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We present a fluid-mechanical explanation of the formation of sedimentary wedges
deposited at ice-stream grounding zones. We model both ice and till as layers of
viscous fluid spreading under gravity into an inviscid ocean. To test the fundamentals
of our theory, we perform a series of laboratory experiments in which we find that a
similar wedge of underlying, less viscous fluid accumulates spontaneously around the
grounding line. We formulate a simple local condition relating wedge slopes, which
determines wedge geometry. It expresses a balance of fluxes of till either side of the
grounding line and involves upstream and downstream gradients of till thicknesses as
well as the upper surface gradient of the ice. It shows that a wedge will form, that
is the upstream till thickness gradients are positive, when the flux of till driven by
the glaciostatic pressure gradient of the overlying ice is greater than the flux of till
ahead of the grounding zone. This is related to the unloading of the till as the ice
sheet crosses the grounding line.
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1. Introduction
Ice streams are fast flowing regions of ice that generally slide over a layer

of unconsolidated, water-saturated glacigenic sediment known as till. Their high
velocities of around 103 m yr−1 are accounted for by a combination of glacial sliding
and till deformation (Alley et al. 1987; Kamb 2001). Subglacial till has been found
to accumulate in sedimentary wedges, or till deltas, at the grounding lines or, more
generally, in grounding zones separating the grounded and floating ice of past and
present-day ice streams (Mosola & Anderson 2006; Dowdeswell & Fugelli 2012).
Sequences of grounding zone wedges formed during stillstands in grounding zone
retreats of former ice streams appear widely at high-latitude continental shelves
of Antarctica (Mosola & Anderson 2006; Dowdeswell et al. 2008; Batchelor &
Dowdeswell 2015). Geophysical data are available from beneath Whillans Ice Stream
in West Antarctica, where a sedimentary wedge has been found to be deposited at
the ice stream’s present-day grounding zone (Anandakrishnan et al. 2007). These
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till deposits were originally revealed after a 6m-thick layer of till was seismically
detected to be deforming beneath Whillans Ice Stream (Alley et al. 1987, 1989;
Blankenship et al. 1987; Batchelor & Dowdeswell 2015). Such sedimentation may
serve to stabilise grounding zones against retreat in response to rising sea levels
(Alley et al. 2007).

We present the first fluid-mechanical explanation of the formation of these
grounding zone wedges, both theoretically and experimentally. Unlike the deposition
of the downstream part of these wedges, which is contributed to by sedimentation
from the water column, the formation of the upstream part is controlled dynamically
through its coupling to the overlying ice. We explain wedge deposition by relating the
difference in hydrostatic loading and unloading of the underlying till at the grounding
zone, which leads to a decreasing flux of till beneath the ice as the grounding zone
is approached.

The central message of this paper is that grounding zone wedges can result from
the accumulation of till caused by its transition from being loaded by overlying ice to
being unloaded across the grounding line. Although ice and till have non-Newtonian
viscous or visco-plastic rheology, this fundamental mechanism can be understood with
an idealised theoretical model of ice and till treated as superposed layers of Newtonian
viscous fluid spreading under their own weight into a layer of inviscid fluid (ocean)
(see Kowal & Worster 2015). We develop a thin-film theory in which we balance
viscous and buoyancy forces. These fundamental ideas and our theoretical prediction
of them are tested experimentally with laboratory experiments conducted in a vertical
Hele-Shaw cell, where, in contrast to Kowal & Worster (2015), shearing across the
width of the cell provides the dominant resistance to the flow, as in Pegler et al.
(2013), and the underlying layer is driven solely by the loading of the overlying layer
and its own hydrostatic spreading, without any viscous coupling.

