals with ice-sheet
inception, where the integration periods of model runs are
very large and the climatic conditions remain relatively
uncertain.

In this study we have assessed a two-dimensional,
vertically integrated, finite-difference SIA ice model spe-
cifically for dependency of modelling results on varying
gridpoint spacings (1–20 km) in cases where the mass
balance was a function of altitude. When we say varying
gridpoint spacings, we mean variations between model runs,
not variations within one grid. All our experiments used
spatially uniform grids. We stress that we did not attempt to
assess the modelling errors by solving the SIA instead of the
full system of equations. We focused on the numerical errors
arising from inaccuracies in the numerical treatment of the
SIA. As Bueler and others (2005) discuss, these two
approaches are fundamentally different. Although we
focused on the effects of varying spatial discretizations, this
did not include the resolving power of small-scale struc-
tures. We investigated the ability of each discretization to
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solve for the global behaviour of a large, smooth ice sheet as
well as the influence of initial conditions and the sensitivity
of the model results to the individual model parameters.

2. THEORY
The ice model is based on the vertically integrated continu-
ity equation (e.g. Huybrechts, 1992; Van der Veen, 1999;
Oerlemans, 2001)

@H
@t

¼ �r � HUð Þ þ B, ð1Þ
where H is the ice thickness, U is the vertical mean
horizontal velocity and B is the mass balance. Equation (1)
can be rewritten as

@H
@t

¼ �r � Fþ B, ð2Þ
where F is the horizontal ice flux. It is defined as

F ¼ �Drh, ð3Þ
where h is the ice surface height and D is the diffusion. We
used the SIA (e.g. Hutter, 1983; Huybrechts, 1992; Van der
Veen, 1999), which assumes that the horizontal scale of the
ice extent is much larger than the vertical scale. For a two-
dimensional model, the diffusion D is then given as

Dðx, yÞ ¼ 2ð� gÞnA @h
@x

� �2

þ @h
@y

� �2
" #ðn�1Þ=2

1
n þ 2

Hnþ2 ð4Þ

with � the ice density, g the gravitational acceleration, and
A and n the flow parameters. The value for n is set to 3. The
parameter A is known to be temperature-dependent, but we
set it to a constant value, for simplicity. The vertical mean
horizontal velocity is given by

U ¼ Us þUd, ð5Þ
where Ud is the vertical mean horizontal deformation
velocity (called ‘deformation velocity’, hereafter) and Us the
sliding velocity. We tried several parameterizations for the
sliding velocity, but as long as the sliding velocity was
smaller than the deformation velocity, the numerical proper-
ties of the model did not change. Therefore, we set Us to
zero everywhere. For the two-dimensional model, the
expression for the vertical mean horizontal velocity then
reduces to the deformation velocity, which is given by (e.g.
Oerlemans and Van der Veen, 1984; Huybrechts, 1992)

U ¼ �2ð� gÞnA @h
@x

� �2

þ @h
@y

� �2
" #ðn�1Þ=2

rh
1

n þ 2
Hnþ1:

ð6Þ

We also used a one-dimensional model, which is based
on the two-dimensional model and is equivalent to a
two-dimensional plane strain approximation. It is dis-
cussed in detail by Oerlemans (2001). The final expres-
sion for the vertical mean horizontal velocity is param-
eterized as

U ¼ fdHSnd : ð7Þ
The flow parameter fd (1:1� 10�24 Pa–3 s–1) represents the
situation on a large ice sheet like Greenland (Van de Wal,
1999). The driving stress Sd is caused by the gravitational
force of the ice. In the one-dimensional model, the diffusion
D is given by

DðxÞ ¼ � gð Þn @h
@x

� �n�1

fdHnþ2: ð8Þ

We prescribed the mass balance as a linear profile for which
the only variable is height above a reference level

B ¼ min Bmax,� h � Eð Þ½ �, ð9Þ
where � is the mass-balance gradient in a–1 and E the
equilibrium-line altitude (ELA) in metres. The mass balance
is zero at E and increases with elevation until a positive
upper limit Bmax (in ma–1 ice equivalent). Above that
elevation, the mass balance remains constant with height.

