An Asymptotic Formula for a Class of Distribution Functions

By E. W. CANNON and AUREL WINTNER, Johns Hopkins University. Communicated by A. C. AITKEN.

(Received 25th February, 1935. Read 1st March, 1935.)

If $x_1, x_2, \ldots, x_k, \ldots$ are independent random variables each of which is subjected to a distribution law $\sigma = \sigma(x)$ independent of kand having a finite positive dispersion, then $x_1 + x_2 + \ldots + x_n$ is known to obey the Gauss law as $n \to +\infty$, no matter how $\sigma(x)$ be chosen¹. There arises, however, the question whether it is nevertheless possible to determine the elementary law $\sigma(x)$ from the asymptotic behaviour of the distribution law of $x_1 + x_2 + \ldots + x_n$ for very large but finite values of n. It will be shown that the answer is affirmative under very general conditions.

Let the distribution function $\sigma(x)$ be a solution of the moment problem

(1)
$$\int_{-\infty}^{+\infty} x^m \, d\sigma(x) = M_m \quad (m = 0, 1, 2, \ldots; \sigma(-\infty) = 0),$$

so that M_0 is the total probability, hence equal to 1. It is not required that (1) be a determined moment problem, *i.e.* that σ be uniquely determined by the conditions (1) if one normalises it by the requirement that $2\sigma(x) = \sigma(x+0) + \sigma(x-0)$. On excluding the case $M_2 = 0$ of the trivial distribution function $\sigma(x) = \frac{1}{2}(1 + \operatorname{sign} x)$ and replacing, if necessary, $\sigma(x)$ by $\sigma(ax)$, where $a = M_2^1 > 0$, we may suppose that $M_2 = 1$. Also, although the symmetry condition thereby imposed upon the law σ is not essential for our method, we assume for convenience that both ranges (0, x) and (-x, 0) of the random variable subjected to σ are equally probable, *i.e.* that

(2)
$$\sigma(x) + \sigma(-x) = 1$$
; hence $\sigma(0) = \frac{1}{2}$, $M_{2n+1} = 0$ $(n=0, 1, 2, ...)$.

Accordingly, the characteristic function of σ ,

(3')
$$L(t;\sigma) = \int_{-\infty}^{+\infty} e^{itx} d\sigma(x) \quad (-\infty < t < +\infty),$$

¹ Cf. P. Lévy, Calcul des Probabilités, Paris, 1925, pp. 233-235.

ASYMPTOTIC FORMULA FOR A CLASS OF DISTRIBUTION FUNCTIONS 139 and its Fourier inversion¹,

(4')
$$\sigma(x) = \sigma(0) - \frac{1}{2\pi i} \int_{-\infty}^{+\infty} L(t; \sigma) (e^{-ixt} - 1) t^{-1} dt \quad (-\infty < x < +\infty),$$

become respectively

(3)
$$L(t; \sigma) = 2 \int_0^{+\infty} \cos(tx) d\sigma(x) \quad (-\infty < t < +\infty)$$

and

(4)
$$\sigma(x) = \frac{1}{2} + \frac{1}{\pi} \int_0^{+\infty} L(t; \sigma) t^{-1} \sin(tx) dt.$$

We finally suppose that for some sufficiently small $\delta > 0$ and for some function $\phi(t)$

(5)
$$\int^{+\infty} \{t \phi(t)^{1/\delta}\}^{-1} dt < +\infty, \text{ and } L(t; \sigma) = O(1/\phi(t)) \text{ as } t \to +\infty,$$

consideration of $t \rightarrow -\infty$ being unnecessary since $L(t; \sigma)$ is an even function, and that

(5a)
$$L(t; \sigma) \rightarrow 0 \text{ as } t \rightarrow \infty$$
.

