
Canad. Math. Bull. Vol. 18 (2), 1975 

ON GL„(5) WHERE B IS A BOOLEAN RING 

BY 

H. GONSHOR 

The aim of this paper is to generalize the main results of [1] to GLn(B) by means 
of proofs which are more conceptual and less computational. In addition, by means 
of the Stone space we will obtain results which are new even for the case n=2. 
Finally we shall make some remarks of a categorical nature. 

The author is especially interested in the subject because of the overlap here of 
many areas of mathematics. Concepts from topology, model theory, and category 
theory are all relevant. In addition, a natural source of counter-examples arises in, 
of all places, complex variables. 

After the paper was written it has come to the attention of the author that some 
of the results are related to sophisticated results found in the literature. 

Results such as Theorem 1 occur in algebraic ^theory. In "Algebraic i£ Theory" 
by Bass (Benjamin, 1968) generalized Euclidean rings are defined, but the results 
there are irrelevant for Boolean rings since generalized Euclidean rings are integral 
domains. More relevant is Bass's "J£-theory and Stable Algebra" IHES, Publ. 
Math. No. 22, page 17-18 proposition 5.1(a). Theorem 1 of our paper can be 
obtained as a corollary by showing that n=l defines a stable range for GL(B) 
where B is a Boolean ring. The proof of the latter is essentially the same as the 
main part of our self-contained proof. In either proof, the critical fact used is that 
{a U b)=(a+ba'). (Thus £t- in the definition on page 14 may be taken to be a'i). 

Theorem 3 can be obtained from a paper by Arens and Kaplansky, "Topological 
Representations of Algebras", Amer. Math. Soc. Trans. 63 (1948). It would be 
necessary to apply Theorem 2.3 on page 461 to the biregular ring A of all nby n 
matrices over B. In order to do so one would have to check that the structure space 
of A is the same as the Stone space of B and that the three conditions in the latter 
theorem are satisfied. Although admittedly this is straightforward, this would 
appear to involve more work than the self-contained proof in the paper (especially 
if one uses the categorical approach in Theorem 4). A similar result is proved in 
the monograph by Pierce, "Modules over Commutative Regular Rings", AMS 
Memoir No. 70 (1967). This is expressed in a sheaf-theoretic form in Theorem 11.1 
on page 44. 

Let B be an arbitrary Boolean ring. For convenience we regard the Boolean 
ring as arising from a Boolean algebra and thus use the Boolean algebra operations 
freely. (A certain amount of intuition and motivation is lost if one insists on using 
the Boolean ring operations only.) 
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We summarize some elementary facts here that will be used later: 
0 and 1 are the same whether B is regarded as a Boolean algebra or ring. 

ab — a n b, a + b = ab' U a'b = a U b — a n 6. 

a2 = a, a + a = 0. 
In particular, a+b<a U b and a+b=a U b if ab=0. 
As a special case of the latter identity, a+b=a U ba'. 
Note also that 1 is the only unit in a Boolean ring. 

THEOREM 1. Every matrix in GLn(B) can be expressed as a product of elementary 
matrices. In fact, all the matrices which occur in the product are of the form I+aE^ 
where ij&j. 

Proof. Let MeGLn(B). Suppose (al9 a2,... , an) is the first row. Then 
Det(M)=l , i.e. J L M < = 1 . Now 2 L i M i < ^ L i M i < ^ L i ^ Therefore 
Ut

n
=1 tft=l. Now ax U a2=a1+a2ai. We add a[ times the second column to the 

first column thus obtaining ax U a2 in the upper left hand corner. Then we add 
(ax U a2y times the third column to the first column thus obtaining a± U a2 U a3 

in the upper left hand corner. It is clear that by proceeding inductively, we obtain 
ax U a2 - - - Uan=l in the upper left hand corner. For all i>2 we next subtract 
ai times the first column from the zth column. (Subtraction and addition are, of 
course, the same for Boolean rings. It seems preferable in this case to say "sub
tract" for psychological reasons.) The top row now has the form (1, 0 , . . . , 0). 
Next, we can make all the entries in the first column 0 except for the first by the 
obvious row operations. We now have a block matrix and can continue in the 
same way on the submatrix obtained by eliminating the first row and column. 