3. NUMERICAL METHODS
3.1. Discretizations
The one-dimensional model is solved on a staggered grid
(Fig. 1). At each time-step, between each two gridpoints
(marked by circles in Fig. 1), F is calculated either as

F t
iþ1=2 � �Dt

iþ1=2
ht
iþ1 � ht

i

�x

� �
ð10Þ

with i the gridpoint and t the time-step, or as

F t
iþ1=2 � � Dt

iþ1 þDt
i

2

� �
ht
iþ1 � ht

i

�x

� �
: ð11Þ

Equations (10) and (11) correspond, respectively, to type I
and II ice models of the EISMINT experiments (Huybrechts

Fig. 1. Staggered grid in one dimension.

Fig. 2. Staggered grid in two dimensions.
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and others, 1996), which are widely used by ice-sheet
modellers. The difference between the two types is whether
the diffusion D is calculated at the staggered gridpoints (I)
(marked by the circles in Fig. 1) or the regular gridpoints (II)
with central differencing on the regular gridpoints (marked
by crosses in Fig. 1). For type I the diffusion is calculated as

Dt
iþ1=2 � �gð Þ3 ht

iþ1 � ht
i

�x

� �2

fd
Ht

i þHt
iþ1

2

� �5

: ð12Þ

For type II the diffusion is given by

Dt
i � �gð Þ3 ht

iþ1 � ht
i�1

2�x

� �2

fd Ht
i

� �5
: ð13Þ

Type I models are numerically more precise, but require
much smaller time-steps than type II models (Hindmarsh
and Payne, 1996; Huybrechts and others, 1996).

Finally, the time integration is calculated with forward
differencing as

Htþ1
i � Ht

i þ
�t
�x

F t
i�1=2 � F t

iþ1=2 þ Bt
i�x

� �
: ð14Þ

The numerical approach in the two-dimensional model is
similar to that used in the one-dimensional model. All
spatial derivatives are calculated with central differencing
on a staggered grid (Fig. 2). However, the time integration is
calculated differently, since explicit integration requires very
small time-steps which results in a long computation time.
Instead, an ‘alternating direction implicit’ method is used as
described by several authors (Mahaffy, 1976; Huybrechts,
1992). In this method, each time-step is divided into two
steps. In the first step, the time integration for all the x-
direction components of the equations is performed im-
plicitly, whereas the y-direction components remain ex-
plicit. In the second step, this is reversed. All calculations
were performed in double precision.

3.2. Boundary conditions
At the lefthand side of the domain, we impose a boundary
condition that corresponds to an ice divide, i.e. the surface
gradient is zero:

@h
@x

����
x¼0

� h1 � h0
�x

¼ 0: ð15Þ

At the righthand side, we impose that the ice thickness H is
equal to zero. In the two-dimensional model, the ice
thickness at all domain boundaries is set to zero.

At each time-step the new ice thickness is calculated
from the old ice thickness and the mass balance throughout
the grid, where all gridpoints are treated the same, whether
the ice thickness is positive, zero or negative. Then, all
negative ice thicknesses are set to zero. The initial ice
thickness, i.e. the ice-thickness distribution at time-step
t ¼ 0, is free as long as the grid boundary conditions are
fulfilled.

3.3. Weertman analytical solution
The models were tested in one dimension for an analytical
solution based on the Weertman (1961) solution, which is
the steady-state solution of the equations from the shallow-
ice approximation for a mass balance as a function of
distance along the surface. We prescribed the mass balance
as a constant positive quantity a until a specific distance R,
and a constant negative quantity �a0 for distances larger
than R. The mass balance was not a function of altitude and
did not change with time.

