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SUMMARY

For the purpose of developing a national system for outbreak surveillance, local outbreak signals
were compared in three sources of syndromic data – telephone triage of acute gastroenteritis, web
queries about symptoms of gastrointestinal illness, and over-the-counter (OTC) pharmacy sales of
antidiarrhoeal medication. The data sources were compared against nine known waterborne and
foodborne outbreaks in Sweden in 2007–2011. Outbreak signals were identified for the four
largest outbreaks in the telephone triage data and the two largest outbreaks in the data on OTC
sales of antidiarrhoeal medication. No signals could be identified in the data on web queries.
The signal magnitude for the fourth largest outbreak indicated a tenfold larger outbreak than
officially reported, supporting the use of telephone triage data for situational awareness. For the
two largest outbreaks, telephone triage data on adult diarrhoea provided outbreak signals at an
early stage, weeks and months in advance, respectively, potentially serving the purpose of early
event detection. In conclusion, telephone triage data provided the most promising source for
surveillance of point-source outbreaks.

Key words: Foodborne infections, outbreaks, statistics, syndromic surveillance,
waterborne infections.

INTRODUCTION

In syndromic surveillance, two functions need to
be addressed, Early Event Detection (EED) and
Situational Awareness (SA) [1, 2]. EED refers to the

process of gathering and analysing signals of
relevance for timely detection of disease outbreaks.
SA represents real-time monitoring and assessment
of epidemics: their size, location, and spread. EED
is easier to translate into automatic surveillance sys-
tems as it involves real-time data collection and analy-
sis. SA is about determining and understanding the
situation at hand, and is less well-defined and more
difficult to formalize. However, an ideal system for
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syndromic surveillance needs to integrate the SA and
EED functions. In practice, there must be a trade-off.
EED benefits from preclinical signals, e.g. self-
diagnosis, absenteeism, pharmacy sales and patient
contact rates. Accurate SA requires evidence-based
information, e.g. epidemiological studies, clinical
diagnosis and laboratory test results. These conflicting
demands raise the question of whether certain data
sources are better suited to bridge SA and EED.
The main purpose of this study was to evaluate the
efficiency of data sources for EED and SA.

To examine the suitability of different data sources,
a reasonable strategy is to evaluate signals with
respect to outbreaks that are well-defined in time
and space, i.e. point-source outbreaks, such as local
foodborne and waterborne outbreaks. This allows
for easier mapping than propagated or seasonal epi-
demics with unclear temporal and spatial limits.
However, few studies of this type have been conducted
to date. The majority of empirical studies target sea-
sonal epidemics, e.g. influenza, winter vomiting dis-
ease (norovirus), rotavirus and respiratory syncytial
virus (RSV) [3]. The research on point-source and
local outbreak surveillance is more limited. The issue
is mainly discussed in relation to larger waterborne
or foodborne outbreaks [4], or event monitoring at
healthcare centres, hospitals and emergency depart-
ments [5]. Furthermore, systematic mapping of signal
and outbreak characteristics is rare in these studies.
Two studies of telephone triage data from NHS
Direct (National Health Service, UK) have been
published, showing positive and negative results,
respectively [6, 7]. Studies of over-the-counter (OTC)
pharmacy sales have reported similar conflicting
results [8, 9]. To our knowledge, no comparative
analysis of syndromic data with respect to multiple
point-source outbreaks has previously been published.

In the presented study, we evaluated the potential
of different sources of syndromic data for both SA
and EED. From Swedish official outbreak reports,
we selected point-source outbreaks during 2007–2011
that allowed for comparisons across the data sources.
We first validated outbreak signals through testing for
significant signal-to-noise (STN) ratios. For validated
outbreak signals identified by this procedure, we sub-
sequently explored the potential for SA and EED.
This was achieved by analysing the correspondence
between signal properties and outbreak sizes. For
the strongest outbreak signals, we assessed the poten-
tial of different symptoms for EED by applying a
simple detection algorithm.