The mechanism of wedge formation originates from a balance of fluxes of till
either side of the grounding line. In the strongly confined setting that we study here,
the balance of fluxes is related to a jump in the hydrostatic pressure and, therefore,
to the transition of loaded to unloaded till. In such a setting, till is driven solely
by hydrostatic forces, which simplifies the understanding of wedge formation. In
a completely unconfined setting, the balance of fluxes involves both the jump in
hydrostatic loading and the loss of viscous traction downstream of the grounding line,
as found in a forthcoming paper (Kowal & Worster 2020). The movement of till is
additionally driven by viscous coupling with the ice sheet in such natural settings,
which enhances wedge formation as demonstrated in Kowal & Worster (2020). All
of these can be combined in natural settings where both of these effects arise.

We begin by presenting our experiments in § 2 and developing a theoretical
framework for the confined case relevant to our experiments in § 3. Conclusions are
drawn in § 4.

2. Experiments

The general set-up is shown schematically in figure 1 and photographically in
figure 2. We carried out a sequence of experiments in a vertical Hele-Shaw cell (cf.
Pegler et al. 2013) formed from two parallel Perspex sheets, either 120 cm× 30 cm
spaced by a 0.4 cm gap or 200 cm× 30 cm spaced by a 1 cm gap. We used various
combinations of glycerine, golden syrup or corn syrup diluted with either water or
potassium carbonate solution to achieve different densities and viscosities for the
upper and lower layers.
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FIGURE 1. Experimental set-up.

For the upper, viscous current, we used either glycerine or diluted corn syrup,
depending on the experiment. Each of these fluids were dyed with blue food colouring.
Glycerine, used for the upper layer in some of the experiments, was undiluted and
reused between experiments. As the viscosity of glycerine is strongly dependent
upon water content, contamination with potassium carbonate solution and prolonged
exposure to humidity led to a range of dynamic viscosities, µ ≈ 7–13 g cm−1 s−1,
and a fixed density, ρ ≈ 1.26 g cm−3. Corn syrup solution, also used for the upper
layer for one of the experiments, was diluted with water to achieve the density
ρ ≈ 1.375 g cm−3 and dynamic viscosity µ≈ 49.7.

For the lower, less viscous current, we used various concentrations of diluted golden
syrup or diluted glycerine, depending on the experiment. Golden syrup solution, used
for the lower layer in some of the experiments, was diluted with potassium carbonate
solution of various concentrations to achieve densities of ρl ≈ 1.36–1.50 g cm−3

and dynamic viscosities µl ≈ 1.5–13 g cm−1 s−1. Glycerine solution, also used for
the lower layer in some of the experiments, was diluted with potassium carbonate
solution to achieve the density of ρl ≈ 1.30–1.31 g cm−3 and dynamic viscosity
µl ≈ 0.8–1.85 g cm−1 s−1.

We measured the viscosities using U-tube viscometers, and the densities using
hydrometers, before each experiment. A complete list of parameter values is provided
in table 1. We prefilled the Hele-Shaw cell with salt (potassium carbonate) solution
of density ρs ≈ 1.3–1.4 g cm−3 up to a specified height S ≈ 5.5–20 cm before each
experiment.

The two viscous fluids were supplied at measured constant fluxes by means
of peristaltic pumps connected at one end of the Hele-Shaw cell. We maintained
a constant depth of salt solution by manual adjustment of an outflow valve,
counteracting the rise in depth caused by its displacement by the two viscous fluids.
For each experiment, the density of the salt solution was taken such that ρ < ρs <ρl,
so that the less viscous fluid flowed over the salt solution, and the more viscous
fluid intruded beneath the salt solution. Initially, the upper layer floated entirely over
the inviscid layer and the lower layer intruded entirely beneath the inviscid layer,
as shown in figure 2(a). Subsequently, after the two viscous currents exceeded a
threshold thickness near the source, they made contact with each other, as shown in
the sequence of photographs in figure 2(b,c). The two viscous fluids detached from
one another at a locus referred to as the grounding line. The lower layer was observed
to accumulate in a wedge-shaped region near the grounding line. A supplementary
movie of one of our experiments is available at https://doi.org/10.1017/jfm.2020.393.

