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Abstract  We introduce a notion of barycenter of a probability measure related to the symmetric mean
of a collection of non-negative real numbers. Our definition is inspired by the work of Haldsz and Székely,
who in 1976 proved a law of large numbers for symmetric means. We study the analytic properties of
this Haldsz—Székely barycenter. We establish fundamental inequalities that relate the symmetric mean
of a list of non-negative real numbers with the barycenter of the measure uniformly supported on these
points. As consequence, we go on to establish an ergodic theorem stating that the symmetric means of
a sequence of dynamical observations converge to the Haldsz—Székely barycenter of the corresponding
distribution.
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1. Introduction

Means have fascinated man for a long time. Ancient Greeks knew the arithmetic,
geometric, and harmonic means of two positive numbers (which they may have learned
from the Babylonians); they also studied other types of means that can be defined using
proportions: see [17, pp. 85-89]. Newton and Maclaurin encountered the symmetric means
(more about them later). Huygens introduced the notion of expected value and Jacob
Bernoulli proved the first rigorous version of the law of large numbers, see [20, pp. 51,
73]. Gauss and Lagrange exploited the connection between the arithmetico-geometric
mean and elliptic functions: see [6]. Kolmogorov and other authors considered means
from an axiomatic point of view and determined when a mean is arithmetic under a
change of coordinates (i.e. quasiarithmetic), see [16, p. 157-163], [1, Chapter 17]. Means
and inequalities between them are the main theme of the classical book [16] by Hardy,
Littlewood, and Pélya, and the book [8] by Bullen is a comprehensive account of the
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subject. Going beyond the real line, there are notions of averaging that relate to the
geometric structure of the ambient space, see e.g. [11, 18, 22, 25]. The paper [4] contains
an excellent summary of the history of means.

In this paper, we are interested in one of the most classical types of means: the ele-
mentary symmetric polynomials means, or symmetric means for short. Let us recall their
definition. Given integers n > k > 1, the kth symmetric mean of a list of non-negative
numbers x1, ..., T, is:

SYMy(T1, ..., &) 1= <Ek((;)7)> ) (L.1)
k

where E,(C") (T1, -y Tn) 2= D4 c..cy, Tiy ** Tiy, is the elementary symmetric polynomial
of degree k in n variables. Note that the extremal cases kK =1 and k =n correspond
to arithmetic and the geometric means, respectively. The symmetric means are non-
increasing as functions of k: this is Maclaurin’s inequality: see [16, p. 52] or [8, p. 327].
For much more information on symmetric means and their relatives, see [8, Chapter V].

Let us now turn to Probability Theory. A law of large numbers in terms of symmetric
means was obtained by Haldsz and Székely [15], confirming a conjecture of Székely [26].
Let X7, Xo, ...be a sequence of non-negative independent identically distributed random
variables, and from them, we form another sequence of random variables:

Sy i=sym(X1,..., Xn), (1.2)

The case of k = 1 corresponds to the setting of the usual law of large numbers. The case of
constant k > 1 is not significantly different from the classical setting. Things become more
interesting if k is allowed to depend on n, and it turns out to be advantageous to assume
that k/n converges to some number c¢ € [0, 1]. In this case, Haldsz and Székely [15] have
proved that if X = X is strictly positive and satisfies some integrability conditions, then
S, converges almost surely to a non-random constant. Furthermore, they gave a formula
for this limit, which we call the Haldsz—Székely mean with parameter ¢ of the random
variable X. Haldsz and Székely theorem was extended to the non-negative situation by
van Es [28] (with appropriate extra hypotheses). The simplest example consists of a
random variable X that takes two non-negative values x and y, each with probability
1/2, and ¢ = 1/2; in this case, the Haldsz—Székely mean is (M)2 But this example is
misleadingly simple, and Halasz—Székely means are in general unrelated to power means.
Fixed the parameter ¢, the Haldsz—Székely mean of a non-negative random variable
X only depends on its distribution, which we regard as a probability measure p on the
half-line [0, +00). Now we shift our point of view and consider probability measures as
the fundamental objects. Instead of speaking of the mean of a probability measure, we
prefer the word barycenter, reserving the word mean for lists of numbers (with or without
weights), functions, and random variables. This is more than a lexical change. The space
of probability measures has a great deal of structure: it is a convex space and it can be
endowed with several topologies. So we arrive at the notion of Haldsz—Székely barycenter
(or HS barycenter) of a probability measure p with parameter ¢, which we denote [y]..
This is the subject of this paper. It turns out that HS barycenters can be defined directly,
without resorting to symmetric means or laws of large numbers (see Definition 2.3).
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Symmetric means are intrinsically discrete objects and do not make sense as barycen-
ters. In [8, Remark, p. 323], Bullen briefly proposes a definition of a weighted symmetric
mean, only to conclude that ‘the properties of this weighted mean are not satisfactory’
and therefore, not worthy of further consideration. On the other hand, given a finite list
z = (21, ..., ¥,) of non-negative numbers, we can compare the symmetric means of =
with the HS barycenter of the associated probability measure p := (05, + -+ + 0y, )/n.
It turns out that these quantities obey certain precise inequalities (see Theorem 3.4). In
particular, we have:

symy,(2) > [1)k/n- (1.3)

Furthermore, if (™ denotes the nm-tuple obtained by concatenation of m copies of z,
then

and we have precise bounds for the relative error of this approximation, depending only
on the parameters and not on the numbers z; themselves.