METHOD

Data sources

Swedish Health Care Direct 1177 is a 24-hour
nurse-on-call service comprising healthcare advice
by telephone (1177) and by a website (www.1177.se).
The record created for each call includes a contact
cause, i.e. the main symptom [10]. For the purposes
of this study, we extracted five data streams on the
number of calls per day and municipality: (i) gastro-
intestinal illness across age groups, grouping the follow-
ing symptoms: nausea, vomiting, diarrhoea, stomach
pain and stomach illness; (ii) adult gastrointestinal
illness, grouping the same symptoms, but excluding
children (<18 years); (iii) diarrhoea in adults; (iv) nau-
sea and vomiting in adults; and (v) stomach pain in
adults. All data used in this study were anonymized.

For the investigated period, 2007–2011, web
query data were obtained from ‘Vårdguiden’, the
Stockholm County Council website providing infor-
mation to the public on illnesses, health and health-
care. The Swedish Institute for Communicable
Disease Control (SMI) has direct access to the data
from the Vårdguiden website and produces regular
analyses on selected queries submitted to the website
[11, 12]. For this study, we extracted the number of
web queries per day on the following gastrointestinal
symptoms: vomiting (kräkningar), diarrhoea (diarré),
stomach pain (magont) and gastrointestinal illness
(magsjuka). The data represented word stems, allow-
ing for inflections and spelling variations.

Data on OTC sales of antidiarrhoea medication
were purchased from Pharmacy Services Ltd
(Apotekens Service AB). After consultation with
Pharmacy Services Ltd, we included all OTC antidiar-
rhoea drugs with ATC codes A07B and A07D. The
extracted data covered daily unit sales of antidiar-
rhoea medication in pharmacies per municipality
between 2006 and 2011. All Swedish pharmacies
report daily OTC sales.

A list of point-source outbreaks was made to estab-
lish a basis for comparison of data sources. The point
of departure was official reports of waterborne and
foodborne outbreaks issued by the National Food
Agency in Sweden. We decided on three criteria for
inclusion of outbreaks: First, we selected larger out-
breaks, excluding outbreaks comprising fewer than
100 cases. Second, the time window was limited to
2007–2011 avoiding the first years of establishment
of the telephone triage and web-based healthcare
services. Third, the time of the outbreak had to be
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within the temporal limits of all data sources. In the
following, we refer to an outbreak by the name of
the municipality in question.

Methods of analysis

The evaluation of data sources consisted of three
parts: (1) validation of outbreak signals, (2) estimation
of signal rates and (3) signal detection analysis. The
validation part contained visual inspection and stat-
istical analysis of count data per day, i.e. number of
1177 calls, web queries and OTC units sold. The pur-
pose was to identify true outbreak signals (deviations)
as distinct from background noise (baseline variation).
The estimation part consisted of calculating the mag-
nitude of the outbreak signals to establish signal rates,
i.e. the average number of signals per case. Finally, the
detection part involved statistical analysis to identify
abnormal signals before outbreak peaks, as well as
calculations to assess the sensitivity and specificity of
the data stream in question.

Signal validation

The validation process began by defining outbreak
periods and midpoints. The midpoint was defined as
the day when the local or regional authorities first
issued public information about the outbreak. If pub-
lic information was issued in the evening, the midpoint
was taken as the date of the following day.
Consequently, the outbreak midpoint divided the out-
break period into two phases: low and high public
awareness, respectively. For outbreaks without any
official public information, the midpoint was defined
by the date of the first consumer complaint to the
regional or local authorities.

