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Abstract

A substance carried convectively through the liver by the blood undergoes two successive
enzymatic transformations. The resulting concentrations of the three forms of the
substance are determined, as functions of position along the blood flow in the steady
state, by coupled ordinary differential equations of the first order on a finite interval. The
densities along the blood flow of the activities of the two (immobile) transforming
enzymes are described by two non-negative and normalised functions of position.

The problem, suggested by recent experimental results, is to choose these two functions
so as to minimise the concentration of the once-transformed (intermediate) form of the
substance at one boundary (the liver outlet). That minimisation is particularly significant
biologically when the intermediate form is toxic and the second transformation renders it
harmless. In this problem of optimal control (exerted perhaps by natural selection), the
classical approach through Euler's equations is inapplicable because of the constraints on
the two density functions. Moreover, w len the enzyme kinetics and hence the differential
equations are non-linear, the functional to be minimised is not obtainable explicitly.
Instead it appears, after some manipulation of the coupled equations, as the terminal
boundary value of the solution of a non-linear Volterra integral equation, which involves
the two density functions (one explicitly and one implicitly) as control variables.

Appropriate existence, uniqueness and boundedness results are obtained for the solu-
tion of this integral equation, and the problem is then solved rigorously for one class of
non-linearities (including saturation kinetics). Some unanswered questions are posed for
another class (including substrate-inhibition kinetics).

1. Introduction

Several physiological functions of the liver involve blood-borne substances
which enter liver cells and there undergo single or successive transformations as a
result of activities of cellular enzymes. In this context the substances are called
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[21 Optimal control in the liver 539

substrates of the enzymes. The concentrations of the substrates can be monitored
in the blood at the inlet and at the outlet of the liver, and they can be varied
experimentally at will at the inlet. What conclusions can be drawn about the
spatial distributions of the enzyme activities over the intact liver, from the way
the liver transforms the influxes of substrates into outfluxes? In particular: would
all liver cells show the same enzyme activities if the same amounts of substrates
were presented to them by the blood? It was long believed that they would [8],
that is, that liver cells are functionally homogeneous.

However, recent analyses [2,3] of experimental data [10] concerning particular
substrates suggest that, quite to the contrary, qualitatively different enzyme
activities take place in distinct spatial zones arranged along the direction of blood
flow. This arrangement appears to be such as to minimise the outflux concentra-
tion of a metabolite substrate made in liver cells from a precursor substrate.
When the metabolite is toxic, such minimisation amounts to optimal control of
the detoxification of the liver as a biochemical reactor (see Section 6).

When this hypothesis is to be examined mathematically, allowance must be
made from the outset for the gradients of substrate concentrations that develop
between the inlet and the outlet as a result of the interplay between the enzyme
kinetics in each liver cell, and the unidirectional blood flow through the liver. The
problem has so far been studied only for linear (first order) enzyme kinetics [2,3],
and even then somewhat heuristically. Such kinetics are valid at low substrate
concentrations, whereas physiologically important forms of cellular enzyme kinet-
ics are often non-linear at higher concentrations [7].

In the present work we therefore generalise this minimisation problem to
include realistic types of non-linear cellular enzyme kinetics, we solve it rigorously
for one class of such kinetics, including linear kinetics, and we pose some
unsolved problems for another class. In general, the functional to be minimised in
each case (representing the outflux concentration of metabolite) cannot be written
down explicitly, but is defined implicitly by a pair of coupled non-linear differen-
tial or integral equations (ultimately reduced to one). These involve two density
functions which describe the fixed longitudinal distributions of the two relevant
enzyme types in the liver, and which are essentially the "control variables" in the
problem. That these functions must be nonnegative and normalised makes it
impossible to apply the classical methods of the calculus of variations. The
problem of existence of a minimising pair is further complicated by the fact that
the minimum is sought over a set which is not compact, and not even weakly
compact.

Because of the novelty of the mathematical problem, we state it at the outset
unencumbered by its unfamiliar biological background. Let X and L be given
positive constants, and let /? be a given real-valued function on [0, X], Lipschitz
and non-negative. Consider all pairs of real-valued functions {<$, g) on [0, L],
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with 3> absolutely continuous and nondecreasing from $(0) = 0 to $(L) = X;
and with g non-negative and Lebesgue integrable, and such that

fLg(x)dx=\. (1.1)
Jo

Then, for each such pair and for 0 < x < L, consider the function M{x) defined
by the integral equation

M(x) = 9(x) - fXg(s)IS(M(S)) ds. (1.2)

The problem is to find which pair (or pairs) {$, g} minimise the value M{L).
Before this problem can sensibly be tackled, certain preliminary questions arise,

in particular concerning the existence, uniqueness and boundedness of the solu-
tion of equation (1.2) which is in general non-linear. The proofs of the ap-
propriate theorems, which are stated in Section 4, are presented in Appendices A
and B. (It is not sufficient to refer to standard theorems which provide only local
results for non-linear equations, or global results for linear equations.)

Following an introductory examination in Section 3 of the simplest case, where
/?(M) = mM with m a positive constant, we solve the problem completely in
Section 4 in the more general case that /?' > 0 on (0, X), /? being continuously
differentiable on [0, X]. Certain unanswered questions are raised in Section 5
concerning cases where /? does not increase monotonically on [0, X]. Partial
results on the existence of minimising pairs {$, g} in these cases are provided in
Appendix C.

The physiological and biochemical modelling leading to this mathematical
problem is concentrated in Section 2. Only a few interpretative biological com-
ments seemed essential in Sections 3-5, and these are enclosed in square brackets
in order not to impede the flow of the mathematical argument.