Being a natural limit of symmetric means, the HS barycenters deserve to be studied by
their own right. One can even argue that they give the ‘right’ notion of weighted symmet-
ric means that Bullen was looking for. HS barycenters have rich theoretical properties.
They are also cheap to compute while computing symmetric means involves summing
exponentially many terms.

Using our general inequalities and certain continuity properties of the HS barycenters,
we are able to obtain in straightforward manner an ergodic theorem that extends the
laws of large numbers of Haldsz—Székely [15] and van Es [28].

A prominent feature of the symmetric mean (1.1) is that it vanishes whenever more than
n — k of the numbers z; vanish. Consequently, the HS barycenter [u]. of a probability
measure p on [0, +00) vanishes when p({0}) > 1 —c. In other words, once the mass
of leftmost point 0 exceeds the critical value 1 — ¢, then it imposes itself on the whole
distribution, and suddenly forces the mean to agree with it. Fortunately, in the subcritical
regime, u({0}) < 1 — ¢, the HS barycenter turns out to be much better behaved. As it will
be seen in § 2, in the critical case p({0}) = 1 — ¢ the HS barycenter can be either positive
or zero, so the HS barycenter can actually vary discontinuously. Therefore, our regularity
results and the ergodic theorem must take this critical phenomenon into account.

This article is organized as follows. In § 2, we define formally the HS barycenters
and prove some of their basic properties. In § 3, we state and prove the fundamental
inequalities relating HS barycenters to symmetric means. In § 4, we study the problem
of continuity of the HS barycenters with respect to appropriate topologies on spaces of
probability measures. In § 5, we apply the results of the previous sections and derive a
general ergodic theorem (law of large numbers) for symmetric and HS means.

2. Presenting the HS barycenter

Hardy, Littlewood, and Pdlya’s axiomatization of (quasiarithmetic) means [16, § 6.19]
is formulated in terms of distribution functions, using Stieltjes integrals. Since the first
publication of their book in 1934, measures became established as fundamental objects
in mathematical analysis, probability theory, dynamical systems, etc. Spaces of measures
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have been investigated in depth (see e.g. the influential books [23, 29]). The measure-
theoretic point of view provides the convenient structure for the analytic study of means
or, as we prefer to call them in this case, barycenters. The simplest example of barycenter
is of course the ‘arithmetic barycenter’ of a probability measure ;. on Euclidean space R?,
defined (under the appropriate integrability condition) as [ du(z). Another example is
the ‘geometric barycenter’ of a probability measure p on the half-line (0, +00), defined
as exp([logz du(x)). In this section, we introduce the Haldsz—Székely barycenters and
study some of their basic properties.

2.1. Definitions and basic properties

Throughout this paper we use the following notation:
=1[0,+00), Riy:=(0,+00). (2.1)
We routinely work with the extended line [—oo, +o0], endowed with the order topology.

Definition 2.1. The Haldsz—Székely kernel (or HS kernel) is the following function of
three variables x € R, y € R,y, and ¢ € [0, 1]:

logy +c tlog(ey 'z +1—¢) ifec>0,

2.2
logy +y 1z —1 if c=0. (22)

K(z,y,c) ::{

Proposition 2.2. The HS kernel has the following properties (see also Figure 1):

(a) The function K : [0, +00) x (0, +00) x [0, 1] — [—o0, +00) is continuous, attaining
the value —oco only at the points (0, y, 1).

is increasing with respect to x.
(¢
d
(e)

(f) For each y > 0, the function K (-, y, 0) is affine, and its graph is the tangent line to
logx at x = y.

(b
(

) K(z,y,c)
) K(x, y, ¢) is decreasing with respect to ¢, and strictly decreasing when x # y.
) K(x,y, 1) =logx is independent of y.

(@, ¥, c)

=

x, Yy, ¢) > logx, with equality if and only if x =y or ¢ = 1.

(g) KAz, My, ¢) = K(x, y, ¢) +log A, for all A > 0.

Proof. Most properties are immediate from Definition 2.1. To check monotonicity with
respect to ¢, we compute the partial derivative when ¢ > 0:

1 [ elytz—1) 1
Koz,yo)=— |4 270 4jpg(— )], 2.3
(@,y,¢) c2 cy‘lm—l—l—c_FOg cy~lz+1—c (2:3)
since logt <t — 1 (with equality only if ¢ = 1), we conclude that K.(z, y, ¢) <0 (with
equality only if = y). Since K is continuous, we obtain property (c). Property (e) is a
consequence of properties (¢) and (d). O
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Figure 1. Graphs of the functions K (-, y, ¢) for y = 2 and ¢ € {0, 1/3, 2/3, 1}.