For each outbreak, two outbreak periods were
defined with respect to the midpoint, one narrow
(±7 days, 15 days in total) and one wide (±14 days,
29 days in total). For each outbreak, two baseline
periods were also defined, ±14 days and ±28 days,
respectively, minus the corresponding outbreak
period, creating baseline periods of 14 and 28 days.
Daily count data were plotted and visually inspected
for each combination of outbreak and source of
data, and also extracted and summed for outbreak
and baseline periods. The sums of signal counts for
outbreak and baseline periods were compared using
Pearson’s χ2:

χ2 = (OS− EOS)2
EOS

+ (BS− EBS)2
EBS

,

where OS is sum of outbreak signal counts, EOS is
expected outbreak signal counts, BS is the sum of
baseline signal counts, and EBS is the expected base-
line signal counts.
Furthermore:

EOS = OD
OD+ BD

× TSC,

EBS = BD
OD+ BD

× TSC,

where OD is number of days of the outbreak period,
BD is number of days of the baseline period and
TSC is total signal count (i.e. OS+BS).

The STN ratio was calculated by dividing the
difference in means between signal counts for out-
break baseline periods by the standard deviation of
the baseline counts:

STN = mean(OSC) −mean(BSC)
SD(BSC) ,

where OSC is daily signal counts during the outbreak
period, BSC is the daily signal counts during the base-
line period and SD(BSC) is standard deviation of
daily signal counts during the baseline period.

Outbreak signals were considered validated if
the following criteria were met: (1) positive visual
inspection; (2) STN>1; and (3) χ2>6·635 (upper
limit for 99% confidence) for at least one time period
(2 or 4 weeks).

Signal estimation

For the validated outbreak signals, the signal rates,
i.e. the signal-to-case ratios, were estimated. This
was done by calculating the deviation of signal counts
from their expected values for observed outbreak
periods, and then relating the magnitude of deviation
to the number of cases in the outbreak:

SR = SCO − SCE

NC
,

where SR is signal rate (signal-to-case ratio), SCO is
signal count for the observed outbreak period, SCE

is expected signal count for the observed outbreak
period and NC is total number of outbreak cases,
according to epidemiological studies or official out-
break reports.

The observed outbreak periods should not be
confused with the fixed outbreak periods defined
for signal validation. The observed periods were
defined by pooling existing information on the out-
breaks, including epidemiological studies, outbreak
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investigations and the syndromic data sources in ques-
tion. The criterion was to define periods broad enough
to cover real outbreak durations, while as narrow
as possible to minimize signal noise. Small variations
in observed outbreak periods were not critical for
the point estimations of signal rates, although they
influenced the confidence intervals.

Regression analysis of signal counts on munici-
pality population size, excluding the targeted munici-
pality, was used to estimate the expected (predicted)
signal count and the prediction interval for the tar-
geted municipality. Linear regression was used when
the mean signal counts for the observed outbreak
periods were >25. For mean signal counts <25,
Poisson regression analysis was used. The linear
regression model was as follows:

SCE = β1 × population size+ β0,

SCO = β1 × population size+ β0 + residual,

SR = SCO − SCE

NC
,

SCE,High = SCE + 2× PE,

SCE,Low = SCE − 2× PE,

PI :
SCO − SCE,High

NC
,
SCO − SCE,Low

NC

[ ]
,

where PE is the prediction error in the regression
model for the targeted municipality, SCE,Low(High) is
the low(high) limit of expected signal count for the
outbreak period and PI is the prediction interval.

Signal detection

For the largest outbreaks and the data source with the
largest STN and highest SR values, a signal detection
analysis was carried out to evaluate the potential of
different data streams for EED, i.e. outbreak signal
detection before the outbreak midpoint. For the
observed outbreak periods before the outbreak
midpoints, a binomial distribution was applied and
expected values and standard deviations of daily sig-
nal counts were calculated. The signal count at day
t for municipality i (Ct,i) was classified as an outbreak
signal if it exceeded a threshold Tt,i:

Tt,i = max(L,V ),

L = [0, 1, 2, 3, . . .],

V = (E[Ct,i] + L× SD(Ct,i)),

L = [0, 1, 2, 3, . . .]E Ct,i
[ ] = pt,i ×Ni,

SD(Ct,i) =
�����������������������
Ni × pt,i × (1− pt,i)

√
,

pt,i =
∑ni

j=1,j=i

∑
τ Cτ,j

4×∑ni
j=1,j=i Nj

,

τ [ {t− 14, t− 21, t− 28, t− 35},
where L is the minimum number of signal counts for a
positive outbreak signal, V is the threshold for a posi-
tive outbreak signal based on binomial distribution,
Ct,i is the daily signal count of municipality i at time
t, Ni is the population size of municipality i, pt,i is
the probability of a single 1177 call at time t from
municipality i and ni is the number of municipalities
in the county where municipality i is located.