We measured the wedge angles from recorded images. Issues with photographic
resolution and some dissolution between the corn syrup, glycerine solution and
potassium carbonate solution led to sources of measurement error. Results of these
experiments are presented below in comparison with theoretical predictions, which
we describe next.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIGURE 2. Sequence of photographs of two of our experiments, showing the deformation
of a viscous current of diluted golden syrup (orange) loaded from above by a viscous
current of glycerine (dyed blue). The upper current (glycerine) spills over an inviscid
potassium carbonate solution and detaches from the lower current (diluted golden syrup)
at the grounding line, where the lower current unloads and accumulates into a wedge.
Panels (a–c) display experiment B shown 100 s before and 200 and 600 s after loading.
Panels (d–g) display experiment E shown 5, 10, 15 and 20 min after loading. Theoretical
predictions after loading are overlain in black. The presence of a pressure-driven radial
flow near the experimental source deviates from the assumptions of unidirectional thin-film
flow. This is seen most in panels (a–c), in contrast to panels (d–g). See the end of § 3.2
for a discussion of the effect of this source flow.

3. Theoretical development

To construct a theoretical model for our experiments, we consider a viscous fluid
of density ρ and dynamic viscosity µ spreading under its own weight over another
viscous fluid of higher density ρl and dynamic viscosity µl, which spreads under its
own weight and the weight of the fluid above it over a rigid base z= b(x) as shown in
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FIGURE 3. Schematic diagram illustrating the side profile (a) and plan view (b) of the
flow of two superposed thin films of fluid spreading into an inviscid ocean. The grounding
line is the trijunction between the three fluids.

figure 3. The fluids are confined to a vertical Hele-Shaw cell of width w and intrude
into an inviscid layer of fluid of constant depth S and density ρs such that ρ <ρs<ρl.
We assume the density of the inviscid layer is fixed. There are two regions: a loaded
region 0 6 x 6 xG(t), in which the two viscous fluids make contact with one another;
and an unloaded region x > xG(t), in which the upper viscous current floats entirely
over the inviscid layer and the lower viscous current intrudes entirely beneath it. We
denote the upper surface height of the upper and lower viscous currents by H(x, t) and
h(x, t), respectively. We assume that the upper surface of the inviscid layer remains
fixed at the point x= xN , where the ice–water interface (the calving front) intersects
the upper, free surface of the inviscid layer. We also note that the momentum balance
within the inviscid layer translates to a hydrostatic pressure balance, which directly
affects the rate of the gravitational spreading of the unloaded till.

We consider viscous and buoyancy forces and assume that inertia and the effects
of mixing and surface tension at the interface between the layers are negligible.
We assume that lateral viscous shear stresses provide the leading-order resistance to
the flow (Huppert 1986; Pegler et al. 2013) of both viscous currents. Formally, we
consider w�H� L, where L is any of the horizontal extents of the sheet, the shelf
and the till, and apply the approximations of lubrication theory. This is an idealised
limit relevant to our experiments.

Under the thin-film approximation the volumetric flux of the lower fluid (till) in the
loaded region can be found to be

ql =−
ρgw2

12µl
(h− b)

(
ρl − ρ

ρ

∂h
∂x
+
∂H
∂x

)
, 0 6 z 6 h, (3.1)

(Woods & Mason 2000). The lower current is driven by its own weight as well as
the weight of the fluid above it.
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In the unloaded region, the lower current propagates independently of the upper
current – that is, the shelf. This is because the weight of the shelf, which is assumed
to obey Archimedes’ law of floatation, is equal to the weight of the water column that
it has displaced. This implies that the value of the pressure, and hence the horizontal
pressure gradient, at any given distance z above the x-axis, is indifferent to whether or
not an ice shelf is overlying it. The pressure at z= h is thus given hydrostatically by

pl|z=h = ρsg(s− h) (3.2)

throughout the unloaded region, giving rise to the hydrostatic pressure

pl = ρlg(h− z)+ ρsg(s− h) (3.3)

within the unloaded layer of underlying fluid. The corresponding horizontal pressure
gradient,