For this case both type I and II models performed well in
one as well as in two dimensions, reaching the analytical
solution for all the discretizations used throughout this
paper to within 5%. The stability of the two-dimensional
type I model was very poor. Hindmarsh and Payne (1996)
noted that this type of model generates results with slow,
long oscillations. Our experiments confirmed this behav-
iour, but also showed that this behaviour is time-step
dependent. The effect increased for larger time-steps and
decreased, and even disappeared, for smaller time-steps.
Type I models in general need smaller time-steps than type II
models. In this paper, the calculations were over long
integration times for very fine discretizations, hence we
required very small time-steps even for type II models. This
implied, however, that the experiments with the two-
dimensional model described below were not computa-
tionally feasible for the type I model. Results from coarser
spatial discretizations, however, confirmed the Weertman
analytical solution. The one-dimensional model also re-
quired very small time-steps, but this was still computation-
ally feasible.

4. RESULTS
We performed experiments with both the one- and two-
dimensional (type I and II) models. In each experiment, the
ice margin evolved freely as a function of ice flux and mass
balance. We calculated steady-state solutions by integrating

Table 1. Parameter values for the experiments, with � the bedrock slope, � the mass-balance gradient, Bmax the cut-off value of the mass
balance, E the ELA, and initial condition that of the ice sheet at the start of the experiment. The ice sheets used as initial conditions in
experiments 2 and 3 are calculated using the original solution. The starting condition for experiment 2 is the result of experiment 1 for
�x ¼ 1 km. For experiment 3, instead of the result from experiment 1, the steady-state ice sheet for E ¼ 150m was used

Experiment � � Bmax E Initial condition

mkm–1 10–3 a–1 ma–1 m

1 1.3 5 0.1 250 No ice
2 1.3 5 0.1 250 Steady-state exp. 1, ref., �x ¼ 1 km
3 1.3 5 0.1 250 Steady-state E ¼ 150m, ref., �x ¼ 1 km
4 1.1–2.0 5 0.1 250 No ice
5 1.3 1–10 0.1 250 No ice
6 1.3 5 0.1–1.4 250 No ice
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over a period of 250 000 years for parameter sets listed in
Table 1. For the two-dimensional model, a gridcell size of
2�2 km was the finest grid feasible. The ice sheet was too
flat for the surface gradients to be calculated within the
limits posed by the use of double precision for smaller
gridcell sizes. The one-dimensional model did not show this
problem.

We did not include any bedrock response, but prescribed
the bedrock profile as

bðrÞ ¼ bmax � �r ð16Þ
with b the bedrock height in metres, and bmax the
maximum bedrock height, which we kept at 400m for all
experiments. The bedrock slope is given by �, and r is the
distance from the centre in kilometres, which in one
dimension is given by x and in two dimensions by
x2 þ y2ð Þ1=2. The combination of a sloping bedrock and
an altitude-dependent mass-balance parameterization is
similar to an ice sheet developing on a flat bed with a
sloping equilibrium line. According to Weertman (1961),
this kind of situation has at least one stable solution, as long
as the slope is finite and non-zero. This means that under
changing climate conditions the ice sheet is able to
approach a new equilibrium.

4.1. Initial conditions

4.1.1. Experiment 1: growth to steady state
As a start, we evaluated ice growth towards a steady state
with the parameters listed in Table 1 (experiment 1). We
started the time integration without ice, and at time t ¼ 0
we set the ELA E to 250m and let the ice sheet evolve to
steady state. Figure 3 shows the results. We scaled all
calculated ice volumes with the volumes from the type II
model associated with a gridcell size �x of 2� 2 km in
the two-dimensional case, such that the volume curve
for �x ¼ 2 km was always equal to 1. In the one-
dimensional case, all curves were scaled with the areas
from the type II model associated with a gridcell size of
1 km.

The dashed lines in the upper panels of Figure 3 show the
ice volumes as a function of time for both the two-
dimensional (a) and the one-dimensional (b) type II model
for several discretizations. (The solid lines are discussed in
section 4.1.4.) In the one-dimensional case, the curves were
calculated as the integral over all ice thicknesses, and
represent the area of a cross-section in an infinite plane. The
dashed lines are based on the standard type II model as
described in sections 2 and 3.