The threshold Tt,i was taken as the maximum of the
fixed value L and the varying value V, defined by the
number L of standard deviations above the expected
value. The level L set the minimum number of signal
counts that the daily count needed to exceed to qualify
as a positive outbreak signal. Daily counts exceeding
level 3 (low) were described as weak signals and
daily counts exceeding level 5 (high) as strong signals.
The probability pt,i was calculated on the basis of
the sum of signal counts in a county for four week-
days, 2–5 weeks back in time, divided by four times
the population size of the county.

To evaluate the sensitivity and specificity of the
signal detection during observed outbreak periods,
the target municipality defined the outbreak con-
dition. The control condition was defined by non-
neighbouring municipalities in the same county.
Daily signal counts Ct,i above and below Tt,i in the
outbreak condition defined hits and misses, respect-
ively, whereas Ct,i above and below Tt,i in the control
condition defined false alarms (FA) and correct rejec-
tions (CR), respectively.

Sensitivity = Hits
Hits+Misses

,

Specificity = CR
CR+ FA

.

RESULTS

Signal validation

Nine outbreaks were included in the study (Table 1).
The three largest outbreaks were caused by contami-
nation of drinking water, and the others were related
to local foodborne contamination, e.g. a bakery,
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restaurants, schools and elderly care. For the three lar-
gest outbreaks, the number of cases was supported by
local cross-sectional surveys carried out by SMI or
regional county medical officers. For the remaining
six outbreaks, epidemiological data were limited to
outbreak investigations conducted by local health
protection offices, basing the case numbers on more
informal case-by-case interviews and questionnaires.

Outbreak signals were validated for the four largest
outbreaks (Table 2). The 1177 telephone triage data
captured all four, while the OTC sales data enabled
detection of the two largest. No outbreaks could be
validated in the web query data. The STN ratios
were generally higher for the 1177 triage data (1·41
<STN<5·6), about twice as high as for OTC sales
data on corresponding outbreaks (0·95<STN<2·37),
indicating stronger signals in the 1177 triage data.
A visual illustration of the differences in signal
quality was obtained by plotting the signal counts in
the 1177 and OTC data for the two largest outbreaks
(cf. Figs 1 and 2).

The OTC sales peaks lagged 2–4 days behind the
1177 call peaks. Elevated OTC sales were also more
short-lived than elevated call intensity. Changing
from a fixed outbreak period of 2 weeks to a period
of 4 weeks for the two largest outbreaks increased the
STN ratios for the triage data, whereas they remained
more or less the same for the OTC sales data. This indi-
cates that there were broader peaks in the 1177 triage
data than in the OTC sales data. For the two smaller
validated outbreaks, changing the period from 2 to
4 weeks resulted in a reduction in STN ratios, support-
ing the assumption of fast, transient outbreaks.

For the remaining outbreaks, visual inspections of
data and criteria for validation revealed no unusual
or irregular signal pattern at outbreak time. Further-
more, no association could be established between
outbreaks and web query counts, although results
were inconclusive for the largest outbreak. Visual
inspection and validation criteria showed peaks sur-
rounding the outbreak midpoint.