∂pl

∂x
= (ρl − ρs)g

∂h
∂x
, (3.4)

thus depends upon the gradient in the lower-layer thickness scaled by the density
difference between it and the overlying inviscid layer throughout the unloaded region,
not just beyond the front of the shelf xN . A horizontal force balance thus gives

µ
∂2u
∂y2
= (ρl − ρs)g

∂h
∂x
, (3.5)

from which it is possible to obtain the velocity field within the underlying layer and
an expression for the depth-integrated volume flux

ql =−
ρl − ρs

ρl

ρlgw2

12µl
(h− b)

∂h
∂x

(3.6)

(cf. Huppert 1986).
These fluxes are used within equations describing mass conservation to determine

the full time-dependent evolution of the flows. We use the scalings

(h,H, z)≡ S(ĥ, Ĥ, z), x≡X x̂≡
(
ρgw2S2

12µq0

)
x̂, (3.7a,b)

t≡ T t̂≡
(
ρgw2S3

12µq2
0

)
t̂, (q, ql)= q0(q̂, q̂l), (3.8a,b)

to non-dimensionalise the governing equations. The dimensionless parameters
appearing throughout these equations are given by

M=
µ

µl
, B=

αX
S
, Q=

ql0

q0
, Dl =

ρl − ρ

ρ
, Ds =

ρs − ρ

ρs
. (3.9a−e)

These describe the ratio of the viscosities of the two layers, the dimensionless bed
slope in terms of the dimensional slope α for a sloped bed b= αx, the ratio of the
source fluxes ql0 and q0 for the lower and upper layers, respectively, the dimensionless
density difference between the upper and lower layers, and the dimensionless density
difference between the upper layer and the inviscid ocean. For convenience, we also
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898 A12-8 K. N. Kowal and M. G. Worster

define the dimensionless density difference between the lower layer and the inviscid
layer as

Dls =
ρl − ρs

ρ
=Dl −

Ds

1−Ds
, (3.10)

which is useful in reducing the lower-layer flux in the unloaded region to

ql =−MDls
Xq0

S2
(h− b)

∂h
∂x
. (3.11)

Under the non-dimensionalisation (3.7)–(3.8) and after dropping hats, the governing
equations are summarised by

q=−(H − h)
∂H
∂x
, ql =−M(h−Bx)

(
Dl
∂h
∂x
+
∂H
∂x

)
(x 6 xG), (3.12a,b)

q=−
1
Ds
(H − 1)

∂H
∂x
, ql =−MDls(h−Bx)

∂h
∂x

(x > xG), (3.13a,b)

∂H
∂t
=−

∂q
∂x
−
∂ql

∂x
(x 6 xG),

∂H
∂t
=−Ds

∂q
∂x

(x > xG), (3.14a,b)

∂h
∂t
=−

∂ql

∂x
(0 6 x 6 xB), (3.15)

subject to the flux conditions

q= 1, ql =Q (x= 0), q= 0 (x= xN), ql = 0 (x= xB), (3.16a−d)

the floatation condition, namely that the grounding line is the position at which the
ice first begins to float according to Archimedes flotation (see e.g. Robison, Huppert
& Worster 2010; Pegler et al. 2013), and the continuity conditions

H− =H+ =
1−Dsh−

1−Ds
, h, q, ql continuous (x= xG), (3.17a−d)

where the superscripts + and − refer to quantities evaluated just to the right and
just to the left of the grounding line, respectively. The first of these, namely
continuity of thickness, originates from a longitudinal stress balance at the grounding
line. Together with the continuity of flux, the stress balance reduces to a simple
condition of continuity of thickness. This is the case for strongly confined ice sheets,
which contrasts with naturally confined (Kowal, Pegler & Worster 2016) or purely
two-dimensional ice sheets (Robison et al. 2010). The remaining frontal positions
evolve kinematically,

ẋN =−
∂H
∂x
, (x= xN), ẋB =−MDls

∂h
∂x
, (x= xB). (3.18a,b)