A few remarks concerning the nature of the restriction imposed by conditions (5) and (5a) upon the behaviour of $\sigma(x)$ are not out of place. According to Lévy² the average of $|L(t; \sigma)|^2$ in the whole range $-\infty < t < +\infty$ always exists and is equal to the sum of the squares of all jumps of $\sigma(x)$. Hence $\sigma(x)$ is everywhere continuous if and only if the average of $|L(t; \sigma)|^2$ is zero, a condition clearly satisfied whenever (5a) is satisfied, so that σ has no discontinuity points. However (5), (5a) are sufficiently general not to require the absolute continuity of σ , *i.e.* the existence of a density of probability³. In fact (5) and (5a) are implied by

(5b)
$$L(t; \sigma) = O(|\log t|^{-\alpha}),$$

¹ P. Lévy, op. cit., p. 167.

² P. Lévy, op. cit., p. 171.

³ There exists a derivative $\sigma'(x)$ up to a set of measure zero even if $\sigma(x)$ is not absolutely continuous, but

(i)
$$\sigma(x) = \int_{-\infty}^{x} \sigma'(y) \, dy$$

holds if and only if $\sigma(x)$ is absolutely continuous. It is meaningless to regard $\sigma(x)$ as a density of probability if (i) is not valid.

where a > 0 may be arbitrarily small, and there exist¹ symmetric distribution functions which satisfy (5b) but are not absolutely continuous. Conversely, the absolute continuity of σ does not imply (5) since the Riemann-Lebesgue lemma cannot be formulated by using a universal majorant which tends to zero. A sufficient condition for (5b), hence for (5) and (5a), is that there exist a density of probability satisfying a uniform Lipschitz condition of arbitrarily low index, or only the corresponding logarithmical estimate, and tending not too slowly to zero as $x \to \infty$. Another sufficient condition for (5) and (5a) is that σ satisfy the Gauss postulate for error distributions, *i.e.*, that there exist for every x a probability density which does not increase when x increases. In fact, in this case it is clear from (3), in virtue of the second mean-value theorem, that $L(t; \sigma) = O(t^{-1})$, so that (5b) is amply satisfied.

Let the random variables $x_1, x_2, \ldots, x_k, \ldots$ be such that $\sigma(x)$ represents the probability of the inequality $x_k < x$ for every k. Then if $\sigma_n(x)$ denotes the probability of the inequality $x_1+x_2+x_3+\ldots+x_n < x$, we have

(6)
$$L(t; \sigma_n) = L(t; \sigma)^n$$

in virtue of the supposed independence of the random variables². The fundamental limit theorem of the calculus of probability³ implies that the distribution function $\sigma(a_n x)$, where

$$a_n = M_2 (\sigma_n)^{\frac{1}{2}} = n^{\frac{1}{2}} M_2^{\frac{1}{2}} = n^{\frac{1}{2}},$$

tends, as $n \to +\infty$, to the reduced Gaussian distribution function. Our purpose is to show that $\sigma_n(x)$ is capable of an infinite asymptotic development in the Poincaré sense, proceeding according to powers of $n^{-\frac{1}{2}}$. The rôle of assumption (5) is that of assuring the existence of such a development, formal treatments of which date back to Laplace⁴. The coefficient of $(n^{-\frac{1}{2}})^m$ in the asymptotic series in question is a polynomial in x having as coefficients polynomials in the moments (1) of the elementary law σ , and the coefficients of the

¹ Cf. D. Menchoff, "Sur l'unicité du développement trigonométrique," Comptes Rendus, 163 (1916), pp. 433-436.

² Of., e.g., P. Lévy, op. cit., pp. 184-185.

³ Ibid, pp. 233-235.

⁴ Of., e.g., E. T. Whittaker and G. Robinson, The Calculus of Observations, London, 1924, p. 172; cf. also F. Zernike, Handbuch der Physik, 3 (1928) 450-51, where further references are also given.

140

latter polynomials are universal constants. The elementary laws occurring in the majority of applications satisfy (5) and are such that the Carleman condition

$$\sum_{m=0}^{+\infty} M_{2m}^{-1/(2m)} = +\infty$$

of determinateness is fulfilled. Hence we obtain a method, at least in theory, for determining the elementary law $\sigma(x)$ from the behaviour of the approximation of the iterated law to the Gauss distribution.