2. Physiological background and formulation

The contact between blood and liver cells is optimised in the healthy liver by
the manifolding of the blood flow through many parallel capillaries, called liver
sinusoids, which are lined with monolayers of liver cells and are just wide enough
to pass blood cells (the sinusoidal flows reunite at the outlet into the liver vein).
These special circumstances lead to considerable simplifications of the modelling:
we refer to previous work ([1,5], and references therein) for their detailed
justification. Substrate diffusion along the sinusoid is negligible compared with
convective transport. Blood flow defines a convective transit time through each
sinusoid. On that time-scale, substrate equilibration across each sinusoidal cross-
section (including, for substrates considered here, transport into and out of liver
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cells) is so rapid that the activities of the cellular enzymes can be described in
terms of volume sinks and sources, rather than by boundary conditions on the
walls of the sinusoids.

We consider steady-state enzymatic transformations of a substrate in two
consecutive steps. A precursor of concentration P > 0 is infused steadily through
the inlet and is transformed by a cellular enzyme into a metabolite of concentra-
tion M > 0, which is in turn transformed by another cellular enzyme into its
conjugate of concentration M > 0. The precursor, the metabolite and its conjugate
are exchanged steadily between the liver cells and the ambient blood, which
sweeps all three species towards the outlet.

In a single sinusoid, we put the *-axis along the blood flow, with inlet at x = 0
and outlet at x = L. The rate of blood flow through the sinusoid is denoted by F,
and since the flow is practically incompressible, the value of F is independent of x
even if the cross-sectional area of the sinusoid varies with x. Blood cells filing
through the sinusoid hinder the establishment of radial velocity distributions
(such as the Poiseuille distribution found in larger vessels), so that the use of only
the total rate F of sinusoidal flow suffices for describing effects of convection in
the present context.

Suppose that the rate of transformation of the precursor to the metabolite at
each relevant enzyme molecule is given by a non-negative function a(P) of the
local concentration P of precursor. There is such a large number Np of these
enzyme molecules that we may think of a continuously varying density of them
along the sinusoid, the fraction of them between the cross-sections at x and
x + dx being/(;c)S.x, with

f(x)>0, fLf{x)dx=\. (2.1a,b)

(Actually, the condition that / be continuous is unnecessarily stringent, and we
shall shortly relax it.) The totality of such enzyme molecules positioned along the
sinusoid would give a transformation rate NPa(P) if they all met the same
precursor concentration P. In fact, P varies with x from P(0) at the inlet to P(L)
[< P(Q)] at the outlet, and the transformation rate between x and x + Sx is
therefore given by Npf(x)a(P(x)) 8x. The steady-state continuity equation for
P(x) is then

FP'{x) = -NPf(x)a(P). (2.2)

The decrease in P between x and x + 8x provides the source of M, which is in
turn decreased by transformation to M by a second type of enzyme. Each
molecule of this second enzyme is assumed to act at a rate given by a certain
non-negative function b(M), and the large number NM of them is assumed to be
distributed over the sinusoid in accordance with a second density function g(x).
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Then, in the steady state,

FM'(x) = NPf(x)a(P) - NMg(x)b(M), (2.3)

where

g(x)>0, [Lg(x)dx=\. (2.4a,b)
Jo

Similarly^ the decrease in M between x and x + Sx provides the source of M;
thus

FM'(x) = NMg(x)b(M). (2.5)

Measurements on the liver provide information about F and the functions
NPa(P), NMb(M) as well as the boundary values of P, M, M at x = 0 and x = L
[3]. We treat the functions a and /?, defined by

a(P) = NPa(P)/F, p(M) = NMb(M)/F, (2.6a,b)

as given in what follows, and we refer to them as kinetic functions. They are
typically continuous on [ 0, oo) and positive on (0, oo), with

a(0) = 0 = /B(0);

and each typically has a finite positive derivative (from the right) at P = 0 or
M = 0, whichever is appropriate. This last condition reflects the circumstance
that linear (first-order) kinetics is necessarily approached at sufficiently low
substrate concentrations. These properties will be assumed in what follows. Other
conditions (on /? in particular) will be described as needed.

One simple possibility is

a(P)=pP, j8(M) = mM, (2.7a,b)

with p, m positive constants. Then one has exactly linear kinetics at all substrate
concentrations for each type of enzyme. But there are other important possibili-
ties, such as [7]

saturation (Michaelis-Menten) kinetics: /?(M) = M/kr ' (2-8a)

substrate-inhibition kinetics: B(M) — , (2.8b)
1 + M/Kx + M1/KXK1 '

where m, Ku K2 are positive constants. Similar possibilities exist for a, and the
kinetic functions a and /? need not be the same for the two enzyme types.

In terms of a and /?, equations (2.2, 2.3, 2.5) become

P'(x) = -f(x)a(P), (2.9a)

M'(x) =f(x)a(P) - g(x)p(M), (2.9b)

M'(x) = g(x)0(M). (2.9c)
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We take

0, P(0) = Po > 0. (2.10a,b)

Then all metabohte appearing at the outlet from the sinusoid is produced in the
sinusoid from the precursor. We therefore expect, and shall prove below, that for
all x e [0, L],

P(x)^P0, 0^M(x)^X (2.11a,b)

where

X = P0-P(L). (2.12)

The boundary values of M, and indeed the differential equation (2.9c), do not
concern us here. Our main problem, for given a and /?, and given Po, is to
minimise the value of M(L) by suitably choosing the density functions / and g
subject to the constraints (2.1,2.4). The value of M(L) may be regarded as a
functional of / and g which is determined implicitly by the pair of equations
(2.9a,b), with boundary conditions (2.10). We are mainly interested in cases where
the minimising/and g do not in fact depend upon Po; this point will be discussed
below. (See Section 5 in particular.)

With regard to the smoothness of the functions / and g, it is most natural to
require only their (Lebesgue) integrability. Accordingly, the differential equations,
in particular (2.9a,b), should be interpreted in Caratheodory's sense [6]; equiva-
lently, we work instead with the corresponding Volterra integral equations

P(x) = Po - fXf(S)a(P(s)) ds, (2.13a)
•'o

M(x) = f[f(s)a(P(s)) - g(s)P(M(s))] ds. (2.13b)
•'0

It can be seen from the separability of (2.9a) (and the properties assumed of a)
that the solution of (2.13a) is the absolutely continuous, non-increasing function
P(x) defined by

P(x)dP

The value of P(L) is therefore independent of the choice of/satisfying (2.1), and
is defined by

Then X as in (2.12) is also independent of/, and 0 < X < Po.
For each/, we can define

(2.16)
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and then $ is absolutely continuous and non-decreasing on [0, L] , with

A. (2.17a,b)

Conversely, given an absolutely continuous and non-decreasing $ satisfying
(2.17), we can recover the corresponding / modulo a set of measure zero, by
defining P(x) via (2.16) and then using (2.9a).