Signal estimation

For the outbreaks with validated signals, the following
observed outbreak periods were defined. For the
largest outbreak (Östersund), the starting and end
points were set to 1 November 2010 and 31 January
2011 (92 days). For the second largest outbreak
(Skellefteå), an epidemiological survey and the 1177
triage data indicated elevated gastrointestinal illnessT
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Table 2. Signal validation for the four largest outbreaks in Östersund, Skellefteå, Lilla Edet and Helsingborg

Source Statistics

Municipality

Östersund Skellefteå Lilla Edet Helsingborg

1177 calls Visual confirmation Yes Yes Yes Yes
Time window 2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks
Signal count Target 995 1316 669 1096 78 99 362 566

Baseline 321 429 427 486 21 35 204 405
Signal-to-noise ratio 4·16 5·6 1·41 3·22 2·64 2·15 2·82 0·93
Test χ2 591·6 420·4 75·0 214·4 57·1 28·4 66·8 21·4

P <0·001 <0·001 <0·001 <0·001 <0·001 <0·001 <0·001 <0·001

Over-the-counter Visual confirmation Yes Yes No No
sales Time window 2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks

Count Target 1043 1487 751 1290 62 115 823 1537
Baseline 444 724 539 888 53 83 714 1401

Signal-to-noise ratio 2·37 2·05 0·95 1·07 0·12 0·35 0·2 0·16
Test χ2 202·0 237·3 21·8 60·8 0·2 4·1 2·0 2·4

P <0·001 <0·001 <0·001 <0·001 0·639 0·043 0·153 0·119

Web queries Visual confirmation Yes No No No
Time window 2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks 2 weeks 4 weeks
Count Target 2160 4867 1279 2525 816 1548 2106 3998

Baseline 2707 3945 1246 2687 732 1392 1892 3955
Signal-to-noise ratio −0·97 0·45 −0·12 −0·19 0·16 0·28 0·13 −0·08
Test χ2 105·1 66·8 1·2 12·3 0·6 3·7 1·4 1·2

P <0·001 <0·001 0·281 <0·001 0·435 0·054 0·229 0·279
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Fig. 1. Number of 1177 calls relating to adult gastrointestinal symptoms during the outbreaks in (a) Östersund and
(b) Skellefteå. The smoothed curve is based on a locally weighted polynomial regression performed with the R function
‘lowess’, using a smoother span of 14 days. The solid triangles indicate the call count at the outbreak midpoint, i.e. the
day when regional and local authorities issued official public information. The vertex indicates the signal count at the
midpoint.
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from the beginning of 2011. Therefore a long outbreak
period was defined: 15 December 2010 to 30 June
2011 (198 days). The data suggested a more rapid
increase in illness from March 2011 onwards.
Therefore a short outbreak period was also defined:
1 March to 30 June 2011. For the remaining two out-
breaks, the outbreak periods were clearly short and
were narrowly set to 7 days, ±3 days around outbreak
midpoints.

Details of the calculations can be found in
Supplementary Tables S1 and S2 (available online).
The regression analysis of calls relating to gastrointes-
tinal illness for all ages on population size resulted in
the following predicted signal rates (lower boundary,
upper boundary): 0·042 (0·028, 0·055) for Östersund;
0·061 (0·005, 0·116) for Skellefteå; 0·019 (0·016,
0·021) for Lilla Edet; and 0·111 (−0·036, 0·257)
for Helsingborg (Supplementary Table S1). When
the data were limited to adults (>17 years), similar
figures were obtained, but with narrower prediction
boundaries: 0·039 (0·030, 0·048) for Östersund; 0·054
(0·030, 0·078) for Skellefteå; 0·013 (0·011, 0·014) for
Lilla Edet; and 0·163 (0·053, 0·273) for Helsingborg.
Thus, adults represented most of the excess signals
due to the outbreaks.