Fig. 3. Top: Ice volume/area as a function of time for the parameter values listed in Table 1, experiment 1, for several gridpoint distances �x
for (a) the two-dimensional type II model (volumes) and (b) the one-dimensional type I and II models (areas). The dashed lines represent the
reference type II solutions, the solid lines the type II solutions calculated with a modified surface gradient (section 4.1.4), and the dash–
dotted lines represent solutions calculated with a type I model. All volume curves are scaled such that the reference type II solution with
�x ¼ 1 km is equal to 1 for the one-dimensional case and �x ¼ 2 km is equal to 1 for the two-dimensional case. The lower panel (c) shows
steady-state profiles for the same discretizations with height in metres on the y axis and distance from the centre in kilometres, calculated
with the one-dimensional type II model. The thick, black, dashed line is the ELA, in this case constant at 250m.
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The dash–dotted lines in Figure 3b show the ice area for
the one-dimensional type I model. We do not show the
corresponding ice volumes for the two-dimensional type I
model, since (see section 3.3) the required time-steps were
so small that the calculation time was no longer feasible.
Tests at coarser grids confirmed that the numerical be-
haviour in two dimensions was similar to the behaviour in
one dimension. The type I models generally perform better
than the type II models.

The lower panel (c) of Figure 3 shows the steady-state
solutions for the different discretizations for the one-
dimensional type II model. The results in Figure 3 are
striking: the results from the individual discretizations differ
by tens of per cent. This is observed in both the one-
dimensional and the two-dimensional model, calculated
with different numerical methods.

Since both models gave similar results, and since the one-
dimensional model required less computation time, all other
experiments were performed with the one-dimensional
model only. Even though type I models generally performed
better than type II models, the fundamental behaviour was
the same. For this reason, we performed the sensitivity tests
in this paper only for type II models.

4.1.2. Experiment 2: maintaining steady state
In experiment 2 (see Table 1), we studied the dependence on
the initial conditions by starting the test with the steady-state
ice sheet for �x ¼ 1 km from experiment 1, instead
of starting without ice. We kept the equilibrium line E at
250m and continued the calculations for the different
discretizations for the one-dimensional model. Figure 4
shows the results. In principle, the ice sheet should not
change. As coarse grids introduce larger inaccuracies in the
calculation of the surface gradient than fine grids, the
modelled ice sheets adjust to slightly lower volumes for the

different discretizations. The jumps in the curves are caused
by the retreating ice margin. Each jump corresponds to the
ice margin retreating over a distance of one gridpoint.

4.1.3. Experiment 3: retreat to steady state
In experiment 3 we studied the retreat of a steady-state ice
sheet towards a smaller steady-state ice sheet corresponding
to a warmer climate. The initial conditions were given by the
steady-state ice sheet for E ¼ 150m, calculated with
�x ¼ 1 km (Table 1, experiment 3). At time t ¼ 0, the value
of E was set to 250m. Figure 5 depicts the results. The jumps
in the curves represent the moving ice margin. For the finest
grids, the curves are practically smooth. The effects shown in
Figure 5 are remarkably smaller in this retreat scenario than
in the growth scenario and are of the same order of
magnitude as the minor adjustments shown in Figure 4. This
suggests that, for coarse grids, results are strongly dependent
on initial conditions.

To further examine this, we calculated steady-state ice
sheets for a wide range of initial conditions from no ice to
very large ice sheets. Figure 6 summarizes the results; it
shows the resulting area as a function of the ELA E for
�x ¼ 1 km (Fig. 6a) and for �x ¼ 20 km (Fig. 6b). We only
show stable solutions. By stable, we mean that when the
steady states are locally perturbed while keeping the ELA
constant, the model returns to the steady-state solution
belonging to that ELA. Figure 6a shows three different
regimes. The first is the regime for ELAs <400m. In this
regime there is only one stable solution possible for each
ELA. The second regime is the regime for ELAs >800m. In
this regime there is also only one stable solution possible,
namely no ice. In between these two regimes is a third
regime where for each ELA there are two stable solutions.
Depending on the initial conditions, the numerical inte-
gration of Equation (1) will result in either of the two stable
steady states.