Now (2.13b) can be written as

M(x)=*(x)-fXg{s)P(M(s))ds. (2.18)
•'0

We thus arrive at the mathematical problem stated in the introduction. We seek a
pair (or pairs) {<!>, g} , with $ an absolutely continuous and non-decreasing
function on [0, L] satisfying (2.17), and g an integrable function on [0, L]
satisfying (2.4), which together minimise the value at x = L of the solution to
(2.18). [In Section 4 we prove, under suitable conditions on /?, the existence and
uniqueness of the solution of (2.18) for each X and each candidate pair {$, g}.
Moreover, we show that this solution is (absolutely) continuous on [0, L] and
satisfies (2M lb).]

The following section contains an outline analysis of those cases where the
conjugation kinetics, associated with the kinetic function /?, is linear. The meta-
bolisation kinetics, associated with a, is left arbitrary to within the constraints
imposed above. In these cases one can obtain an explicit expression for the
functional to be minimised, and although the analysis will be superseded by the
rigorous and more general treatment to be given in Section 4, its presentation will
elucidate the nature of the problem and its solution.

3. The case of a linear kinetic function /?(M)

Here we have /?(Af) = mM, and the solution of (2.18) is seen to be

M(x) = «?"•<*> /V ( '>* ' (*) * . (3-0
Jo

where

[X(s)ds. (3.2)

Note that the conditions (2.4) on g define ¥ as an absolutely continuous,
non-decreasing function on [0, L], with

= 0, ¥(L) = m. (3.3a,b)
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Conversely, every absolutely continuous non-decreasing ¥ satisfying (3.3), defines
almost everywhere a g of the required type through (3.2). We see from (3.1) and
(3.3b) that

,*(*)(|>'(x) fa (34)

Our problem in these cases therefore reduces to the following: find two absolutely
continuous, non-decreasing functions 3> and ¥ on [0, L], satisfying (2.17) and
(3.3), which minimise the value of the functional

A = fLe*™<b'(x) dx. (3.5)

We set
X(x) = 9(x), Y(x) = <?*<*>, (3.6a,b)

and interpret (X(x), Y(x)) as Cartesian coordinates of a point on a curve,
parametrized by x, and lying in the first quadrant of the AT-plane (see Figure 1).
Then we see that A is simply the area bounded by this curve, the A'-axis, and the
lines X= 0 and X— \. We seek the curve which begins at (0,1) and ends at
(A, em), and which minimises this area, noting that since $ and ^ are non-de-
creasing, the slope of this curve must be nowhere negative.

•jn

FIGURE I. The two unknown functions of x can be transformed to X(x), Y(x) so that the path
PQR in the AT-plane minimises the integral of interest. The broken curve PR corresponds to a
classical view of liver cells, in a case of first-order metabolisation and conjugation kinetics, and is
non-minimising.
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The required curve is obviously the one which runs from (0,1) parallel to the
.Y-axis to (X, 1), then parallel to the Y-axis to (A, em), and the corresponding
minimum values of A and M(L) are

Aa6a = \, M(L)min = e~mX. (3.7a,b)

We see that the corresponding 4> and ¥ are by no means uniquely defined.
Indeed, their dependence on x is immaterial so long as the change in <t> from 0 to
X is accomplished before the change in ¥ commences, as x runs from 0 to L. That
is to say, it is required only that there exist a £ E (0, L) such that

9(x) = \, x>£; *(x) = 0, x<£. (3.8a,b)
For such a $ and * , it follows from (2.16), (2.9a) and (3.2) that

/(jc) = 0a.e., * > * ; g(x) = 0a .c , x<£. (3.9a,b)

[Then effectively all the metabolising enzyme is upstream of all the conjugating
enzyme. The interpretation of this result in terms of the enzyme kinetics seems
intuitively clear: the outflux concentration of metabolite is minimised if all
metabolite is created from the precursor upstream of the conjugating enzyme, so
that none misses any chance of being conjugated. By contrast, the classical
hypothesis of the functional homogeneity of liver cells [8] implies/= g on [0, L],
defining a different curve between (0,1) and (X, em) in the AT-plane and,
correspondingly, a larger value of M(L).]

Consider for example the simplest case, when both kinetic functions are linear
as in (2.7a,b). Equation (2.14) gives

where

x(x)=p[Xf(s)ds. (3.11)
•'n

Then P(L) = Poe-p, so that

X = P0(l - e~'), (3.12)

and the smallest value possible for M(L) is, from (3.7b),

M(L)min = Poe-m{\ - e-P). (3.13)

If on the other hand / = g we have x = p¥/m, and then, from (2.16), (3.6) and
(3.10), that on the corresponding curve in the AT-plane

Y=(l-X/P0Y
m/p. (3.14)
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For a typical m and p, this is the broken curve in Figure 1. The corresponding
value of M(L) is

[ P {e-m-e-")P0 if p¥=m,
M(L) = \ P~m (3.15)

[me'mP0 if p = m,

which is greater than M(L)atiB as in (3.13).
[It may be of interest to note here that when actual data from a case [10] with

a(P) — pP, fi(M) = mM (at low concentrations of P and M) were evaluated
statistically in terms of a simple overlap model of rectangular/(x), g(x), the most
probable overlap was zero, the median overlap was 17% and the odds against an
overlap greater than 50% were more than 40:1. From the same data, (3.15) was
refuted at the 0.004 level of statistical significance [3].]