By induction we end up with the identity matrix. The result now follows from 
elementary matrix theory. 

REMARK 1. This technique can be generalized to arbitrary matrices. In general 
we can guarantee to end up with a diagonal matrix of the form 

[a1 Ol 

L0 aj 
where (v0(^i>^+i)- Since we are interested primarily in invertible matrices in 
this paper we leave this as an exercise to the reader. 

REMARK 2. The proof seems similar to the standard proof for Euclidean rings. 
Actually, although Boolean rings look so different from Euclidean rings in many 
respects they have something in common, so that a unified proof is possible for 
both cases. They both have the property that any ideal (a, b) can be written in 
the form (c) where c can be obtained in a finite number of steps from a and b by 
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linear combinations in which one of the coefficients is always 1. For Euclidean 
rings this is, of course, the Euclidean algorithm. For Boolean rings we have 
(a, b)=(a U b) and a U b=a+ba'=b+ab'. Hence a single step suffices and one 
can even choose at will which element is to have coefficient 1. This makes the 
details of the proof easier for Boolean rings than it is for Euclidean rings. 

Our main process for splitting matrices will be independent of Theorem 1. We 
shall deal with finite partitions of B, i.e., sets of the form {el9 e2,. . . , en} with 
ete,=0 for ij&j and U ^ ^ = 1 . First we have a general result about idempotents 
valid in any commutative ring R. 

LEMMA 1. Let e be idempotent. Then the map A-^>\ +e(A—\) is an endomorphism 
ofGLn(R). 

REMARK. It is convenient to express the map as T6:l+A->l+eA. 

Proof. T[(l+A)(l+B)]=T[l+A+B+AB]=:l+eA+eB+eAB. T(l+A)T(l + 
B)=(l+eA)(l+eB)=l+eA+eB+e2AB. Since e is idempotent both results are 
the same. Clearly T(l)=l. If 1+A has 1+B as inverse then 1+eA has 1+eB 
as inverse. Hence T maps GLn(R) into GLn(R). 

LEMMA 2. Ifef=0 then (I+eA)(I+fA)=I+(e+f)A. 

Proof. Trivial. 

LEMMA 3. Ifef^O then (I+eA)(I+fB)=(I+fB)(I+eA). 

Proof. Both sides equal I+eA+fB. 

LEMMA 4. TeTf=T6f. In particular TÎ=Te and if ef=0 then TeTf maps every
thing into I. 

Proof. Trivial. 

LEMMA 5. Te restricted to GLn(0, 1) is an isomorphism onto the set of all invertible 
matrices of the form I+A where the entries in A are either 0 or e, (It is understood 
that e^O.) 

REMARK. The diagonal entries of I+A are, of course, either 1 or e'. Note again 
the preference in expressing matrices in the form I+A. 

Proof. Since 0 entries remain 0 and 1 entries become e the map is clearly 1-1. 
Now every invertible matrix of the required form is clearly of the form I+eA 
where I+A is a matrix of O's and l's. Hence to complete the proof it suffices to 
show that if I+A is not invertible then neither is I+eA. Now if I+A is not in
vertible then Det(/+ A)^\. Since the only entries are 0 and 1, Det(/+,4)=0. 
Hence 

e De t ( /+^) = Det e(I+eA) = Det(eI+eA) = e Det(7HM) = 0. 

Therefore Dtt(I+eA)£e'<l. Thus I+eA is not invertible. 
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We are now ready to discuss the splitting process. First let ex, e2,... , en be a 
partition. 

LEMMA 6. The map (xl9 x2,. . . , *„)—•XILi Te (x{) is an isomorphism from the 
n-fold direct product of GLn(0, 1) with itself into GLn(B). 

Proof. By Lemmas 1 and 3 it is a homomorphism. By Lemma 4 

0» n w T„(xt). 

Combining this with Lemma 5 shows that the map is one-one. 
We now show how every matrix in GLn(B) can be expressed in the form 

U L i Te(xi) for a suitable partition. For a finite Boolean algebra we shall use the 
partition by the atoms. In the general case the partition will depend on the matrix. 