Let P(R,) denote the set of all Borel probability measures p on R,. The following is
the central concept of this paper:

Definition 2.3. Let c€ [0, 1] and g€ P(R,). If ¢ =1, then we require that the
function logz is semi-integrable” with respect to pu. The Haldsz-Székely barycenter
(or HS barycenter) with parameter ¢ of the probability measure p is:

[1]c := exp inf /K(m7 y,c) dp(z), (2.4)
y>0
where K is the HS kernel (2.2).

First of all, let us see that the definition is meaningful:

o If ¢ <1, then for all y >0, the function K(-, y, ¢) is bounded from below by
K(0, y, ¢) > —oo, and therefore, it has a well-defined integral (possibly +00); so
[t]c is a well-defined element of the extended half-line [0, +o0].

o If ¢ =1, then by part (d) of Proposition 2.2, the defining formula (2.4) becomes:

[ = exp/logxd,u(x). (2.5)

The integral is a well-defined element of [—oo, +00], so [u]; is well defined in [0, +o0].

Formula (2.5) means that the HS barycenter with parameter ¢ =1 is the geometric
barycenter; let us see that ¢ = 0 corresponds to the standard arithmetic barycenter:

Proposition 2.4. For any u € P(R.), we have [ulo = [ xdu(z).

* A function f is called semi-integrable if the positive part fT := max(f, 0) is integrable or the negative
part f~ := max(—f, 0) is integrable.
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Proof. Let a:= [z du(x). If a = oo, then for every y > 0, the non-constant affine
function K (-, y, 0) has infinite integral, so definition (2.4) gives [u]o = 0o. On the other
hand, if a < oo, then [i]o is defined as expinf,~o(logy + a/y — 1) = a. O

Let Pus(R,) denote the subset formed by those p € P(R,) such that:
/log(l +xz)du(x) < 0o (2.6)

or, equivalently, [log® xdu < oo (we will sometimes write ‘du’ instead of ‘du(z)’).

Proposition 2.5. Let c € (0, 1] and p € P(R,). Then [u]. < oo if and only if p €
Prs(Rs).

Proof. The case ¢ = 1 being clear, assume that ¢ € (0, 1). Note that for all y > 0, the
expression

|K(z,y,¢) — ¢ log(z + 1)] (2.7)

is a bounded function of x, so the integrability of K (x, y, ¢) and log(x + 1) are equivalent.
U

Next, let us see that the standard properties one might expect for something called a
‘barycenter’ are satisfied. For any = > 0, we denote by d, the probability measure such
that 6, ({z}) = 1.

Proposition 2.6. For all ¢ € [0, 1] and p € P(R,), the following properties hold:
(a) Reflexivity: [0;]. = x, for every x > 0.

(b) Monotonicity with respect to the measure: If u1, po € P(R)) have distribution
functions Fy, Fy such that Fy > Fy', then [u1]. < [p2]e-

(c) Internality: If u(I) = 1 for an interval I C R, then [u]. € I.

(d) Homogeneity: If A > 0, and A.u denotes the pushforward of p under the map = —
Az, then [Aip]e = Alye.

(e) Monotonicity with respect to the parameter: If 0 < ¢/ < ¢ <1, then [u]e > [pt]e-

Proof. The proofs use the properties of the HS kernel listed in Proposition 2.2. Reflex-
ivity is obvious when ¢ =1 or x =0, and in all other cases follows from property (e).
Monotonicity with respect to the measure is a consequence of the fact that the HS kernel
is increasing in x. The internality property of the HS barycenter follows from reflexiv-
ity and monotonicity. Homogeneity follows from property (g) of the HS kernel and the
change of variables formula. Finally, monotonicity with respect to the parameter c is a
consequence of the corresponding property of the HS kernel. ([

T Ie., pg is ‘more to the right’ than p;. This defines a partial order, called usual stochastic ordering
or first-order stochastic dominance.
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As it will be clear later (see Example 2.13), the internality and the monotonicity
properties (w.r.t. u and w.r.t. ¢) are not strict.
2.2. Computation and critical phenomenon

In the remaining of this section, we discuss how to actually compute HS barycenters.
In view of Proposition 2.5, we may focus on measures in Pys(R;). The mass of zero plays
an important role. Given ¢ € (0, 1) and p € Pus(R,), we use the following terminology,

where 4(0) = pu({0}):
suberitical case:  p(0) <1—c
critical case: uw0)=1-c¢ (2.8)
supercritical case: 1(0) >1—c¢

The next result establishes a way to compute [u]. in the subcritical case; the remaining
cases will be dealt with later in Proposition 2.11.