The function $L(t; \sigma)$ has for every t derivatives of arbitrarily high order¹ which may be obtained by formal differentiation of (3), so that

(7)
$$L^{(m)}(t;\sigma) = i^m \int_{-\infty}^{+\infty} x^m e^{itx} d\sigma(x).$$

In fact, each of the integrals (7) is uniformly convergent with respect to t, its integrand having as a majorant² that of M_m .

It is clear from (3) that $|L(t; \sigma)| \leq 1$ for every t and = 1 for t = 0. Suppose that $|L(t; \sigma)| = 1$ for a fixed t. Then

$$\int_0^{+\infty} \left\{ 1 \pm \cos\left(tx\right) \right\} d\sigma(x) = 0,$$

where $1 \pm \cos(tx) \ge 0$ for every x and either t=0 or else $1 \pm \cos(tx) > 0$ for some x. Hence either t=0 or else $\sigma(x)$ is a step-function having all its jumps at points x which form an arithmetical progression. The second case is excluded, σ being continuous in virtue of (5). Consequently³

(8)
$$|L(t; \sigma)| < 1$$
 for every $t \neq 0$.

Moreover, since the second derivative of (3) is negative at t = 0 in virtue of (7), and the first derivative $L'(t; \sigma)$ vanishes at t = 0 because of (7) and (2), we have $L'(t; \sigma) < 0$ for sufficiently small values of t > 0. It follows therefore from $L(0; \sigma) = 1$ that $L(t; \sigma)$ is positive and decreasing in the interval $0 < t \leq c$ if c is sufficiently small. Let c be so chosen and put

(9)
$$K_n = \int_c^{+\infty} |t^{-1} L(t; \sigma)^n| dt.$$

¹ It is not true, however, that $L(t; \sigma)$ is necessarily regular-analytic along the *t*-axis.

² In virtue of the Schwarz inequality it is sufficient to consider even values of m.

³ It may be mentioned that (8) is actually false in the second case. In fact, $L(t; \sigma)$ is then a periodic function so that $L(t; \sigma) = 1$ holds for some $t \neq 0$ since it holds for t = 0.

Now $L(t; \sigma)$ has in the interval $c \leq t < +\infty$ a positive maximum $\theta < 1$ according to (8) and (5a). On the other hand, it is clear from (5) and (9) that $K_j < +\infty$ if j is sufficiently large, so that $K_n < \theta^{n-j}K_j < +\infty$ for every n > j. Consequently

(10)
$$\left|\int_{c}^{+\infty} L(t; \sigma)^{n} t^{-1} \sin(tx) dt\right| < C\theta^{n}, \text{ where } 0 < \theta < 1,$$

for every x and for every n > j, where θ and $C = K_j/\theta^j$ depend only upon c.

Since $L(0; \sigma) = 1$ and $L(t; \sigma)$ is positive and decreasing in the range $0 < t \leq c$, the function

(11)
$$s = s(t) = \{-\log L(t; \sigma)\}^{\frac{1}{2}}$$

is positive and increasing in this range so that there exists an inverse function t = t(s), where $0 \le s \le d$ and $d = \{-\log L(c; \sigma)\}^{\frac{1}{2}}$. Now the derivative $L'(t; \sigma)$ is negative at every point of the range $0 < t \le c$ and vanishes at t = 0 only in the first order in virtue of $L''(0; \sigma) = -1$; hence the function s = s(t) vanishes at t = 0 exactly in the first order, and consequently r(t) = t/s(t) is positive at t = 0. Upon placing, for a fixed value of x,

(12)
$$\pi f(x; s) = \sin (xt(s)) \dot{t}(s)/t(s) \quad (0 \le s \le d),$$

where the dot denotes differentiation with respect to s, it follows from the Bürmann-Lagrange rule¹ that all derivatives of f(x; s) with respect to s exist not only in the range $0 < s \leq d$, but at s = 0 as well, and, moreover, that the derivatives are given by the explicit formula