4. Rigorous solution for a monotonically increasing kinetic function fi{M)

The reader may now wonder whether it is not true that, whatever the form of
the kinetic functions a(P) and fi(M), and whatever the value of Po, the smallest
value of M(L) is always obtained when (essentially) all the metabolising enzyme
is upstream of all the conjugating enzyme. Somewhat surprisingly perhaps, we
shall show in Section 5 that this is not so. However, for given a(P), there is a
class of kinetic functions /J(M) for which it is so, and it is for just this class that
we now present a complete solution of the problem.

A given kinetic function fi(M) is in this class if it increases monotonically with
M for all values of M that occur in the interval 0 < x < L, whatever the
concentration Po of precursor at entry into the sinusoid (x — 0). This happens
independently of a(P) if /?(Af) is monotonic for all positive M. It can happen
also if 0(M) ceases to rise monotonically at some sufficiently high value of M,
which however cannot be reached for any Po because of properties of a(P), such
as (2.8b) [saturation of metabolisation]. The condition on /? for membership of
this class depends on the form of a(P) as follows.

Consider the set of values of X [= Po — P(L), as in (2.12)] which are obtained
as the value of Po runs over (0, oo). This set depends on a through (2.15), which
defines P(L) and hence X for each Po. Three types of set can occur (recall that
a'(0 + ) > 0, a(0) = 0, and a(P) > 0 for P > 0):

(i)(0, oo), ( i i ) (0 , \ ) , (iii) (0, A], (4.1)

with X a positive constant. By examining the graph of the integrand in (2.15) in
each case, one can see that examples of the three types are provided by (i)
first-order kinetics (2.7a); (ii) Michaelis-Menten kinetics [cf. (2.8a)]; and (iii)
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substrate-inhibition kinetics [cf. (2.8b)]. In view of (2.1 lb), and corresponding to
(4.1), the requirement on )8 for membership in the class under discussion is taken
to be

/ ? ' ( M ) > 0 for ( i )Me[0 ,oo) , ( i i )Me[0 , X), (iii) M e [0, X].

(4.2)

The case when /} is linear, as described in Section 3, is included here whatever the
form of a, as is the Michaelis-Menten form (2.8a), since in both cases we have
/}'(M) > 0 for all M 3s 0. But a substrate-inhibited kinetic function fl(M) as in
(2.8b) is included only when the kinetic function a(P) leads to sets of X-values of
type (ii) or (iii) in (4.1), and then only for restricted values of the constants K}, K2

in (2.8b). [See equations (5.2).]
We now begin our exact analysis by establishing for (2.18), as promised in

Section 2, that there exists a unique solution, that this solution is continuous, and
that it satisfies (2.11b), whatever the form of fi(M). For reasons which will
become clear, we consider a more general equation than (2.18), involving a real
parameter a:

W(x, o) = 8{x, o) - fXg(s)f}(W(S, a)) ds, (4.3)
•'o

in which 8, g and /? are supposed given, and W is the unknown. In Appendix A
we present a proof, by the method of successive approximations, of:

THEOREM 1. Let S - [0, L] X [0,1]. / /
(i) 9: S -» R is continuous;
(ii) 101*£ X on S, X constant;
(iii) g: [0, L] -> R is integrable;

and either
(iva) /?: R -» R is Lipschitz,

or
(ivb) /? is Lipschitz and non-negative on [0, X]; g > 0; 6 > 0; and for each

a E [0,1], 6 is a non-decreasing function of x on [0, L]\
then (4.3) has a unique solution W, continuous on S.

Moreover, //(ivb) holds, then

0<W<\ (4.4)

on S. (Remark. If 0 is absolutely continuous with respect to x on [0, L], then so is
W.)

Taking 0(x, a) = o$(x) and M(x) = W(x, 1), we obtain the desired existence,
uniqueness and boundedness results for (2.18), since conditions (i—iii) and (ivb)
then hold.
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We return to consideration of (4.3), which we shall need to differentiate with
respect to a. Proceeding formally, we get

J 0 ^ (4>5)

Consider then the integral equation

W{(x, a) = dd{^0) - f*g(s)P'(W(s, a))Wx(s, o) ds, (4.6)

in which Wx is the unknown, and W is determined by (4.3). Under suitable
assumptions on /?' and dO/do, equation (4.6) has a unique and continuous
solution by Theorem 1, and it is natural to expect that this solution Wx is indeed
dlV/da. This is the content of:

THEOREM 2. If conditions (i-iii) of Theorem 1 hold, and in addition
(v) /?' is continuous on [0, \]\ /J s= 0; g > 0; and 0 > 0;
(vi) dO/do is continuous on S;

then (4.6) has a unique solution Wx on S, this solution is continuous on S, and it is
the derivative with respect to a of the function W satisfying (4.3).

For the more mathematically-minded reader, a proof is given in Appendix B.
Equipped with Theorem 2 we can prove the main results of this section.

THEOREM 3. Given a positive constant X, let /?: [0, X] -» R be continuously
differentiable, with /? > 0, /?' > 0. Consider pairs {<P, g) in which $: [0, L] -» R is
absolutely continuous and non-decreasing, and satisfies (2.17); and g: [0, L] -» R is
integrable and satisfies (2.4). For each such pair, define M by (2.18). Then a
sufficient condition that the pair {$, g) leads to the minimum value of M(L) is that
{$, g} satisfies

CONDITION A. There exists a $ e (0, L) such that

${x) = \, x>i\ g(x) = 0a.e., x < £ (4.7a,b)

If in addition, ft' > 0 on (0, A), then this condition is also necessary.

PROOF. For any pair {$, g}, consider the equation

W(x, a) = *(x) + a{\ - *(*)) - fXg(s)p(W(s, a)) ds, (4.8)
Jn

which is of the form (4.3). For a — 0, the solution of (4.8) becomes the solution of
(2.18), and in particular

W(L,0) = M(L). (4.9)
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On the other hand, for a = 1, (4.8) becomes

M{x) = X - fXg(s)p(M(s)) ds, (4.10)
•'0

where M(x) = W(x, 1). It is not difficult to solve (4.10) (by considering the
associated differential equation, which is separable) and to see that while M(L)
depends on X and /?, it is independent of {$, g).