Proposition 2.7. If € Pus(R;), ¢ € (0, 1) and u(0) < 1 — ¢ (subcritical case), then
the equation

[ Kotanc)dutz) =0 (2.9)

has a unique positive and finite solution n = n(u, ¢), and the inf in formula (2.4) is
attained uniquely at y = n; in particular,

e = exp [ Kan.0)due). (2.10)

Proof. Fix p and c as in the statement. We compute the partial derivative:

Az, y) T

K = — h A =1-—. 2.11
y(z,y,¢) y where A(z,y) e Cp— (2.11)
Since A is bounded, we are allowed to differentiate under the integral sign:
d
— /K(x,y,c) dp = /Ky(a?,n,c) dp = M, (2.12)
dy Y
where ¥(y) := [ A(z, y) du. The partial derivative
11—
Ay(z,y) = U—c)z (2.13)

(cz + (1 = c)y)?

is positive, except at x = 0. Since u # Jg, the function 1 is strictly increasing. Further-
more,

1-1/c ifx >0,

2.14
1 ifx =0, ( )

lim A(z,y)=1 and lim A(z,y) = {
y—07T

y——+o00
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Figure 2. Graph of the function B defined by (2.17).

and so

lim ¢(y)=1 and lim ¢¥(y)=1- =10

<0, (2.15)
y——+00 y—0+ C

using the assumption p(0) < 1 — ¢. Therefore, there exists a unique 1 > 0 that solves
the equation (n) =0, or equivalently equation (2.9). By (2.12), the function y+—
[ K(z, y, ¢)dp decreases on (0, 7] and increases on [n, +00), and so attains its infimum
at 7. Formula (2.10) follows from the definition of [u]e. O

Let us note that, as a consequence of (2.11), equation (2.9) is equivalent to:

/m du(x) = 1. (2.16)

Remark 2.8. If u belongs to P(R,) but not to Pus(R,), and still ¢ € (0, 1), then
equation (2.9) (or its equivalent version (2.16)) still has a unique positive and finite
solution 1 = n(u, ¢), and formula (2.10) still holds. On the other hand, if ¢ =0 and
[ xdu(x) < oo, then all conclusions of Proposition 2.7 still hold, with a similar proof.

We introduce the following auxiliary function, plotted in Figure 2:

0 if ¢ =0,
B(e):={c(l—¢)= if0<c<l, (2.17)
1 if e =1.

The following alternative formula for the HS barycenter matches the original one from
[15], and in some situations is more convenient:
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Proposition 2.9. If0 < ¢ <1 and p € Pus(R,), then:

[ule = B(c) inf {r-lzc explc™! / log(z + 1) d/,L(:C)]} . (2.18)

>0

Furthermore, if 1n(0) < 1 — ¢, then the inf is attained at the unique positive finite solution
p = p(u, c) of the equation

/ T+ du(z) = c. (2.19)

Proof. The formula is obviously correct if c = 1. If 0 < ¢ < 1, we introduce the variable
1—c

ri= y in formula (2.4) and manipulate. Similarly, (2.16) becomes (2.19). O

C

If 1 is a Borel probability measure on R, not entirely concentrated at zero (i.e., u # dp)
then we denote by p* the probability measure obtained by conditioning on the event
R,; = (0, 00), that is,

+ L wUNR,,)
pwv)= p(Ryy) 7

Obviously, if i € Pus(R,), then pu* € Pug(R.) as well.

for every Borel set U C R. (2.20)

Proposition 2.10. Let 1 € Pus(Ry) andp := 1 — pu(0). Ifc € (0, 1] and ¢ < p (critical
or subcritical cases), then

Ble) .
c= ¢/p+ 2.21
e = Frormy "l (221)
Proof. Note that p # do, so the positive part pu* is defined. Using formula (2.18), we
have:
1
[t = Blc) ir;% P % exp (c /log(x + 7‘) dp) (2.22)
1 1
= B(c) inf r'7% exp ((M(O) logr + / log(x + r)dpu)) (2.23)
>0 C {$>0}
—p 1
= B(c) inf plot it exp (/ log(z + r> dp) (2.24)
>0 C {z>0}
P 1
_ : 1-2 - +
= B(c) ;ggr exp <c/p /1og(x + 7‘) du™). (2.25)
At this point, the assumption ¢ < p guarantees that the barycenter [u*]./, is well defined,
and using (2.18) again we obtain (2.21). O

Finally, we compute the HS barycenter in the critical and supercritical cases:

Proposition 2.11. Let 1 € Pus(R4) and c € (0, 1.
(a) Critical case: If u(0) =1 — ¢, then [p]. = B(c)[p*]:-
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(b) Supercritical case: If ©(0) > 1 — ¢, then [u]. = 0.
In both cases above, the infimum in formula (2.4) is not attained.

Proof. In the critical case, we use (2.21) with p = ¢ and conclude.

In the supercritical case, we can assume that p # Jg. Note that p < ¢, thus,

lim, g+ r-%=o. Moreover, since log™ z € L'(u), we have
lim log(x +r)du = / log x dp < +00.
r—=0% J{2>0} {z>0}

Therefore, using (2.25), we obtain [p]. = 0.