Whereas for �x ¼ 1 km type I and II models produced
the same results, this is no longer true for �x ¼ 20 km
(Fig. 6b). The open and closed circles do not coincide. In

Fig. 4. Relative ice area as a function of time for several
discretizations for experiment 2 (see Table 1). All curves are scaled
relative to the reference solution calculated with �x ¼ 1 km. The
solid lines represent the solutions calculated with a modified
surface gradient, and the dashed lines represent the type II
reference solutions.

Fig. 5. Same as Figure 4, but for experiment 3.
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addition, instead of clear lines with stable solutions, as
shown in Figure 6a, there are now regions of possible
steady-state solutions. Depending on initial conditions the
numerical integration of Equation (1) will result in a stable
steady state somewhere in the grey area. There are three
different grey regions in the plot: the two lightest shades
represent the regions with possible stable steady states for
type I (darker of the two) or type II (lighter of the two)
models; the third and darkest region shows where the
regions for type I and II models overlie each other. This
different behaviour for �x ¼ 1 km and �x ¼ 20 km is the
result of numerical inaccuracies.

An interesting aspect is that the maximum possible steady
states (indicated by the upper row of open and closed
circles) for �x ¼ 20 km are slightly too big for type I and too
small for type II, compared to the solutions for �x ¼ 1 km.
We come back to this in section 5 where we discuss the
reasons for the numerical problems.

4.1.4. A slope correction formula
One reason for the inconsistencies between the results from
the different spatial gridcell sizes is the discontinuity in the
surface gradient at the ice margin, as illustrated in Figure 7.
The discretized surface gradient at the last point with ice is
too small, as illustrated in Figure 7a by the difference
between lines 1 and 2. Hence, the ice flux through the
margin is underestimated. This hampers the growth of the
ice sheet in the model. For one time-step, this is a small
effect. However, for many time-steps, this error is significant
since the feedback of height with mass balance is non-linear.
Since the mass balance is limited to a maximum value, the
ice sheet can only compensate up to a certain degree by
thickening. This suggests that this value for the maximum
mass balance is an important parameter. We examine this in
section 5.

Figure 7b shows the numerically estimated surface
gradients at the last few gridpoints before the ice margin,
which are not influenced by the discontinuity of the surface.
Assuming a smooth ice surface, the difference between

these surface gradients, which is the curvature of the surface,
contains information about the surface gradient at the last
gridpoint before the ice margin. So, as an alternative to the
central differencing operator, we defined a new, forward
operator for the type II model by using a Taylor expansion.
For the one-dimensional case, this operator is given by

@h
@x

����
i
� @h

@x

����
i�1

þ @2h
@x2

����
i�1

�x: ð17Þ

In this way, we avoid having to use any points beyond the
ice margin, thus avoiding the discontinuity. We cannot use
this for the type I model, because in that scheme the surface
gradients are calculated on the staggered grid

@h
@x

����
iþ1=2

� @h
@x

����
i�1=2

þ @2h
@x2

����
i�1=2

�x: ð18Þ

It can be seen that in this case the curvature term is zero.
Hence, it is not possible to use the curvature information,
which was the basis for the new operator. The solid lines in
Figures 3–5 show the results for this improved surface
gradient method. While this approach clearly improves the
solution, it does not remove the fundamental problems. The
results with this new operator are not better than the type I
model, because the flux through the margin is also calcu-
lated with the diffusion of the first point outside the ice
margin, which is zero. The method implicitly assumes that
the diffusion goes to zero in a linear way, which is of course
not the case. This problem, however, is not easily solved.

