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If xx, x2, xk, . . . . are independent random variables each
of which is subjected to a distribution law a = a (cc) independent of k
and having a finite positive dispersion, then x1 -f- x2 + . . . . + xn is
known to obey the Gauss law as n -» + oo , no matter how a (x)
be chosen1. There arises, however, the question whether it is
nevertheless possible to determine the elementary law a (x) from the
asymptotic behaviour of the distribution law oi xx -\- x2 + . . . . + xn for
very large but finite values of n. I t will be shown that the answer is
affirmative under very general conditions.

Let the distribution function a (x) be a solution of the moment
problem

(1) f+C°xmdv{x)=Mm (m = 0 , l , 2 , . . . . ; a (-oo ) = 0),
J —00

so that Mo is the total probability, hence equal to 1. It is not
required that (1) be a determined moment problem, i.e. that a be
uniquely determined by the conditions (1) if one normalises it by the
requirement that la (x) = a (x + 0) + a (x — 0). On excluding the
case M2 = 0 of the trivial distribution function a (x) = \ (1 -f- sign x)
and replacing, if necessary, a(x) by a (ax), where a = M\> 0, we may
suppose that M2 = 1. Also, although the symmetry condition
thereby imposed upon the law a is not essential for our method, we
assume for convenience that both ranges (0, x) and (— x, 0) of the
random variable subjected to a are equally probable, i.e. that

(2) a(x) + a(-x) = 1; hence a(0) = | , M2n+1 = 0 (n = 0,1, 2... . . ) .

Accordingly, the characteristic function of a,

(3') L(t;a)= [ + eitxdo(x) ( - oo < t < -f oo ),
J

Of. P . L6vy, Oalcul des Probabilites, Paris, 1925, pp. 233-235.
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and its Fourier inversion1,

(4') o(x)=o(0)-^-.^L(t;o)(e-i*t-l)t-1dt (-» < x < + oo),

become respectively
f + co

(3) L(t;a) = 2\ cos (tx) do (x) (—<x> <t < + as)
Jo

and

(4) a {x) = I + — f+* L (t; a) t'1 sin (to) dt.
it Jo

We finally suppose that for some sufficiently small 8 > 0 and for
some function <f> (t)

(5) j {t <f, it)1*}-1 dt < + oo, m&L(tio) = 0(l/4>(t)) as <-> + oo ,

consideration of t-* — oo being unnecessary since L (t; a) is an even
function, and that

(5a) L(t; cr)-> 0 as 2 -> oo .

A few remarks concerning the nature of the restriction imposed
by conditions (5) and (5a) upon the behaviour of a(x) are not out of
place. According to Levy2 the average of \L(t; a)\2 in the whole
range — oo < t < + oo always exists and is equal to the sum of the
squares of all jumps of a (x). Hence a (x) is everywhere continuous
if and only if the average of \L(t; a) | 2 is zero, a condition clearly
satisfied whenever (5a) is satisfied, so that a has no discontinuity
points. However (5), (5a) are sufficiently general not to require the
absolute continuity of a, i.e. the existence of a density of probability3.
In fact (5) and (5a) are implied by

(5b) L(t;o)=0(\\ogt\-«),

1 P. Ldvy, op. dt., p. 167.
2 P. L6vy, op. dt., p. 171.
3 There exists a derivative o-' (x) up to a set of measure zero even if o- (x) is not

absolutely continuous, but
rx

(i) o-(a:)= <r'(y)dy
J -CO

holds if and only if <r(x) is absolutely continuous. I t is meaningless to regard <r(x) as a
density of probability if (i) is not valid.
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where a > 0 may be arbitrarily small, and there exist1 symmetric
distribution functions which satisfy (5b) but are not absolutely
continuous. Conversely, the absolute continuity of a does not imply
(5) since the Eiemann-Lebesgue lemma cannot be formulated by
using a universal majorant which tends to zero. A sufficient condi-
tion for (5b), hence for (5) and (5a), is that there exist a density of
probability satisfying a uniform Lipschitz condition of arbitrarily low
index, or only the corresponding logarithmical estimate, and tending
not too slowly to zero as x -> oo . Another sufficient condition for (5)
and (5a) is that a satisfy the Gauss postulate for error distributions,
i.e., that there exist for every x a probability density which does not
increase when x increases. In fact, in this case it is clear from (3),
in virtue of the second mean-value theorem, that L(t; a) = 0 (t~x), so
that (5b) is amply satisfied.

Let the random variables xx, x2, .. .., xk, . . . . be such that a(x)
represents the probability of the inequality xk < x for every k. Then if
an (x) denotes the probability of the inequality xx-\-x2-\-xz 4- . . +xn< x,
we have

(6) Ht;on)=L(t;o)»

in virtue of the supposed independence of the random variables2.
The fundamental limit theorem of the calculus of probability3 implies
that the distribution function a(anx), where

an = M2 (an)* = n*M\ = n*,

tends, as n -» + oo , to the reduced Gaussian distribution function.
Our purpose is to show that an (x) is capable of an infinite asymptotic
development in the Poincare sense, proceeding according to powers of
n~K The role of assumption (5) is that of assuring the existence of
such a development, formal treatments of which date back to
Laplace4. The coefficient of (n~i)m in the asymptotic series in
question is a polynomial in x having as coefficients polynomials in
the moments (1) of the elementary law a, and the coefficients of the

1 Cf. D. Menchoff, "Sur l'unicite^ du developpemenfc fcrigonometrique," Comptes
Bendus, 163 (1916), pp. 433-436.

2 Cf., e.g., P . Uvy, op. cit., pp. 184-185.

3 Ibid, pp. 233-235.
4 Cf., e.g., E. T. Whittaker and G. Robinson, The Calculus of Observations, London,

1924, p. 172; cf. also F. Zernike, Sandbuch der Physik, 3 (1928) 450-51, where further
references are also given.

https://doi.org/10.1017/S0013091500008130 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500008130


ASYMPTOTIC FORMULA FOR A CLASS OF DISTRIBUTION FUNCTIONS 141

latter polynomials are universal constants. The elementary laws
occurring in the majority of applications satisfy (5) and are such that
the Carleman condition

S° M2-m
1/(2m) = + oo

m = 0

of determinateness is fulfilled. Hence we obtain a method, at least
in theory, for determining the elementary law a(x) from the behaviour
of the approximation of the iterated law to the Gauss distribution.