(2.26)

O

Propositions 2.7 and 2.11 allow us to compute HS barycenters in all cases. For emphasis,

let us list explicitly the situations where the barycenter vanishes:

Proposition 2.12. Let ¢ € [0, 1] and p € Pus(Ry). Then [u]. = 0 if and only if one

of the following mutually exclusive situations occur:
(a) ¢=0 and pu = dg.
(b) ¢>0, u(0) =1—c¢, and [logzdu*(z) = —oc.

(¢) ¢>0and pu(0) >1—c.

Proof. The case ¢ =0 being obvious, assume that ¢ >0, and so B(c) > 0. In the
critical case, part (a) of Proposition 2.11 tells us that [u]. = 0 if and only if [u*]; =0,
which by (2.5) is equivalent to [loga du* = —oo. In the supercritical case, part (b) of

the proposition ensures that [u]. = 0.
Example 2.13. Consider the family of probability measures:
tp = (1—p)dg+pd, 0<p<1
If 0 < ¢ < 1, then

0 ifp<ec
1—c
[tple = { Ble) =c(l —¢c) =
B(c l—c p c—p .
B(C(/])D):(l—c)cpc(p—c)c ifp>ec

ifp=c

These formulas were first obtained by Székely [26]. It follows that the function

(p,c) €10,1] x [0, 1] = [pple

O

(2.27)

(2.28)

(2.29)

(whose graph is shown on [28, p. 680]) is discontinuous at the points with p = ¢ > 0, and

only at those points. We will return to the issue of continuity in § 4.

The practical computation of HS barycenters usually requires numerical methods. In
any case, it is useful to notice that the function n from Proposition 2.7 satisfies the

internality property:
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Lemma 2.14. Let u € Pus(R,), ¢ € (0, 1), and suppose that u(0) <1 —c. If u(I) = 1
for an interval I C R,, then n(u, c) € I.

The proof is left to the reader.

3. Comparison with the symmetric means

3.1. HS means as repetitive symmetric means

The HS barycenter of a probability measure, introduced in the previous section, may
now be specialized to the case of discrete equidistributed probabilities. So the HS mean

of a tuple = (21, ..., z,) of non-negative numbers with parameter ¢ € [0, 1] is defined
as:
Op 4o 40,
hsme(z) = [H] . (3.1)
n (&
Using (2.18), we have more explicitly:
hsm.(z) = B(c) inf po H(a?] + r)ﬁ (if ¢ > 0), (3.2)

r>0 !
Jj=1

where B is the function (2.17). On the other hand, recall that for k € {1, ..., n}, the
k-th symmetric mean of the n-tuple z is:

() )\ *
symy,(z) = <Ek(n)()> ] (3.3)
k

where E,in) denotes the elementary symmetric polynomial of degree k in n variables.
Since they originate from a barycenter, the HS means are repetition invariant* in the
sense that, for any m > 0,

hsm.(z(™)) = hsm,(z), (3.4)

where 2("™) denotes the nm-tuple obtained by concatenation of m copies of the n-tuple
z. No such property holds for the symmetric means, even allowing for adjustment of
the parameter k. Nevertheless, if the number of repetitions tends to infinity, then the
symmetric means tend to stabilize, and the limit is a HS mean; more precisely:

Theorem 3.1. If x = (z1, ..., ), ; > 0, and 1 < k < n, then:
lim symkm(@(m)) = hsmy/, (2). (3.5)
m— 00
Furthermore, the relative error goes to zero uniformly with respect to the x;’s.

This theorem will be proved in the next subsection.
It is worthwhile to note that the Navas barycenter [22] is obtained as a ‘repetition
limit’ similar to (3.5).

¥ or intrinsic, in the terminology of [18, Def. 3.3
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Example 3.2. Using Propositions 2.7 and 2.11, one computes:

hsmy o (2, y) = (W)Q ; (3.6)

Therefore,

W) 57)

lim Symm(xw'wxa y77y): (

m— oo
m times m times

The last equality was deduced in [10, p. 31] from the asymptotics of Legendre polynomials.

Repeated symmetric means are particular instances of Whiteley means; in fact, in the
notation of [8, p. 344],

symy, (2)) = M (). (3.8)
Let us pose a problem:

Question 3.3. Is the sequence m symkm(g(m)) always monotone decreasing?

There exists a partial result: when & = 1 and n = 2, [10, Lemma 4.1] establishes eventual
monotonicity.