The bifurcation curves in Figure 6 show a different effect.
It seems that for a retreating ice sheet two numerical effects
are competing. The first is the already described effect of the
underestimated slope. The other effect is also the result of
grid coarseness. When the ELA is moved up by 100m, an ice
sheet evolving on a fine grid will register that the ablation
area is larger and that a part of the accumulation area
receives less snow. On a coarse grid of �x ¼ 20 km,
however, the differences in surface elevation between the
gridpoints are so large that the ablation area actually
remains the same. Also, the first point in the accumulation

Fig. 6. Steady-state ice areas for two discretizations (a) �x ¼ 1 km and (b)�x ¼ 20 km both for the type I (open circles) and the type II model
(closed circles) as a function of ELA. The solid lines in (a) show branches of possible stable steady-state solutions. The grey areas in (b) show
regions for possible stable steady-state solutions; lightest grey is the region for the type II model, the slightly darker grey that for the type I
model and the darkest where the regions for both model types overlie each other.
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area is already so high that it continues to receive the
maximum value of the mass balance Bmax. Hence, the ice
sheet evolving on a coarse grid will hardly register any
difference when the ELA is moved up by 100m, and so will
remain larger than an ice sheet evolving on a fine grid. Since
type I models suffer less from the effect of the under-
estimated slope, this latter effect is detectable. For the type II
model the latter effect is obscured by the underestimated
slope effect.

4.2. Sensitivity of modelled ice sheets to individual
parameters
Here we discuss the results of sensitivity tests to individual
model parameters. In each experiment, we used both the
original model, which we refer to as the reference model,
and the improved gradient model, as defined by Equa-
tion (17). Again, all tests reported here were performed for
the one-dimensional type II model only. Tests with the
type I model showed similar behaviour. Table 1 (experi-
ments 4–6) shows the specific parameters of the sensitivity
tests that were carried out. In addition, we varied the ELA E.
The results were not sensitive to the actual value of E as
long as enough points covered the ice, which was only a
problem at �x ¼ 20 km. This, however, is a normal
numerical effect and is not related to the effects studied
in this paper. Again, all curves were scaled with the
reference solution for �x ¼ 1 km, such that the areas for
�x ¼ 1 km were always equal to 1. Each experiment started
without ice. At time t ¼ 0, the parameters were set to the
values given in Table 1, after which the ice sheet freely
evolved to steady state.

4.2.1. Experiment 4: bedrock slope, �
In experiment 4, we varied �, the slope of the underlying
bedrock, as shown in Table 1. The changes in mass balance
between individual gridpoints are larger for a steeper slope
than for a smaller slope. Figure 8a demonstrates that the
larger the bedrock slope, the worse the results. As in the case
of the varying ELA, the smaller the ice sheet, the fewer
gridpoints actually cover the ice. However, this only affects
the results for �x ¼ 20 km.

For large slopes between the bedrock and the equilibrium
line, the results are worse than for small slopes. However,
with a slope equal to zero, the mass balance would be equal
in the entire domain and no stable ice sheet would develop.

4.2.2. Experiment 5: mass-balance gradient, �
Here, the mass-balance gradient � was varied. A large mass-
balance gradient increases the differences between the
values of the mass balance at the individual gridpoints.
Figure 8b shows that the larger the mass-balance gradient �,
the larger the differences between the solutions for the
different gridpoint distances. So, the solution turns out to be
sensitive for the mass-balance difference between grid-
points.

4.2.3. Experiment 6: maximum mass balance, Bmax
The maximum mass balance Bmax was varied. Figure 8c
demonstrates that the problem with discretization only
occurs when the maximum mass balance is lower than
approximately 1ma–1 ice equivalent for this particular set of
parameters, hence only in dry areas. The quantity Bmax is
strongly related to the total mass budget of an ice sheet, to
which the solution is very sensitive. We clarify this further in
section 5.