The function L (t; a) has for every t derivatives of arbitrarily
high order1 which may be obtained by formal differentiation of (3),
so that

(7) Z,<m> (t; a) = im f x m e i t e da(x).

In fact, each of the integrals (7) is uniformly convergent with respect
to t, its integrand having as a majorant8 that of Mm.

I t is clear from (3) that \L{t; a)\ ^ 1 for every t and = 1 for
t = 0. Suppose that [ L (t; a) | = 1 for a fixed t. Then

f+C° {1 ± cos (tx)}da{x) = 0 ,
Jo

where l i t c o s ( t e ) ^ 0 for every x and either t=0 or else l±cos (tx) >0
for some x. Hence either i = 0or else o- (x) is a step-function having
all its jumps at points x which form an arithmetical progression.
The second case is excluded, o- being continuous in virtue of (5).
Consequently3

(8) \L(l;a)\<l for every t =£0.

Moreover, since the second derivative of (3) is negative at t = 0 in
virtue of (7), and the first derivative L' (t; a) vanishes at t — 0 because
of (7) and (2), we have L'(t; a) < 0 for sufficiently small values of
t > 0. I t follows therefore from L (0; a) = 1 that L (t; a) is positive
and decreasing in the interval 0 < t sS c if c is sufficiently small.
Let c be so chosen and put

(9) Kn --

! I t is not true, however, that L(t; <r) is necessarily regular-analytic along the
iaxis.

- In virtue of the Schwarz inequality it is sufficient to consider even values of m.
3 It may be mentioned that (8) is actually false in the second case. In fact,

L{t; <r) is then a periodic function so that L(t; cr) = 1 holds for some t =# 0 since i t
holds for t = 0.
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Now L(t;a) has in the interval c SS t < + oo a positive maximum
8 < 1 according to (8) and (5a). On the other hand, it is clear
from (5) and (9) that Kj < +<x> if j is sufficiently large, so that
Kn<6n~i Kj < + oo for every n>j. Consequently

(10) If °° L(t; a)"/"1 sin(te) dt < C6n, where 0 < 6 < 1,

for every x and for every n > j , where 6 and 0 = Kj/6} depend only
upon c.

Since L (0; a) = 1 and L (t; cr) is positive and decreasing in the
range 0 < t ^ c, the function

(11) s = s(t) = {—log L(t;o)}l

is positive and increasing in this range so that there exists an inverse
function t = t(s), where O^s^d and d = {—logL(c; a)}K Now
the derivative L'{t;a) is negative at every point of the range
0 < t ^ c and vanishes at t = 0 only in the first order in virtue of
L" (0; a) = — 1; hence the function s = s (t) vanishes at t = 0 exactly
in the first order, and consequently r (t) = t/s (t) is positive at t = 0.
Upon placing, for a fixed value of cc,

(12) rrf (x;s) = sin (xt(s))i(s)/t(s) (O^s^d),

where the dot denotes differentiation with respect to s, it follows
from the Burmann-Lagrange rule1 that all derivatives of f(x; s) with
respect to s exist not only in the range 0 < s ^ d, but at s = 0 as well,
and, moreover, that the derivatives are given by the explicit formula

j ) ( Q 1 l

\ J . _ o ~ V la* «
Setting

X« (aO = 4 + — T £ (*; tf)"*-1 sin (te) (ft,
IT Jo

we have from (11) and (12)

(14)
This function Xn (*) admits for every fixed a; an asymptotic
development2

(15) 4 + + S J ° t (*)«-•*,

1 0/. P. L. Tchebychef, Oeuvres, vol. 1, St. Petersburg, 1899, pp. 251-270, where
analyticity of the functions is not required.

2 Of. A. Wintner, "On the asymptotic formulae of Riemann and of Laplace,"
Proceedings of the National Academy of Sciences, 20 (1934), pp. 57-62.
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or

Thus

P*+1 - 2 r ( 2 * l ) ? V 2 J (" J )

by the Leibniz rule for differentiation, while P2t = 0 f°r every x
because of (2). In particular

P3 (x) = (2TT)-* | - f + (if* - 3) - | - | ,

P6(x) = (2TT)-4| | ! - 5(Jf4- 3 ) g + (35Mf- 8Jffl - 90ilf4 + 75) ^

It is clear from (10) that the above asymptotic expansion of (14)
is also an asymptotic development of

(19) 1+ — \+(BL{t;a)nt-^ sin(te)*.
-n Jo

Moreover, upon applying (4) to an{x) instead of a(x), we see from (6)
that (19) is exactly on(x). Therefore (15) is an asymptotic develop-
ment of an (x).

It may be mentioned that (15) can in certain cases be a con-
vergent series. For example, if a (x) obey the Gauss law the
asymptotic development (15) for an(x) is found from (18) to be the
convergent power-series representation of <rn(x).
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