3.2. Inequalities between symmetric means and HS means

The following is the first main result of this paper.
Theorem 3.4. If x = (z1, ..., ®,), ; > 0, and 1 < k <mn, then

("

0

Let us postpone the proof to the next subsection. The factor at the RHS of (3.9) is
asymptotically 1 with respect to k; indeed:

sy (2) < symy(z) < sy (). (3.9)

Lemma 3.5. For all integers n > k > 1, we have

o —1/k
v)

()

~—

|~

1<

|

< (9k)z*, (3.10)

with equality if and only if k = n.
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Proof. Let ¢:=k/n and

b= (Z) [B(c)]k = <Z)ck (1— o)k, (3.11)

By the Binomial Theorem, b < 1, which yields the first part of (3.10). For the lower
estimate, we use the following Stirling bounds (see [12, p. 54, (9.15)]), valid for all n > 1,

V2rn" e < nl < V2rn" e (3.12)

Then, a calculation (cf. [12, p. 184, (3.11)]) gives:

. > (3.13)
orc(1—c)n ~ Ok’ .
from which the second part of (3.10) follows. O

Theorem 3.4 and Lemma 3.5 imply that HS means (with rational values of the
parameter) can be obtained as repetition limits of symmetric means:

Proof of Theorem 3.1. Applying Theorem 3.4 to the tuple (™), using observation
(3.4) and Lemma 3.5, we have:

hsmy /() < symy, (20™) < (9km) 7w hsmy, /(). (3.14)
Making m — oo we obtain (3.5). O

Remark 3.6. If £ is fixed, then

n\—1/k N1/k
i ) eV 1, (3.15)

n—oo k
k
o(:)

and therefore, the bound from Theorem 3.7 may be less satisfactory. But in this case, we
may use the alternative bound coming from Maclaurin inequality:

sym;(z) < sym;(z) = hsmg(z). (3.16)

3.3. Proof of Theorem 3.4

The two inequalities in (3.9) will be proved independently of each other. They are
essentially contained in the papers [5] (the first inequality) and [15] (the second one),
though neither was stated explicitly. In the following Theorems 3.8 and 3.7, we also
characterize the cases of equality, and in particular show that each inequality is sharp in
the sense that the corresponding factors cannot be improved.

Let us begin with the second inequality, which is more elementary. By symmetry, there
is no loss of generality in assuming that the numbers x; are ordered.
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Theorem 3.7. If x = (21, ..., x,) withxy > -+ > 2, >0, and 1 < k < n, then:
(="
symy,(z) < =& hsmg/n (2). (3.17)

o(2)
Furthermore, equality holds if and only if xx4+1 =0 or k = n.

Proof. Our starting point is Vieta’s formula:

4 ST EM ()2 = [ (g 4 2). (3.18)
=1 j=1
Therefore, by Cauchy’s formula, for any r > 0:
(n) 1 1 L
EV(x1,...,20) = Qﬂﬁ_rwjl:[l(xj + 2) dz. (3.19)
That is,
1 (", . - .
EM (21, .. 2,) = o /W(?"e'e)"Jrkjl:[l(mj + rel?) ag, (3.20)

Taking absolute values,

N 1 T n . n
E,i )(xl, R ﬂ/ pontk H lzj +relf|dg <tk H(xj +7). (3.21)
- j=1 j=1

But these inequalities are valid for all » > 0, and therefore:

E,(Cn) (T1y. e yap) < TiI>1f(;T7"+k H(xj +7). (3.22)
j=1

So formulas (3.2) and (3.3) imply inequality (3.17).
Now let us investigate the possibility of equality. We consider three mutually exclusive
cases, which correspond to the classification (2.8):

subcritical case: Tpy1 >0
critical case: T > 0= 241 (3.23)
supercritical case: xp =0

Using Proposition 2.11, in the critical case, we have:

. (3) — ) and  hsm nxzw 3.24
Y k(f) ( (z) ) k/ (7) B(Z) ( )

while in the supercritical case, the two means vanish together. So, in both cases, inequality
(3.17) becomes an equality. Now suppose we are in the subcritical case; then the inf at
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the RHS of (3.22) is attained at some r > 0: see Proposition 2.9. On the other hand, for
this (and actually any) value of r, the second inequality in (3.21) must be strict, because
the integrand is non-constant. We conclude that, in the subcritical case, inequality (3.22)
is strict, and therefore, (3.17) is strict. O

The first inequality in (3.9) is a particular case of an inequality between two types
of matriz means introduced in [5], which we now explain. Let A = (ai,j)i,je{l,...,
n x n matrix with non-negative entries. Recall that the permanent of A is the ‘signless

determinant’
per(4) := Z H i (i) (3.25)
o i=1
where o runs on the permutations of {1, ..., n}. Then the permanental mean of A is
defined as:

n!

pm(A) == (per(A)y . (3.26)

On the other hand, the scaling mean of the matrix A is defined as:
1.
sm(A) == — inf ————— (3.27)

where u and v run on the set of strictly positive column vectors, and gm(-) denotes the
geometric mean of the entries of the vector. Equivalently,

1. gm(Av)
see [5, Remark 2.6].! By [5, Theorem 2.17],
sm(A) < pm(A), (3.29)

with equality if and only if A has permanent 0 or rank 1. This inequality is far from
trivial. Indeed, if the matrix A is doubly stochastic (i.e. row and column sums are all 1),
then an easy calculation (see [5, Prop. 2.4]) shows that sm(A) = L, so (3.29) becomes
pm(A) > %, or equivalently,

|
per(A) > n—n (if A is doubly stochastic). (3.30)
n

This lower bound on the permanent of doubly stochastic matrices was conjectured
in 1926 by van der Waerden and, after a protracted series of partial results, proved
around 1980 independently by Egorichev and Falikman: see [30, Chapter 5] for the exact