4.3. Ice inception
Experiments 1–6 used a linearly sloping bedrock, and the
resulting solutions turned out to be sensitive to the specific
slope. In practice, the bedrock slope is seldom linear.
Therefore, the next and final experiment had a non-linear
bedrock slope. Figure 9 shows the results. We superimposed
a sinusoidal perturbation on the linear bedrock of experi-
ment 1 (see Table 1), but now with bmax ¼ 800m instead of
the previously used value of 400m, thus creating a bedrock
with smoothly varying slopes (Fig. 9b). Furthermore, we
used an ELA of 130m. For the first 5000 model years, the ice
lies on relatively small local slopes, resulting in minor
differences between the area curves (Fig. 9a). Once the ice
reaches larger slopes, the differences between the area
curves grow to the same order of magnitude as in the case of
a purely linear bedrock. Finally, the ice sheets for the two

Fig. 7. Schematic drawing of the ice margin. (a) Line 1 represents the numerically calculated surface gradient at the last point before the ice
margin. The thick dash–dotted line (2) represents the true surface gradient. (b) The lines represent the surface gradient at the last few points
before the ice margin, except the last point, which is given by line 2 in (a).
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finest discretizations meet and merge into a larger ice sheet.
The coarser-discretization runs suffered from severely under-
estimated ice volumes, as a result of which the ice did not
merge. Figure 9b shows the steady-state solutions for all
discretizations; the different discretizations resulted in com-
pletely different ice histories. Hence, the reduced-volume
effect, caused by the discretization, could have serious
implications for the modelling of ice-sheet inception.

5. DISCUSSION
We performed a series of sensitivity experiments on the
model parameters in a one-dimensional and a two-dimen-
sional ice-flow model. From these experiments it emerges
that the model’s numerical behaviour is very sensitive to the
precise initial conditions, local geometry and climate. This
may result in very unpredictable numerical behaviour and
thus unreliable results for complex ice sheets. The cause of
this behaviour is the sensitivity to the discretization of the ice
margin. For a fine grid, the ice flux at the ice margin is large
enough to overcome the negative mass balance at the next
gridpoint in the model. The ice sheet will grow and continue
to the next gridpoint and so forth. However, for a coarse
grid, the same ice flux may not be large enough to overcome
the more negative mass balance of the next gridpoint much
farther away, hence ice growth in the model will stop.
Because of the height–mass-balance feedback this see-
mingly small error can grow rapidly over time. The
sensitivity tests in experiments 5 and 6 both affected the
difference in mass balance between points. The most
important parameter however, was the maximum value for
the mass balance, Bmax. This parameter affects the ability of
the ice sheet to thicken and compensate.

We can explain the model’s numerical behaviour more
fundamentally through the use of dimension analysis. Let us
define new dimensionless variables according to Saltzman
(2002):

H0 ¼ H
Lv

, t 0 ¼ t
Lv=a

, U0 ¼ U
Uc

, x 0 ¼ x
Lh

and B0 ¼ B
a
,

ð19Þ

where Lv is a characteristic vertical length scale of the ice,
a a characteristic value for the mass balance, Uc a
characteristic velocity scale for the horizontal ice motion
and Lh a typical horizontal length scale. Whereas Saltzman
(2002) used these dimensionless variables to study the
thermodynamic equations, the variables are equally suited
to study Equation (1). This leads to a new dimensionless
equation

@H0

@t 0
¼ � LvUc

Lha
r � H0U0ð Þ þ B0: ð20Þ

The mass balance B0 is prescribed analytically. The ice flux
r � H0U0ð Þ therefore contains all numerical errors. The factor
in front of the ice flux, henceforth called ‘flux number’,
determines the relative effect of these numerical errors in the
total ice-thickness change. On the one hand, if the flux
number is small, the ice-thickness change is dominated by
the mass balance. This implies that the results do not suffer
much from the numerical problems as shown in Figures 3–9.
On the other hand, if the flux number is high, the ice flow,
rather than mass balance, dominates the ice-thickness
change, which implies that the numerical errors may cause
serious problems in the model results. For wet areas, for
example, a is large and the mass balance is dominant. For
dry areas, however, the numerical effects in the calculation
of the ice flux dominate.