Limiting the analysis to single gastrointestinal
symptoms in the 1177 triage data (adult diarrhoea,

vomiting and stomach pain), calls relating to adult
diarrhoea represented the majority of the excess
signals in the two largest outbreaks: 0·027 (0·025,
0·03) and 0·037 (0·030, 0·045) for Östersund and
Skellefteå, respectively. The outbreak in Skellefteå
was also marked by an elevated rate of adult vomit-
ing [0·011 (0·005, 0·017)], in particular in the first
phase of the outbreak [0·022 (0·009, 0·034)]. For the
outbreak in Lilla Edet, the two symptoms were
more balanced: 0·0067 (0·0058, 0·0071) and 0·0052
(0·0046, 0·0054) for adult diarrhoea and adult vomit-
ing, respectively. For Helsingborg, the signal rate
was highest for adult vomiting [0·070 (0·049, 0·092)],
followed by adult diarrhoea [0·046 (0·023, 0·069)].
The signal rate of stomach pain was only significant
for the outbreak in Östersund [0·0089 (0·0027,
0·0151)].

The regression analysis of OTC sales resulted
in signal rates with wide intervals: 0·032 (−0·001,
0·064) and 0·012 (−0·088, 0·111) for Östersund and
Skellefteå, respectively. The wider intervals compared
with the triage data indicate weaker specificity of
the OTC data. Further visual inspection of the
OTC data revealed a marked example of the weaker
specificity. One Swedish municipality, Strömstad,
demonstrated a clear extreme value during the out-
break period for Östersund, as well as during the
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Fig. 2. (a) Pharmacy over-the-counter sales of antidiarrhoeals and (b) daily sums of web queries on gastrointestinal
symptoms during the outbreak in Östersund. The smoothed curve is based on a locally weighted polynomial regression
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outbreak period for Skellefteå, without corroboration
from official outbreak reports (Fig. 3).

Signal detection

Due to the relatively weak signals in the OTC sales
data, signal detection analysis was limited to the triage
data. Furthermore, the week-long outbreak periods in
Lilla Edet and Helsingborg were comparatively short.
Visual inspection of data showed that early warnings
could at best be issued 1–2 days before the outbreak
midpoint, thus not warranting any signal detection
analysis. Therefore, the analysis was limited to the
larger outbreaks in Östersund and Skellefteå. Since
these both involved Cryptosporidium, the analysis
was further limited to three syndromes: all adult
symptoms of gastrointestinal illness, adult diarrhoea
and adult stomach pain.

When the thresholds forweakand strong signalswere
applied to the triage data on calls from Östersund,
a cluster of significant outbreak signals appeared for
the period 2–9 November 2010. The count data on all
adult symptoms of gastrointestinal illness together
resulted in three strong and three weak signals during
these days. There were one strong and five weak signals
for adult diarrhoea; and two strong and three weak sig-
nals for stomach pain. A cluster of strong and sustained

outbreak signals appeared on 21 November, 6 days
before the outbreak midpoint (Fig. 4).

During the initial phase of the outbreak period,
from 1 to 26 November, applying a single threshold
of 3 to count data on all adult gastrointestinal symp-
toms generated 17 outbreak signals, giving a sensi-
tivity of 0·653 (17/26). During the same period, no
outbreak signals were observed for controls, giving a
specificity of 1. Comparing adult diarrhoea, vomiting
and stomach pain, diarrhoea was the most efficient
classifier of outbreak signals, as judged by the overall
differences between hit rates and false alarm rates
(0·577). Detailed information on the effects of differ-
ent thresholds on the sensitivity and specificity for
different syndromes are given in Table 3.

The detection analysis of the outbreak in Skellefteå
revealed several strong and weak signals at the end of
2010 and the beginning of 2011 (Fig. 4). After this
cluster, strong and weak signals of adult diarrhoea,
vomiting and stomach pain reappeared in Skellefteå
sporadically until 20 March, after which strong and
weak signals of diarrhoea began to increase. Applying
a threshold of 3 from 15 December 2010 to 18 April
2011, the sensitivity was 0·416 for adult gastrointesti-
nal symptoms and 0·400 for adult diarrhoea, while the
specificity was 0·998 and 0·992, respectively. With a
shortened initial outbreak period from 1 March
2010 to 18 April 2011, the sensitivity for adult gastro-
intestinal symptoms and adult diarrhoea increased
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to 0·490 and 0·531, respectively, while still maintain-
ing high specificity (1 and 0·999, respectively).