§ TIncidentally, formula (3.28) shows that, up to the factor 1/n, the scaling mean is a matriz antinorm
in the sense defined by [13].
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references and a self-contained proof, and [14] for more recent developments. Our inequal-
ity (3.29), despite being a generalization of Egorichev—Falikman’s (3.30), is actually a
relatively simple corollary of it: we refer the reader to [5, § 2] for more information. ¥

We are now in position to complete the proof of Theorem 3.4, i.e., to prove the second
inequality in (3.9). The next result also characterizes the cases of equality.

Theorem 3.8. If x = (21, ..., x,) withxy > -+ > 2, >0, and 1 < k < n, then:
hsmk/n(g) < symy (). (3.31)
Furthermore, equality holds if and only if :
k=n or z1=---=uz, or xz=0. (3.32)

Proof. Consider the non-negative n X n matrix:

ml ... xl 1 ... 1
A= | with n — k columns of 1’s. (3.33)
‘rn e xn 1 ... 1
Note that:
per(A) = k!l (n — k)! E,(f') (X1, 2n) (3.34)
and so

pm(A) = <E1€((T’L)’)> (3.35)
k

= [symy, (2)]*/". (3.36)

Now let’s compute the scaling mean of A using formula (3.28). Assume that k < n.

Un

Given a column vector v = ( : ) with positive entries, we have:

n k

gm(Av) = H(sz + 7‘)%, where s := Zvi and r := Z V5. (3.37)

i=1 i=1 i=k-+1
On the other hand, by the inequality of arithmetic and geometric means,

n—k

k
S\ 7w r Rz
m(v) < (7) , 3.38
(o) < (1) () (3.38)
with equality if vi = =vy = 7, Vg1 = = v, = 1. So, in order to minimize the
quotient g:nféf;), it is sufficient to consider column vectors v satisfying these conditions.

9 The proof of [5, Theorem 2.17] uses a theorem on the existence of particular type of matrix factor-
ization called Sinkhorn decomposition. The present article only needs the inequality (3.29) for matrices
of a specific form (3.33). So the use of the existence theorem could be avoided, since it is possible to
explicitly compute the corresponding Sinkhorn decomposition.
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We can also normalize s to 1, and (3.28) becomes:

[Li, (i + 7')%

sm(4) = inf —=! (3.39)
(1) (=)
= [hsmy /p, (2)]*/" (3.40)

by (3.2). This formula sm(4) = [hsmk/n(g)]k/" also holds for k = n, taking the form

sm(A) = (x1---a,)7; this can be checked either by adapting the proof above, or more
simply by using the homogeneity and reflexivity properties of the scaling mean (see [5]).

In conclusion, the matrix (3.33) has scaling and permanental means given by formulas
(3.40) and (3.36), respectively, and the fundamental inequality (3.29) translates into
hsmy, /. (z) < symy,(z), that is, (3.8).

Furthermore, equality holds if and only if the matrix A defined by (3.33) satisfies
sm(A) = pm(A), by formulas (3.40) and (3.36). As mentioned before, sm(A4) = pm(A) if
and only if A has rank 1 or permanent 0 (see [5, Theorem 2.17]). Note that A has rank
lif and only if k =1 or 1 = - -+ = z,. On the other hand, by (3.36), A has permanent
0 if and only if sym,(x) = 0, or equivalently xz; = 0. So we have proved that equality
hsmy, /. (z) = sym;,(z) is equivalent to condition (3.32). O

We close this section with some comments on related results.

Remark 3.9. In [15], the asymptotics of the integral (3.19) are determined using the
saddle point method (see e.g. [24, Section 15.4]). However, for this method to work, the
saddle must be steep, that is, the second derivative at the saddle must be large in absolute
value. Major [21, p. 1987] discusses this situation: if the second derivative vanishes, then
‘a more sophisticated method has to be applied and only weaker results can be obtained
in this case. We shall not discuss this question in the present paper’. On the other hand,
in the general situation covered by our Theorem 3.4, the saddle can be flat. (It must be
noted that the setting considered by Major is different, since he allows random variables
to be negative.)

Remark 3.10. Given an arbitrary n X n non-negative matrix A, the permanental and
scaling means satisfy the following inequalities (see [5, Theorem 2.17]),

sm(A) < pm(A4) < n(n!)""sm(A). (3.41)

The sequence (n(n!)~'/") is increasing and converges to e. In general, as n tends to infinity
the permanental mean does not necessarily converge to the scaling mean. However, there
are some special classes of matrices for which this is indeed the case: for example, in
the repetitive situation covered by the generalized Friedland limit [5, Theorem 2.19].
Note that hsmy,/,(x) and sym;(z) correspond to the n/k—th power of the scaling and
permanental mean of the matrix A, respectively. Therefore, (3.9) can be regarded as an
improvement of (3.41) for this particular class of matrices.
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Remark 3.11. A natural extension of symmetric means is Muirhead means, see [16, §
2.18], [8, § V.6] for definition and properties. Accordingly, it should be possible to define
a family of barycenters extending the HS barycenters, taking over from [5, § 5.2]. An
analogue of inequality (3.31) holds in this extended setting, again as a consequence of
the key inequality (3.29) between matrix means. However, we do not know if inequality
(3.17) can be extended in a comparable level of generality.