Figures 3–9 show that we need extremely small gridcells
even when the modelled ice sheets are large and smoother
than small glaciers. For small glaciers, the flux number
LvUc=Lha will be relatively small (compared with the value
on large, growing ice sheets). For example, a typical ice
velocity for a mountain glacier is approximately 100ma–1.
Typical mass balances have an order of magnitude of
1–10ma–1, and a typical size for a mountain glacier is
10 km with a typical thickness of 100m. This results in a
typical flux number of 0.1.

We also need to distinguish between the centre and the
margin of ice sheets. In the centre, the ice velocities are
small, <1ma–1. The mass balance in the centre is small too,
around 0.1ma–1. Together with a typical ice thickness of
1000m and horizontal dimensions between 100 and

Fig. 8. (a) Steady-state areas as a function of bedrock slope � for several discretizations (Table 1, experiment 4). (b) Steady-state areas as a
function of mass- balance gradient � (Table 1, experiment 5). (c) Steady-state areas as a function of maximum mass balance Bmax (Table 1,
experiment 6). All curves are scaled relative to the reference solution calculated with �x ¼ 1 km. The solid lines represent the solutions
calculated with a modified surface gradient, and the dashed lines represent the type II reference solutions. Colours of lines: see Figure 5.
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1000 km, this results in values for the flux number between
0.01 and 0.1. This is comparable to or smaller than that for
mountain glaciers. Thus, in the centre of the ice sheet the
numerical effects in the ice-flux term are not important.
However, near the ice margin, the typical velocity is of the
order of 100–1000ma–1 and the mass balance around
1ma–1, resulting in values for the flux number between 0.1
and 10. This is larger than for a typical mountain glacier.
Hence, compared with mountain glaciers, numerical effects
in the ice-flux calculation are much more important in the
ice margin of large ice sheets. These marginal zones are also
the sensitive locations that determine ice growth. Note that
for a typical size Lh of 100 km, the flux number is higher
than for a typical size of 1000 km. This confirms the test
results that the numerical problems mostly occur during the
growth phase of an ice-sheet model. Results of numerical
tests for glaciers cannot be extrapolated to ice sheets; we
must expect different numerical behaviour for ice sheets and
glaciers.

6. CONCLUSIONS
We assessed the effects of varying spatial discretizations
through a series of experiments with simplified geometries in
a one-dimensional and a two-dimensional vertically inte-
grated ice-flow model based on the SIA. This approximation
is widely used by climate researchers, making it essential to
understand its numerical behaviour. The focus was not on
resolving fine structures, but on the global behaviour of

large, smooth ice sheets, where we included the feedback of
the mass balance with height. Note that we cannot extend
our results directly to situations where the mass balance
does not agree with such a parameterization. Note also that
these results are only valid for stationary grids. We expected
each of the discretizations that we used to perform well,
given the size and geometry of the ice sheets. However, after
testing for the sensitivities to initial conditions and the
individual model parameters, we found that not all
discretizations performed well:

The widely used gridcell spacing of 20 km is far too
coarse.

The model’s numerical behaviour is a strong function of
initial conditions, local geometry and climate.

The numerical errors increase non-linearly over time due
to the feedback between mass balance and surface
height. This could have serious implications for research
regarding the inception of large ice sheets.

The numerical errors are associated with the calculation
of the surface gradient. We improved the calculation of
the surface gradient at the ice margin for type II models.
This led to a 0–10% improvement of themodelling results.

Type I models perform better than type II models. How-
ever, the poor stability properties of a type I model are a
major disadvantage. It is not intrinsically clear which
method should be preferred in which type of experiment.

Fig. 9. (a) Area as a function of time for a sinusoidal bedrock and E ¼ 130m for several discretizations. The dashed curves represent the
reference solutions, the solid lines the solutions calculated with a modified surface gradient. All curves are scaled relative to the reference
solution calculated with �x ¼ 1 km. (b) Steady-state solutions for the same discretizations with height in metres on the y axis and distance
from the centre in kilometres.
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Dimension analysis can be used as a tool to explain in
which cases numerical problems are to be expected.
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