In fact, we will choose the atoms in the Boolean algebra generated by the entries 
of the matrix. Specifically, if the entries are al9. . . , am then the atoms are the non
zero elements of the form IJf=i ^i where b~ai or a[. Each atom e has the im
portant property that for every entry a, ea=0 or ea=e. 

Let el9 e2,. . . , en be such a partition and suppose I+A e GLn(R). Then by 
Lemma 2, / + ^ = X X L i (J+MO- Each I+e{A is invertible. Because of the above 
property and Lemma 5, I+e{A has the form Te.(x^). This proves the following 
lemma. 

LEMMA 7. Every element in GLn(i?) can be expressed in the form J J L i ^e(xi) 
for some partition (e), e2,. . . , en). 

REMARK. Clearly, if a partition works for a given A so does any refinement. 
Hence a common partition can always be found for a finite set of matrices. 

Lemmas 6 and 7 are enough to definitively settle the finite case. 

THEOREM 2. If B is the finite Boolean algebra with n atoms, then GLn(i?) is 
isomorphic to the direct product of GLn(0, 1) with itself n times. 

Proof. Lemma 7 says that the map in Lemma 6 is onto in the special case where 
the e's are the atoms. 

The general case is more complicated since the partitions are not fixed. However, 
we can at least amalgamate the e/s corresponding to the same x if we desire. 

Many of the results of [1] follow immediately from what we have so far; e.g., 
as a consequence of Theorem 2 we have [1, Theorem 5]. The decomposition de
scribed here is obtained in a different way in the special case n=2 for finite B in 
the proof of [1, Theorem 6]. It is of interest to compare the two styles. In [1] the 
explicit structure of GL2(0, 1), i.e., as £3 plays an important part whereas in our 
approach the specific properties of GLn(0, 1) never arise. We also note that the 
form listed in the statement of [1, Theorem 1] is essentially the same as the ex
pression on the top of page 269 in [1]. An expression such as the latter which is 
nothing but J J Te (x{) in our notation can be obtained by our procedure for an 
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arbitrary Boolean algebra using amalgamation and the explicit structure of 
GL2(0, 1). In [1] a counting argument shows that every matrix has the required 
form in the finite case. One can get from the expression on top of page 269 to [1, 
Theorem 1] by changing the parametrization. This is easy to see if the form in 
Theorem 1 is expressed in the language of Boolean algebras. We let a°=(a1 ± 
a2 ± az ± a* ± a5)' and then make the substitution: 

a0 U a1 U a2 U a4 = a 

a1 U a4 = x 

a2 U a4 = x' 

a5 = w 

Lemmas 6 and 7 heuristically suggest that the matrices of GLn(B) may be re
garded as finite functions from B into GLn(0,1) where the domain changes with 
the function. This situation can be handled very nicely by means of the Stone 
space. Let S be the Stone space corresponding to B and let E be the clopen set 
which corresponds to e e B. We can now state the main theorem. 

THEOREM 3. (The main theorem). GLn(B) is isomorphic to the set of all con
tinuous functions from S to GLn(0, 1) where GLn(0, I) is given the discrete topology 
and multiplication is defined in apointwise manner. Specifically the isomorphism V 
takes Yl Tei(

xi) *nt0 the function which is x{ on E{for all i. 

Proof. By Lemma 7 every matrix can be expressed in the required form. We 
first show that the mapping V is well-defined. Suppose a matrix has two represen
tations J I Te(xt) and XT Tf{yù- Then the partitions {ex) and {ft) has a common 
refinement {gj. Each product can be expressed as a product with respect to the 
partition {gj by means of Lemma 2. In fact, we can do this in a finite number of 
steps of the following type: Let e=f+g with fg=Q9 then change T6(x) to Tf(x)T„(x). 
The uniqueness result in Lemma 6 says that the representations in terms of {g{} 
are necessarily identical in both cases. It therefore suffices to show that each step 
mentioned above leaves the function unaltered. But this is obvious since e=f+g 
mthfg=0 implies that e=f+g withy£=0 and hence being x on E is the same 
as being x on/and x on G. 