From (4.8) we have, with »',(*, a) = 3V/(x, a)/da,

[
•'0

This is linear in Wl, and has the solution

Wx{x, o) = X- *(x) - [Xg(s)fi'(W(s, o))W,(s, o) ds. (4.11)
•'0

r in Wl, and has the solution

Wx(x,a) =[x-jrV(j)exp(jf'/8'(H'(ii,o))g(ii)di<) ds]

( f j (4.12)

Then, noting

X = (L$'(s) ds, (4.13)

we have

W,{L,o) = du)] ds\

(4.14)

By Theorem 1, W(u, a) e [0, X] in this equation, so P'(W(u, a)) > 0. Since
<£' s= 0 almost everywhere, we have W^L, a) < 0, that is

^-=£0, a 6 (0,1). (4.15)

This implies

W{L,0)>W(L,\), (4.16)

that is to say

M(L)>M(L). (4.17)

Suppose (4>, g) satisfies Condition A. Then for £ < x < L, (2.18) becomes

M(x)=X-fg(s)(i(M(s))ds. (4.18)

However, for £ < x *s L, (4.10) becomes

M(x) = X - fg(s)p{M(s)) ds, (4.19)
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and it is then clear that M(x) = M(x) for £ < x «2 L, so that, in particular

M(L) = M(L). (4.20)

In view of (4.17) this proves the first part of the theorem.
Now suppose that /?' > 0 on (0, X), and that the pair {$, g} minimises Af(L).

Then dW(L, a)/da = WX(L, a) = 0 for a G (0,1), and consequently

- exp J ( V ( W ( M , a))g(u) du\ = 0 (4.21)

almost everywhere on (0, L). Recalling that (2.4b) holds, let £ be the infimum of
values x such that Jog(s)ds>O. Evidently £ < L, and furthermore £ > 0 ,
otherwise (4.21) would imply

<P'(s) = 0 (4.22)

almost everywhere on (0, L), contradicting (2.17). It is obvious that g(s) = 0
almost everywhere on (0, £). W e n o w show that (4.22) holds for s > | : this will
complete the proof that {$, g} satisfies Condition A. Since

ffi'(W(u, a))g(u) du = p'(W(u, o)) fg(u) du (4.23)
•'0 •'0

for some u e (0, s) by the Mean Value Theorem, it follows that

(Sp'(W(u,o))g(u)du>0, s>£. (4.24)
•'o

Then (4.21) implies (4.22) for s > £, as required.

THEOREM 4. Let a:[0, oo)-* R be continuous, with a(0) = 0 and a > 0 on
(0, oo); and let a'(0 + ) exist and be positive. For each Po €E (0, oo) define P(L) via
(2.15) and then X via (2.12). Let X denote the supremum (possibly equal to + oo) of
the set ofX-values so defined; and let /? be continuously differentiable on [0, X) [or
[0, X]ifX-X for some Po] with (1 > 0 and ft' > 0 there. Consider pairs {/, g) of
integrable functions satisfying (2.1, 2.4), and for each such pair, define P and M on
[0, L] via (2.13a) and (2.13b), for each Po £ (0, oo). Then the minimum value of
M(L) is obtained for each and every PQ G (0, oo) if and only if {/, g) satisfies

CONDITION A'. There exists a £ G (0, L) such that

f(x) = 0a.e., x>£; g(x) = 0a.e., x<£. (4.25)

PROOF. Recall that, given {/, g} and Po, and defining X via (2.12), we can
define O on [0, L] via (2.16). Then O is absolutely continuous and non-decreas-
ing, and satisfies (2.17). Moreover, {$, g} satisfies Condition A of Theorem 3 if
and only if {/, g] satisfies Condition A', as can be seen from (2.14). We apply
Theorem 3 for each Po G (0, oo) (and, correspondingly, for each X in (0, X) or
(0, X], whichever is appropriate) in order to complete the proof.
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We could examine the extension of this result to the cases where /?' is nowhere
negative, but vanishes at some points in [0, X]. For any given value of Po, any pair
{/, g} satisfying Condition A' (or equivalently, any pair {<&, g} satisfying Condi-
tion A) will then still give rise to the least possible value of M{L) (see Theorem
3), but there may now exist pairs not satisfying that condition, which also produce
the minimum value. We believe that such other pairs can only be minimising pairs
for particular values of Pn\ only pairs satisfying Condition A' produce the
minimum M(L) for all Po €E (0, oo). However, we shall not attempt a proof here.

[Our analysis has concentrated on the values of substrate concentrations at
input to and output from a single sinusoid. If the form of the function a, and
likewise of /?, varies amongst the many sinusoids of the liver, the sinusoidal
outfluxes must be summed before comparisons can be made with the results of
sampling from the liver vein. This complication [1,5] does not affect the nature of
the result we have obtained here, so long as a and /} for each sinusoid satisfy the
general requirements of Theorem 4. If the output concentration of metabolite is
minimised for each sinusoid, it is minimised for the liver as a whole.]

The problem of maximising rather than minimising M(L) could conceivably be
of relevance for other enzyme types and other substrates in the blood. In contrast
to the minimisation problem, the maximisation problem is easily solved whatever
the precise form of a and f$. For given Po and corresponding X, (2.18) shows that
the largest possible value of A/(L) equals $(L) (= X), since g and ft are
non-negative. However, if {/, g} satisfies

CONDITION B: There exists a £ G (0, L) such that

/ W = 0 a . e . , x<Z; g(x) = 0a.e., x > £, (4.26)

then (2.14) and (2.16) show that $ = 0 on [(),£]. Then, under reasonable
assumptions about j8, (2.18) implies M = 0 on [0, £]. (Recall that /?(0) = 0.) But
then, using (4.26), we have M - O on (£, L] so that in particular, M(L) = A, the
maximum value. Furthermore, it is not hard to see, again with reasonable
assumptions about /?, that any {/, g) not satisfying Condition B cannot lead to
the maximum M(L).