These kinematic conditions have been obtained by relating the fluxes of the two layers
to their thicknesses. We have dropped hats for convenience.
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3.1. Local unloading condition
In what follows, we focus on the fluxes themselves to show how the mismatch
between the loaded and unloaded regions results in the formation of a wedge in the
grounding zone. In particular, wedge formation can be understood in terms of a local
unloading condition [

Dl
∂h
∂x
+
∂H
∂x

]−
=

[
Dls
∂h
∂x

]+
, (3.19)

in terms of the density differences Dl and Dls. We note that this condition is
independent of bed slope. Equation (3.19) expresses the balance of fluxes of till
either side of the grounding zone obtained from the continuity conditions (3.17)
and the expressions (3.12b) and (3.13b) for the lower-layer fluxes in the loaded
and unloaded regions. This balance directly translates to a balance of the horizontal
pressure gradient across the grounding zone, as the fluxes of loaded and unloaded till
are proportional to the pressure gradient within each region. This simplification holds
as long as the loaded and unloaded parts of till are resisted dominantly by the same
type of shear stress (in this case, transverse shear).

The unloading condition shows that a wedge will form, that is, (∂h/∂x)− > 0, if

(−∂H/∂x)− >Dls(−∂h/∂x)+. (3.20)

The condition (∂h/∂x)− > 0 is a geometrical description of the fact that fluid
accumulates at the grounding zone. In other words, the inequality (3.20) implies
that a wedge will form if the flux of till driven by the glaciostatic pressure gradient
of the overlying ice is greater than the flux of till ahead of the grounding zone. This
fundamental principle can be applied to more detailed models of grounding zones, for
which different viscous couplings modify the balance (3.19) (see Kowal & Worster
2020).

3.2. Numerical and experiment results
Equations (3.12)–(3.18) form a free boundary problem involving both time and space,
which we solved numerically by applying a second-order, finite-difference scheme to
discretise the equations in space after mapping three parts of the domain to three fixed
intervals, and integrating in time. Namely, (i) we mapped the loaded region [0, xG]

to the fixed interval [0, 1] in order to solve for the evolution of the ice sheet and
loaded till on a fixed interval; (ii) we mapped the unloaded region [xG, xB] to the
fixed interval [0,1] in order to solve for the evolution of the unloaded till; and (iii) we
mapped the region [xG, xN] corresponding to the ice shelf to the fixed interval [0,1], in
order to solve for the evolution of the ice shelf. These three maps introduce the three
free boundary positions xG, xB and xN and their time derivatives into the governing
system of partial differential equations. However, the advantage of this approach is
that it is possible to discretise the transformed governing equations on a fixed domain.
The transformed system of equations is given explicitly in appendix A in each of
the domains. In order to proceed with the computations, it is necessary to specify
the evolution of the three free boundary positions, which we did by applying the
kinematic conditions (3.18) to evolve xB and xN and a variant of the constraint (3.17a),
describing Archimedean floatation, to evolve xG.

The remaining boundary and jump conditions were used to constrain the left- and
right-hand endpoints of the discretised set of equations in each of the subregions.
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FIGURE 4. Solutions of the full system of partial differential equations for Q= 0.5, Dl=

0.08, Dls= 0.02 and (a) M= 5, (b) M= 50, (c) M= 500 at t= 100 s. Each panel shows
the thickness profiles of the two layers intruding into an inviscid ocean as functions of
x. The underlying viscous fluid accumulates in a wedge-shaped region near the grounding
zone. The loaded, underlying layer is thinner when its viscosity is lower.

The system was evolved from an initial condition consisting of a similarity solution
describing the ice shelf fed at constant flux at the source, a similarity solution
describing the unloaded till, and a thin, trapezoidal ice sheet and loaded till of width
1x = 10−3 so that xG = 10−3 at t = 0. Initial values for xB and xN were specified
by the similarity solutions. We refer the reader to Pegler et al. (2013) for a similar
treatment and Huppert (1986) for explicit forms for the similarity solutions used as
initial conditions.