By using a common refinement and the fact that Te is a homomorphism it is 
easy to see that F is a homomorphism. Again by using a common refinement, it 
is clear that different matrices must differ in the corresponding xt for some ei9 

hence they give rise to different functions. Thus Fis one-one. 
Now every product of the form J J Te(x^ is invertible. Hence the image of V 

consists of the set of all functions / which can be obtained by means of a finite 
partition of S into clopen sets {£J and on each E{ an arbitrary choice of an element 
in GLn(0,1) for its value. It is well-known and easy to see that this gives precisely 
the set of continuous functions. 
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As an immediate corollary we have the result in [1, Theorem 2] that the sixth 
power of any element in GL2(B) is 1. This could of course also have been obtained 
earlier from Lemma 7. 

More generally, since the main theorem expresses GLn(B) as a subdirect product 
of groups of the form GLn(0,1) it follows that every universal Horn sentence true 
in GLn(0, 1) is automatically true in GLn(B). We can say even more in our situ
ation; namely, every Horn sentence is preserved even if it is not universal. Techni
cally speaking, this follows from the fact that Skolem functions can always be 
chosen to be continuous because of the nice nature of the topologies involved. 
This is not always true for subdirect products. The ring of analytic functions in 
the unit circle does not satisfy the sentence (yx)(3y)(y2=x) even though Z does. 
Sentences that are not Horn are not necessarily preserved. As an example, we can 
take GL2(J?)and the sentence (v*)(x3=l V x2=l). This is true in GL2(0, l)=S3 

but not in GL2(i?) for any other B. 
Theorem 3 is also useful for the light it sheds in the case where Bx is the ring 

of all finite and cofinite subsets of / as discussed in [1] starting at the last line on 
page 269. The Stone space is the one point compactification of the integers, hence 
the continuous functions may be regarded as the set of all ultimately constant se
quences. This makes the structure of the group quite transparent. We have a coun
table direct sum of copies of GLn(0, 1) together with an extra copy of GLn(0, I) 
[the set of constant functions] which generate GLw(i?). 

Theorem 3 is not too useful for the case where B is the free Boolean algebra on 
countably many generators also studied in [1]. In that case the Stone space is the 
Cantor set. Continuous functions on such a space are not succinctly described so 
that the point of view in [1] appears to be the best. 

We finally make some remarks of a categorical nature. The reader who is pro
ficient in thinking categorically will notice that the main results can be regarded 
from a different point of view. GLn may be regarded as a functor from rings to 
groups which obviously preserves monies. It follows from Theorem 1 that GLn 

restricted to Boolean rings preserves epics. GLn also preserves direct products. 
Many of the earlier lemmas can be proved categorically using this fact by means of 
suitable identifications. We preferred our approach since the direct proofs are easy, 
and on the other hand the identifications used in the categorical approach re
quire some caution. 

Anyway, we note that (0, 1) is an injective cogenerator in the category of Boolean 
algebras. More important, B can be expressed in terms of (0, 1) in a special way, 
i.e., as a direct limit of monies of algebras which are finite direct products of 
algebras of the form {0, 1}. In fact, let the index set be the set of partitions of B 
and the ordering defined by refinement. Corresponding to the index (el9 e2, . . , en) 
we have the «-fold direct product of {0, 1} with itself {0, l}eix {0, l}e2 • • • {0, l}e

n 

indexed by the e's. For a simple refinement, i.e., one in which e{ is replaced by 
ft and g{ we have the map induced by the maps which are fixed on {0, l}e. foryV* 
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and for which {0, 1}, ->{0, l}/fX {0, 1}^. is the diagonal map. It is easy to see that 
B itself is the direct limit of this family. The best way to see this is probably by 
regarding the elements of B as continuous characteristic functions on S. The maps 
then become ordinary inclusions. 

We can now generalize the main theorem from GLn to a large class of functors. 

THEOREM 4. Let F be a functor from Boolean rings to a category of algebras 
which is closed with respect to directed unions. Suppose F preserves products and 
direct limits of monies. Then F(B) is isomorphic to the set of all continuous functions 
from S to F(Q, 1) where F(Q, 1) is given the discrete topology and the operations are 
defined in apointwise manner. 

REMARK. We use "algebra" in the sense of universal algebra. 
The proof follows easily from the previous remarks. Thus in GL2 we generalized 

not only from 2 to n but we also generalized out the GL part ! 
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