[The interpretation of this result is clear. The outflux concentration of metabo-
lite is maximised if all metabolite is created from the precursor downstream of the
conjugating enzymes, so that none has any chance of being conjugated. The
outflux concentration M{L) of conjugate would be zero in these circumstances.]

5. Some unsolved problems

The results of Theorems 3 and 4 hinge on /? being non-decreasing at all values
of M which arise within the sinusoid, for various values of Po. For some forms of
]8(M), that need not be the case, as we have already indicated. The simplest
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realistic counterexample occurs when /?(Af) is reduced at very high metabolite
concentrations M by substrate inhibition of the enzyme [7], giving rise to ft as in
(2.8b).

For this particular /8, we have

$'{M) = w(l - M2/KiK2)/ (l + M/Kx + M2/KlK2f, (5.1)

so that

P'{M)>0, M<]/KlK2, (5.2a)

p'(M)<0, M>i/KlK2. (5.2b)

If Po < ]JKXK2, then certainly M < ^KtK2 throughout the sinusoid because of
(2.1 lb), since X < Po. It then follows from Theorem 3 that whenever Po < jKtK2,
the minimum M(L) is obtained if and only if {/, g} satisfies Condition A' of
Theorem 4 (so that the corresponding {$, g} satisfies Condition A of Theorem 3).

However, we shall now show that for this /?, such a condition on {/, g} (or
{<£, g}) is not sufficient to produce the minimum M{L) for all values of Po, if a is
such that X can become sufficiently large (for example, if a(P) = pP).

For X > 0, consider a fixed pair {$, g} satisfying the usual conditions, and in
addition g = 0 outside [L/3,2L/3], and $ = X on [L/3, L]. (Then Condition A
is satisfied with | = L/3.) We shall construct a modified pair {4>, g} [cf. (5.18)]
for comparison. Choose an integrable function \p on [0, L], with

(i)* = 0on[L/3,2L/3];
(ii) If Kx) dx = -k, f2

L
L/2 *(*) dx = k;

where kis a. constant with 0 < k < X;
(iii) \j/ < 0, and 4>(x) + /0* \j/(s) ds non-decreasing on [0, L/3];
(iv) ^ O o n [2L/3, L].

(For example, with 0 < y < 1 and k = yX, set \p = - y $ ' on [0, L/3]; <// = 0 on
[L/3,2L/3]; and $ = 3yX/L on [2L/3, L].)

Now consider, for (x, a) G S = [0, L] X [0, 1], the integral equation

W{x, a) = 9(x) + ofX^(s) ds - fXp(W(s, o))g(s) ds. (5.3)
Jo Jo

By Theorems 1 and 2, this has a continuous solution satisfying (4.4), and
moreover dW/do exists and equals W^x, a), where

W.ix, o) = fX4>(s) ds - fXp'(W(s, o))g(j)W,(j, a) ds. (5.4)
•'0 J0

This is hnear in Wx, and gives

) exp( j f > W > a))g(*) * )

f V [ ( T )] , (5.5)
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so that

fLp'(W(s, o))g{s) ds)

= -k+fL t(s)Lp(f2L/3l3'(W(u, a))g(u) du)} ds.
J2L/3 [ WZ./3 /J

(5.6)

We note next that

W(L/3,a) = X-ak, (5.7)

W(x, a) = \ - o k - [* B(W(s, o))g{s) ds, L/3 ̂  x *£ 2L/3,
JL/3

>X-k-B, (5.8)

where

B = sup{p(W)\WE[O,\)}. (5.9)

(For /? as in (2.8b), it is clear that B < mK]^/{2{K~X + {K[), the maximum of
/Son [0,oo).)

Suppose now that a is such that X can be attained with

) (5.10)

Then (5.8) implies that we can choose k such that

W{x,o)>\X, L/3 « x < 2L/3, (5.11)

and it follows from (5.2b) and (5.10) that

p'{W(x,a))<0, L/3^x<2L/3. (5.12)

Then, in (5.6),

exp( f2L/3p'(W(u, o))g(u) du)<\, (5.13)
V JL/3 I

L / ' u ) du]ds<k, (5.14)
J

J2L/3 [JL/3

and so
Wl(L,a)<0. (5.15)

Thus

t < 0 , a 6 (0,1), (5.16)

so that

W(L,l)<W(L,0). (5.17)
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Now W(L,Q) equals the value of M(L) obtained with the pair {$, g}, because
(5.3) reduces to (2.18) when o = 0. In the same way, W(L, 1) equals the value of
M(L) obtained with the pair {$, g} replaced in (2.18) by {$, g}, where

*(x) = *(*)+ f*tts)ds, (5.18)
•'o

and this value of M(L) is smaller than the former one, according to (5.17). Now
<f> is, like 0, absolutely continuous and non-decreasing on [0, L], and satisfies

*(0) = 0, * (L) = A, (5.19)

so {4>, g} is an allowable candidate as a minimising pair for M(L). Since {$, g)
produces a smaller value of M(L) than {$, g}, it follows that {$, g} cannot be a
minimising pair, even though it satisfies Condition A. [Thus, when some of the
metabolising enzyme is transferred to a location downstream of the conjugation,
and correspondingly, <& is changed to $, some metabolite loses its chance of
conjugation; but the effect of that on M(L) is outweighed by the effect of
reducing the high metabolite concentration inhibiting the conjugation.]

It is reasonably clear that this argument could be adapted to provide a similar
result for more general functions /? than (2.8b), so long as /?' is continuous and
negative on an interval [Mu M2], and a and Po are such that values of M in this
interval are attained within the interval 0 ^ x < L. To produce the minimum
M(L) in such cases, it is not sufficient that {$, g} satisfies Condition A, or
equivalently, that {/, g} satisfies Condition A'.