The governing equations depend on four dimensionless parameters, namely M, Dl,
Dls and Q for currents propagating over a flat, horizontal base. A fifth dimensionless
parameter B appears if the base is inclined at a small, non-zero angle to the
horizontal. In the latter case, B characterises the dimensionless slope of the base.
We integrated our model numerically to produce some illustrative results (figure 4)
and to demonstrate the effect of the relative viscosity of ice and till. The values of
the parameters Q, Dl and Dls used in these computations are commensurate with our
experiments. The viscosity ratio M used in figure 4(a) is also commensurate with our
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FIGURE 5. Comparison of our experimental data (symbols) for experiments A–I against
the local condition (3.19) (solid line). All quantities are shown in unscaled variables. The
data are shown only for times for which xG > 2R.

experiments. In figures 4(b) and 4(c), we illustrate the effect of increasing viscosity
ratio, showing in particular that the lubricating layer is thin at large viscosity ratios,
which is typical of glaciological settings.

We have also overlain our theoretical predictions onto representative photographs
of our experiments in figure 2. The disagreement between experiment and theory
at early times comes from the presence of a pressure-driven radial flow near the
experimental source, which deviates from the assumptions of unidirectional thin-film
flow used in our theory. Such a pressure-driven, radial flow is seen to affect the flow
most significantly in panels (a–c), in contrast to panels (d–g). Specifically, the flow is
driven by a radial pressure gradient within a transition region r∼R≡ 24νq0/πDsgw2

near the source, which dominates the system at early times (Pegler et al. 2013).
We test the local unloading condition (3.19) against our experimental data in

figure 5. Specifically, rearranging this condition gives[
∂H
∂x

]−
=

[
Dls
∂h
∂x

]+
−

[
Dl
∂h
∂x

]−
, (3.21)

which directly corresponds to the x- and y-axes of figure 5. The closer the
experimental data are to the line y = x, the better the condition is satisfied.
All quantities are shown with respect to unscaled variables. In this experimental
comparison, we consider only the data for which xG> 2R, so that the region near the
grounding line is less affected by the source flow. Figure 5 shows good agreement
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FIGURE 6. Absolute error for our experimental data against the local condition (3.19)
as a function of time. All the quantities are unscaled and dimensional in the centimetre–
gram–second (known as CGS) system of units. The data reported in figure 5, for which
xG > 2R, are shown using filled markers, and the remaining data, seen at early times
owing to deviations near the experimental source, are shown using unfilled markers. As
time progresses, the experimental data converge towards the prediction (3.19).

between theory and experiment over a wide range of experimental parameters, giving
us confidence in the physical principles incorporated in our modelling.

As mentioned previously, the experiments conform more closely with the thin-film
theory as time progresses. This is shown in figure 6, where we show the absolute
value of the difference between the two sides of (3.21) as a function of time in
dimensional units (seconds). We have plotted all of our data in this figure and indicate
which data were most influenced by the initial pressure-driven flow (xG < 2R), which
was excluded from figure 5.

In natural settings, the effective viscosity of till at various locations on Earth varies
from 7.5× 106–4× 1012 Pa s, with the lower reading taken from beneath Bindschadler
Ice Stream in a fit to a model of tidal response, and the upper reading taken from
strain rate data from Bakaninbreen, Svalbard (Boulton & Hindmarsh 1987; Blake,
Clarke & Gerin 1992; Humphrey et al. 1993; Fischer & Clarke 1994; Porter &
Murray 2001; Anandakrishnan et al. 2003; Cuffey & Paterson 2010). For comparison,
the effective viscosity of glacial ice ranges from 5 × 1012–1015 Pa s, depending on
the temperature and other variables (Cuffey & Paterson 2010), giving rise to viscosity
ratios that are much greater than those achieved in our experiments. Such natural
viscosity ratios lead to much thinner underlying layers, which unlike those observed
in figure 4, would seem indistinguishable from the horizontal axis, to the eye. Till
densities, ρl, at 10 %–30 % water content and a particle density of 2.65 Mg m−3
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vary between 1.92 and 2.30 Mg m−3 (Clarke 2017, 2018), which, together with a
typical ocean density of ρs ≈ 1 g cm−3 and ice density of 0.92 g cm−3, gives rise
to dimensionless density differences Dl ≈ 1.1–1.5, Ds ≈ 0.08 and Dls ≈ 1–1.4. These
higher density differences again lead to thinner underlying layers than those observed
in figure 4.