DISCUSSION

To summarize the findings, outbreak signals were
validated in syndromic data for four out of nine
point-source outbreaks in Sweden between 2007 and

2011. The four largest outbreaks had significant
effects on signal counts in the triage data. The two lar-
gest outbreaks were also manifested in the OTC sales
data. No outbreak signal could be validated for web
query data. Several potential factors may have con-
tributed to the comparatively weaker sensitivity and
specificity of web query signals. Most importantly,
the web query data lack geographical resolution, i.e.
there is no geographical marker connected to an

Table 3. Signal detection analysis for the outbreaks in Östersund and Skellefteå

Municipality Threshold* Signal† Diarrhoea Vomiting Stomach pain Adult GI‡ All GI§

Östersund Low FAR 0% 0% 0% 0% 0%
HR 57·7% 3·8% 53·8% 65·3% 46·2%

High FAR 0% 0% 0% 0% 0%
HR 30·8% 0% 26·9% 46·2% 46·2%

Skellefteå Low FAR 0·8% 0·1% 0% 0·2% 1·5%
(long outbreak period) HR 40·0% 18·4% 16·0% 41·6% 30·4%

High FAR 0% 0% 0% 0% 0·1%
HR 13·6% 4·8% 4·8% 13·6% 9·6%

Skellefteå (short
outbreak period)

Low FAR 0% 0% 0·1% 0·1% 0·7%
HR 53·1% 2·4% 16·3% 49·0% 26·5%

High FAR 0% 0% 0% 0% 0%
HR 28·6% 0·8% 8·2% 18·4% 12·2%

* Low/High: +3/+5 standard deviations.
†FAR/HR: False alarm rate/Hit rate.
‡GI, Gastrointestinal illness (diarrhoea, vomiting, stomach pain).
§ Including children (<18 years).
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Fig. 4. Signal detection analysis. The stepped graphs represent daily counts of adult gastrointestinal (GI) calls during the
outbreak periods in (a) Östersund and (b) Skellefteå, before the outbreak midpoints (27 November 2010 and 19 April
2011, respectively). The solid and open circles indicate strong and weak outbreak signals when the detection algorithm
was applied to three streams of 1177 triage data: adult GI calls (upper circles), diarrhoea (middle circles), and stomach
pain (lower circles).

Syndromic surveillance for local outbreak detection and awareness 311

https://doi.org/10.1017/S0950268813001088 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268813001088


individual query, limiting the analysis to a spatially
unspecified population. In addition, the website
traffic is concentrated in the county of Stockholm,
but all included outbreaks occurred outside this
county. An alternative source to use would be Google
trends, but this source is associated with similar pro-
blems, i.e. limited temporal and spatial resolution
and non-transparent data formats. The usage of too
wide a geographical area may also explain the previous
conflicting findings reported for triage data [6, 7].

The OTC sales data were only sensitive to the two
largest outbreaks and revealed extreme values that
did not correspond to any known outbreaks. The
explanation is straightforward. First, the two largest
outbreaks involved diarrhoea as the main symptom,
while for the other two outbreaks the symptoms
were varied and more transient, making the use of
antidiarrhoeal medication less relevant. Second, in
May 2009, a pharmacy opened in a shopping centre
in Strömstad close to the border with Norway, after
which the OTC sales of antidiarrhoeals increased sig-
nificantly, from 19·8 units per day (S.D.=10·5), to 33·0
units per day (S.D.=15·3). These averages were calcu-
lated on daily volumes for 365 days preceding and
following the opening day, using ±30 days from the
opening day as a dead zone in the calculations.
Just-in-case rather than emergency purchases lower
the specificity of OTC sales. This behaviour may
partly explain discrepancies in previous studies using
OTC sales data for syndromic surveillance [8, 9].