The question arises whether in such cases minimising pairs {/, g} exist at all;
and if they do, how they can be determined. We have no answer to the second
question, and only a partial answer to the first: in Appendix C, we show that
minimising pairs {$, g), and hence {/, g}, do exist for all /? as in Theorem 1,
under the additional assumptions that all candidates {$, g} satisfy

fLg(xf dx < H, fLV(xf dx ^ H, (5.20)
•'o •'o

for some (arbitrary) constant H. These assumptions are unnatural in the biologi-
cal context of the problem, and it would be preferable if they could be removed.
(We remark that it is possible to replace the second powers in (5.20) by pth
powers, for any p > 1, and still prove existence, but such conditions remain
unnatural.)

Supposing minimising pairs do exist for each Po £ (0, oo), do any exist which
are minimising for every such PQ1 For the f$ of (2.8b), it is now clear from the
foregoing that if such pair(s) do exist, they must satisfy Condition A', but that
this alone is not sufficient. We conjecture that in these cases such "universal"
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minimising pairs do not exist. Rather we expect that, for values of Po leading to
sufficiently large values of X, minimising pairs {/, g} do not satisfy Condition A'
—in short, that for such values of Po, minimising density functions / and g must
have overlapping supports.

If that be so, another, deeper question arises: Supposing that the liver is
presented with a wide variety of input precursor concentrations Po; that it is
desirable to make small the output metabolite concentration M(L)\ that the
kinetic functions a(P) and /?(A/) are such that no distribution of the enzymes,
described by {/, g}, minimises Af(L) for all relevant values of Po; and that one
choice of {/, g} has been made; which choice should Nature have made?

Whether or not this question leads to a sensible mathematical problem may
depend in particular on the form of the kinetic function a, associated with the
metabolisation kinetics. If a is such that, as Po runs over (0, oo), the set of A values
obtained is bounded above, then by (2.1 lb), the set of possible values of M(L) is
also bounded above. Perhaps in such cases we should look for pairs {/, g) which
minimise

sup{M(L)|P0G(0,oo)}. (5.21)

We hope to return to some of these considerations.

6. Concluding remarks

It has often been noted that while variational formulations of the laws of
inanimate nature look purposive, they are equivalent to differential formulations
that can be viewed causally: the laws themselves are "indifferent with respect to
causality and finality" [11]. By contrast, variational principles in biology may
express purposiveness in a real sense based on natural selection. Thus, the case for
the foregoing minimisation has been argued as follows [4]: "It is tempting to
speculate about the advantage (in the sense of natural selection) of zonal
arrangement of liver function. The variety of substances which can be synthesized
and modified by the liver would be severely restricted if no by-products toxic to
the brain and other organs were to occur. This obstacle to evolution would be
removed by placing all potentially deleterious hepatic production in a zone
[f(x) ¥= 0] located upstream of a detoxifying zone [g(x) =£ 0]".

Such arguments may be advanced for systems sufficiently limited in space and
time (organs, individuals, species). That the indifference with respect to causality
and finality would be restored on a larger canvas including the history of
unsuccessful mutants, is the essence of the modern theory of evolution.

https://doi.org/10.1017/S0334270000004252 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004252


[201 Optimal control in the liver 557

Appendix A. Proof of Theorem 1

We begin with the proof of uniqueness; during this, a is a fixed number in
[0,1]. Let A be the Lipschitz constant of /?. We observe firstly that every solution
W{-, a) of (4.3) is bounded on [0, L], so that if WA and WB are any two solutions,
we have

\WAtB{x,a)\<K, xG[0,L], (A.I)

for some constant K. Put E(x) —\ WA(x, a) — WB(x, a)\. Then we have from
(4.3)

E(x) < Af\g(s)\E(s) ds. (A.2)

It follows from Gronwall's Lemma [9] that E{x) = 0 for every x 6 [0, L], but a
direct proof is also easily given. We have from (A.I) and (A.2),

E(x)^2KA(X\g(s)\ds = 2KAG(x), say, (A.3)
•'o

and then, using (A.2) repeatedly,

E(x) < A (X2KAG(s)\g(s)\ ds = 2KA2G(x)2/2,

E(x) < AJX2KA2(G(s)2/2)\g(s)\ ds = 2KA2G(xf/3\,

E(x)^2KA"G(x)"/n\, (A.4)

for every integer n. Letting n -> oo, we obtain E(x) — 0, so that there are not two
distinct solutions WA, WB of (4.3).

We turn now to the question of existence of solutions. If (ivb) holds, we extend
/? by setting fi(M) = 0(0) for M < 0. This extended /? remains Lipschitz with the
same constant A. Define wx(x, a) = 6(x, a) and, for n = 1,2,...,

*„+,(*, o) = 0(x, a) - [Xg(s)P(wn(s, a)) ds. (A.5)

We note that w,(x, a) ̂  A, and hence, using (A.5), that if (ivb) holds, then
wn{x, a) *£ X for all n £ N and all (x, a) E 5.
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Now

\w2(x, a) - wx(x, o)\<f*\g{s)\ \p(@(s, a))\ ds = C,,

\w3(x, a) - w2(x, o)\< /"*AC,|g(5)| ds = AC,G(x),
'0

I <fe = C , [ A G ( J C ) ] 2 / 2 ,

' / ^ - !)!• (A.6)

This last inequality proves uniform convergence of {wn} on S. Since each wn is
continuous on S, so is the limit W. By continuity of fi we have

jB^OcoOHflWOco)). (A.7)
Using the identity

wn+1 = w, + (w2 - w,) + • • • + (wn+1 - w j (A.8)

we obtain with the help of (A.6)

k + 1 | < A + C i e x p ( A G ( L ) ) = C2.