4. Discussion and conclusions
We conducted an experimental and theoretical study of the formation of sedimentary

wedges, or till deltas, at the grounding zones of ice streams, and we presented a
fluid-mechanical explanation of the formation of these wedges. We explained the
formation of these wedges in terms of the hydrostatic loading and unloading of the
underlying till at the grounding zone. The difference in loading and unloading leads
to a decreasing flux of till beneath the ice as the grounding zone is approached,
resulting in the formation of a grounding zone wedge.

We demonstrated this fundamental mechanism by developing a theoretical thin-film
model, which we compared against our analogue laboratory experiments that we
conducted in a confined setting. The formation mechanism is most clearly seen
when horizontal shear stresses dominate the flow, as is the case in strongly confined
settings. We found that a similar wedge of underlying fluid forms spontaneously at
the grounding line of our experiments and have quantified wedge formation in terms
of a local unloading condition relating wedge slopes either side of the grounding
line, based on a balance of fluxes of till across the grounding line. There is good
agreement with our experiments.

The down-flow wedge slopes in these calculations are generally gentler than those
of grounding zone wedges found in nature. We anticipate that incorporating the non-
Newtonian, shear-thinning rheology of till would generate steeper down-flow wedge
slopes.

These fundamental ideas, explained here using Newtonian rheology and a simple
geometry, can be extended to more geophysically relevant settings and rheologies
typical of natural marine ice sheets by considering unconfined, two-dimensional
geometries, in which wedge formation is modified by different viscous couplings
between ice and till (Kowal & Worster 2020).
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Appendix A
The governing equations are solved numerically by mapping the domain to fixed

intervals and discretising in the transformed variables. The transformations and
resulting transformed equations are listed below, in each domain.
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A.1. Loaded region
In the loaded region x< xG, we define the transformation ξ = x/xG, τ = t, under which
the flux of each of the two layers becomes

q=−
1
xG
(H − h)

∂H
∂ξ
, (A 1)

ql =−
M
xG
(h−BxGξ)

(
Dl
∂h
∂ξ
+
∂H
∂ξ

)
, (A 2)

and the local mass conservation equations become

∂h
∂τ
=

ẋG

xG
ξ
∂h
∂ξ
−

1
xG

∂ql

∂ξ
, (A 3)

∂H
∂τ
=

ẋG

xG
ξ
∂H
∂ξ
−

1
xG

∂

∂ξ
(q+ ql). (A 4)

A.2. Unloaded till
In the unloaded region xG< x< xB, we define the transformation ζ = (x− xG)/(xB− xG),
τ = t, under which the flux of the underlying layer becomes

ql =−MDls [h−B(xG + (xB − xG)ζ )]
1

xB − xG

∂h
∂ζ

(A 5)

and the corresponding mass conservation equation becomes

∂h
∂τ
=

1
xB − xG

(ẋG + (ẋB − ẋG)ζ )
∂h
∂ζ
−

1
xB − xG

∂ql

∂ζ
. (A 6)

A.3. Shelf
Within the shelf xG < x < xN , we define the transformation η = (x − xG)/(xN − xG),
τ = t, under which the upper-layer flux within the shelf becomes

q=−
H − 1

Ds(xN − xG)

∂H
∂η
, (A 7)

and the corresponding mass conservation equation becomes

∂H
∂τ
=

1
xN − xG

(ẋG + (ẋN − ẋG)η)
∂H
∂η
−

Ds

xN − xG

∂q
∂η
. (A 8)
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