The signal rates for 1177 calls varied from 1% to
10% depending on outbreak and syndrome. The
rates were higher for the smallest of the four validated
outbreaks (Helsingborg), but there are several reasons
for questioning the officially reported size of this out-
break. First, the number of outbreak cases (n=369)
was based on a local outbreak investigation relying
on traditional methods, i.e. case-by-case contacts,
and no cross-sectional survey was conducted in the
population. Second, since the outbreak involved a
common disease agent with well-known symptoms
(norovirus) during high season, the expectation is for
rather low contact rates. Third, as the outbreak passed
without an official Swedish public warning (VMA –

Important Message to the Public) the news media
coverage was limited. Considering these factors, the
signal rates in Helsingborg should be more in line
with those for the outbreak in Lilla Edet, which
involved the same agent, but in Lilla Edet, the signal
rates were about tenfold lower. Thus, an alternative
and more reasonable hypothesis for the high rates in

Helsingborg is that the outbreak was in fact larger
than the official figure, perhaps as much as tenfold
larger. This illustrates an important potential use of
syndromic surveillance for SA, i.e. outbreak size
estimation.

For several reasons, we decided to apply our own
detection algorithm, despite the availability of various
outbreak detection algorithms [13]. The objective was
to compare different data streams (symptoms), not
detection algorithms. Furthermore, dealing with
local point-source outbreaks, limited in space and
time, we needed to take spatial and temporal variation
into account, but exclude large-scale disease trends,
e.g. winter vomiting disease (norovirus). Last, we
wanted a simple detection algorithm that was suf-
ficiently transparent for non-statisticians. Practitioners
ultimately decide on which signals to act, and non-
transparent signals can then be a problem.

The two largest outbreaks were extended in time,
from one to several months. The detection analysis
showed that early warnings could have been issued
weeks to months in advance and could potentially
have contributed to crisis preparedness and preven-
tion, reducing the burden of disease. However, the
identification of outbreak signals does not by itself
constitute an efficient system for syndromic surveil-
lance or outbreak detection. Beyond outbreak signals,
the system must also include decision-making and
operational measures that aim at epidemic control
and outbreak management. Thus, it is impossible to
say whether the outbreak signals in question would
have affected the epidemics in Östersund and
Skellefteå.

This study shows that syndromic surveillance of
point-source outbreaks of acute gastroenteritis can
serve both SA and EED. In particular, telephone
triage data, with sufficient temporal and spatial resol-
ution, revealed clear and strong outbreak signals for
outbreaks involving more than 1000 cases, assuming
that the outbreak in Helsingborg was larger than the
official figure (n=369). However, it is still difficult to
generalize the findings. First, we lacked data on out-
breaks of moderate size (300–1000 cases). Thus, we
cannot draw any conclusion regarding outbreak detec-
tion limits from this study. Second, technological,
medical, psychological and organizational factors
influence signal rates. In order to determine the real
potential of syndromic surveillance, all these factors
need to be addressed and controlled in future research.
It is a difficult task, but essential if we are to improve
our capacity and capability for SA.
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Other important work that remains is to pool our
knowledge and experience of syndromic surveillance
of local point-source outbreaks across national
borders. For obvious reasons, large-scale epidemics
motivate international cooperation and research.
Only a handful of studies have been published on syn-
dromic surveillance for local point-source outbreaks.
Point-source outbreaks are hard to detect, monitor
and predict, thereby reducing the power of EED.
The problem is to a large extent due to the quality
of data, quality being proportional to outbreak size.
Small outbreaks do not motivate large investigations.
For the purpose of SA, however, we need better
data on local point-source outbreaks to map outbreak
characteristics and signal properties. By sharing and
evaluating local outbreak data across national bor-
ders, we will also be better equipped to synchronize
national syndromic surveillance systems that are
based on national, regional and local solutions to
healthcare information and communication.

SUPPLEMENTARY MATERIAL
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