(13)
$$\left\{\frac{\partial^n f(x;s)}{\partial s^n}\right\}_{s=0} = \frac{1}{\pi} \left\{\frac{\partial^n}{\partial t^n} \frac{\sin(tx) r(t)^{n+1}}{t}\right\}_{t=0}$$

Setting

$$\chi_n(x) = \frac{1}{2} + \frac{1}{\pi} \int_0^c L(t; \sigma)^n t^{-1} \sin(tx) dt,$$

we have from (11) and (12)

(14)
$$\chi_n(x) = \frac{1}{2} + \int_0^d \exp(-ns^2) f(x; s) \, ds.$$

This function $\chi_n(x)$ admits for every fixed x an asymptotic development²

(15)
$$\frac{1}{2} + \sum_{k=1}^{+\infty} P_k(x) n^{-\frac{1}{2}k}$$

¹ Of. P. L. Tchebychef, Oeuvres, vol. 1, St. Pétersburg, 1899, pp. 251-270, where analyticity of the functions is not required.

² Cf. A. Wintner, "On the asymptotic formulae of Riemann and of Laplace," Proceedings of the National Academy of Sciences, 20 (1934), pp. 57-62.

Asymptotic Formula for a Class of Distribution Functions 143 where

(16)
$$P_{k} = P_{k}(x) = \frac{\Gamma\left(\frac{1}{2}k\right)}{2\Gamma\left(k\right)} \left\{ \frac{\partial^{k-1}f(x;s)}{\partial s^{k-1}} \right\}_{s=0}$$

or

(17)
$$P_{k} = P_{k}(x) = \frac{\Gamma(\frac{1}{2}k)}{2\pi \Gamma(k)} \left\{ \frac{\partial^{k-1}}{\partial t^{k-1}} \frac{\sin(tx) r(t)^{k}}{t} \right\}_{t=0}$$

Thus

(18)
$$P_{2k+1} = \frac{\Gamma\left(k+\frac{1}{2}\right)}{2\pi \Gamma(2k+1)} \sum_{\nu=0}^{k} \binom{2k}{2\nu} (-1)^{k-\nu} \frac{x^{2(k-\nu)+1}}{2(k-\nu)+1} \left\{ \frac{d^{2\nu} r(t)^{2k+1}}{dt^{2\nu}} \right\}_{t=0}$$

by the Leibniz rule for differentiation, while $P_{2k} = 0$ for every x because of (2). In particular

$$P_{1}(x) = (2\pi)^{-\frac{1}{2}} x,$$

$$P_{3}(x) = (2\pi)^{-\frac{1}{2}} \left\{ -\frac{x_{3}}{6} + (M_{4} - 3) \frac{x}{8} \right\},$$

$$P_{5}(x) = (2\pi)^{-\frac{1}{2}} \left\{ \frac{x^{5}}{40} - 5 (M_{4} - 3) \frac{x^{3}}{48} + (35M_{4}^{2} - 8M_{6} - 90M_{4} + 75) \frac{x}{384} \right\}.$$

It is clear from (10) that the above asymptotic expansion of (14) is also an asymptotic development of

(19)
$$\frac{1}{2} + \frac{1}{\pi} \int_0^{+\infty} L(t; \sigma)^n t^{-1} \sin(tx) dt.$$

Moreover, upon applying (4) to $\sigma_n(x)$ instead of $\sigma(x)$, we see from (6) that (19) is exactly $\sigma_n(x)$. Therefore (15) is an asymptotic development of $\sigma_n(x)$.

It may be mentioned that (15) can in certain cases be a convergent series. For example, if $\sigma(x)$ obey the Gauss law the asymptotic development (15) for $\sigma_n(x)$ is found from (18) to be the convergent power-series representation of $\sigma_n(x)$.