On [-C2, C2] the function )8 is bounded, and the dominated convergence theorem
then implies

fXg(s)P{wn(x,o)) ds - fXg(s)P{W(s, 0)) ds. (A.9)
•'0 •'o

It follows that Wis the solution of (4.3).
If (ivb) holds we have wn =S X and hence also W < X. It remains to show that

W(x, a)> 0 on S. Suppose to the contrary that W(xx, a) < 0 for some (x,, a) £
S; then let

JCO = inf{jc; W(f,a) < 0 for* < t < xt}. (A.10)

Clearly 0 =£ x0 < xx, W(xQ, a) = 0, and W(x, a) < 0 on (x0, JC,].NOW we have

W(Xl,a)= W(xx,5)-W{x0,o)

= 6{xx,o ) - 6(x0, 5 ) - fXlp(W(s, 5 ))g(s) ds + fX°P(W(s, a ))g(s) ds
Jo Jo

= 6(xl,a)-e(x0,a)>0, (A.11)

a contradiction. The proof is complete.
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Appendix B. Proof of Theorem 2

559

Let e > 0. It follows from Theorem 1 that (4.6) has a unique, continuous
solution Wx. This Wx is necessarily bounded, by C say. We define

W(x,a + h)-W(x,o) „„. ,
(B.I)

for h ^ 0. Then

h) -6(x,a) d0{x,o)
da

- (S'(W{s,o))W,{s,o) ds.

By the Mean Value Theorem there exists y, 0 < y < 1, such that

at ^ u\ at \ dO{x,o + yh)6(x, a + h)- 6(x, a) = 9 g h;

(B.2)

(B.3)

by uniform continuity of 90/da there exists a positive 5, such that the first
absolute value on the right hand side of (B.2) is smaller than e whenever | h |< 5,.

We write

E{x) < e +fg(s)\fl'(W)\E(s) ds + f

= W(x,a + h)~ W(x,a) (B.4)

and using the Mean Value Theorem again, we find T, 0 < T < 1, such that

p(W(x,o + h)) - P{W{x,o)) = p'(W(x,o) + T&W)AW = p'(W)&W,

(B.5)

say. It follows from (B.2) that

f - fi'{W)\ \Wt(s, a)\ ds

(B.6)

for|// |<5,.
Since W lies between W{x, a) and W{x, a + h) it follows that 0 < W < \. The

continuous function /?' is bounded on [0, X], say by Bt, and we obtain from (B.6)

E{x) < e + B]fg(s)E(s) ds + C f g{s)\P'{W) - p'(W)\ ds. (B.7)yo •'o
Using uniform continuity of /?' we find a positive TJ such that | fi\u) - fi'{v) | < e
whenever\u — v\<rj, and u, v e [0, X].

By Theorem 1, W is continuous, and therefore there exists a positive 52 such
that, whenever | h | < 52,

- W{x,o)\<7]. (B.8)
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Hence it follows that \p'(W) - fi\W)\< e if \h\< S2. Then we have from (B.7)
that, for|fc|<min(8,,82),

E(x) < e + eCG(L) + B, Cg{s)E{s) ds, (B.9)
Jo

with G(x) as in (A.3). Using Gronwall's Lemma [9] we obtain

F.(x) *S e(l + CG(L))exp(B,G(L)). (B.10)

From this inequality, and the definition (B.I) of E(x), we can see that
exists and equals Wv

Appendix C. Existence of minimising pairs

For given X > 0, and given /} Lipschitz and non-negative on [0, X], we consider
(2.18) for various pairs (O, g}; with $ absolutely continuous and non-decreasing
on [0, L], and satisfying (2.17); and g integrable on [0, L] and satisfying (2.4). For
each such {$, g), we know that (2.18) has a unique, continuous solution M
satisfying (2.11b), so that, in particular,

0<M(L)*£X. (C.I)

Let <f> — $ ' ; then <J> > 0 a.e. and <f> integrable on [0, L], with

fL<j>(x)dx = X. (C.2)

Suppose now that we allow only those {O, g) or, correspondingly, {<>, g}, which
satisfy the additional conditions(5.20) for some constant H. We set equal to a the
infimum of the M(L) values obtained from (2.18) with all such pairs.

There exists a sequence of such pairs {<j>n, gn) such that for the corresponding
solutions Mn(x) of (2.18) we have

Mn(L) - a. (C.3)

Given (5.20) we can select a subsequence {<£„, gn) (we do not change the
subscripts when passing to a subsequence) such that </>„ and gn are weakly
convergent,

<J>n̂ <f>, gn-g inL2(0,L). (C.4)

The corresponding Mn{x) are continuous and bounded, and

\Mn(x2) - Mn(xt)\< f\(x) dx + f 2gn(x)/J(Mn(x)) dx

(C.5)

https://doi.org/10.1017/S0334270000004252 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004252


[241 Optimal control in the liver 561

where B is a bound for B on [0, A]. Thus

\Mn(x2) - Mn{x,)\ < (1 + B)HJx2 - x, . (C.6)

Clearly the Mn(x) are equicontinuous; and there exists a uniformly convergent
subsequence Mn(x) -» M(x), say. Since /? is Lipschitz, the sequence B(Mn(x))
then also converges uniformly, and therefore converges in L2(0, L).

Let /i denote the characteristic function of [0, x], and (•, • )> II - || the usual scalar
product and norm for L2(0, L). We have

f\{s) ds = (<*>„, h) - (*, /*) = / V ( j ) * (C.7)
•'0 •'0

and

fgn{s)B{Mn{s)) ds = (gn,B{Mn)h)

- {gn,B(M)h) + {gn,[B(Mn) - B(M)]h). (C.8)

Now

(gn, B(M)h) - (g, /J(M )h) = fg(s)B{M(s)) ds, (C.9)

{gn, [B(Mn) - B{M)]h) <\\gJ\\fi{Mn) - B{M)\\

^{H\\B{Mn)-B{M)\\

- 0 . (CIO)

Therefore we have

fgn(s)B{Mn(s)) ds ^fg(s)B(M(s)) ds. (C.I 1)
•'o •'o

By sending n -> oo in

we get

M(x) = / [̂ >(̂ ) — g(s)fi(M(s))\ ds.

Thus M(x) is a solution of (2.18) with the pair {0, g}, and moreover A/(L)
lim Mn{L) = a. We have proved the existence of a minimising pair {<&, g}.
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