4. Continuity of the HS barycenter

In this section, we study the continuity of the HS barycenter as a two-variable function,
(1, ¢) — [p]c, defined in the space P(R.) x [0, 1]. The most natural topology on P(R.)
is the weak topology (defined below). The barycenter function is not continuous with
respect to this topology, but, on the positive side, it is lower semicontinuous, except in
a particular situation. In order to obtain better results, we need to focus on subsets
of measures satisfying the natural integrability conditions (usually (2.6), but differently
for the extremal parameters ¢ =0 and ¢ =1), and endow these subsets with stronger
topologies that are well adapted to the integrability assumptions.

In a preliminary subsection, we collect some general facts on topologies on spaces of
measures. In the remaining subsections, we prove several results on continuity of the HS
barycenter. And all these results will be used in combination to prove our general ergodic
theorem in § 5.

4.1. Convergence of measures

If (X, d) is a separable complete metric space, let C,(X) be the set of all continuous
bounded real functions on X, and let P(X) denote the set of all Borel probability measures
on X. Recall (see e.g. [23]) that the weak topology is a metrizable topology on P(X)
according to with a sequence (j1,,) converges to some g if and only if [ ¢ du, — [ ¢ du for
every test function ¢ € C},(X); we say that (u,) converges weakly to u, and denote this by
tn, — p. The space P(X) is Polish, and it is compact if and only if X is compact. Despite
the space Cp(X) being huge (nonseparable w.r.t. its usual topology if X is noncompact),
by [23, Theorem I1.6.6] we can nevertheless find a countable subset C C Cp(X) such that,
for all (p,) and p in P(X),

bn = <= Vopecl, /(bd,un—>/¢du. (4.1)

The following result deals with sequences of integrals [ ¢, du, where not only the
measures but also the integrands vary, and bears a resemblance to Fatou’s Lemma:

Proposition 4.1. Suppose that (uy,) is a sequence in P(X) converging weakly to some
measure p, and that (¢,,) is a sequence of continuous functions on X converging uniformly
on compact subsets to some function ¢. Furthermore, assume that the functions ¢, are
bounded from below by a constant —C' independent of n. Then, lim inf,,_, f(bn dpy, >

[ odu.

Note that, as in Fatou’s Lemma, the integrals in Proposition 4.1 can be infinite.
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Proof. Without loss of generality, assume that C' =0. Let A € R be such that
A< [¢dp. By the monotone convergence theorem, there exists m € N such that

[ min{¢, m}du > \. For a function ¢ : X — R, let ¢(x) := min{s(z), m}. Note that

/¢n dpin > /én dpn, = /(asn —9) dun—i—/édun. (4.2)

By Prokhorov’s theorem (see e.g. [23, Theorem 6.7]), the sequence (u.,,) forms a tight set,
that is, for every € > 0, there exists a compact set K C X such that u, (X \ K) < e/(2m)
for all n. Since (¢,,) converges uniformly on compact subsets to ¢, we obtain:

I (@) = d(x)| = 0. (43)

< lim sup

lim ] [ G- ya,

We also have:

/ (b0 — ) dun
X\K

Since (p,,) converges weakly to i, we have lim,, o [ q/3 dpn = [ qASd,u > \. Therefore, com-
bining (4.2), (4.3) and (4.4), for sufficiently large values of n, we obtain [ ¢, du, > .
The result now follows. ]

< (X \K) sup
zeX\K

fn(z) — (;Aﬁ(x)’ < %Zm =€ (4.4)

The next direct consequence is useful.

Corollary 4.2. Suppose that (u,,) is a sequence in P(X) converging weakly to some
measure p, and that (¢,,) is a sequence of continuous functions on X converging uniformly
on compact subsets to some function ¢. Furthermore, assume that the functions |¢,| are
bounded by a constant C' independent of n. Then, [ ¢, du, — [ ¢ dpu.

We will also need a slightly stronger notion of convergence. Let P (X) C P(X) denote
the set of measures p with finite first moment, that is,

/d(x,mo) du(z) < oo, (4.5)

Here and in what follows, zg € X is a basepoint which we consider as fixed, the particular
choice being entirely irrelevant. We metrize Py (X) with the Kantorovich metric (see e.g.
[29, p. 207]):

Wi (p,v) := sup {/wd(u —v);¢: X —[-1,1] is 1—Lipschitz}. (4.6)

Of course, the Kantorovich metric depends on the original metric d on X; in fact,
it ‘remembers’ it, since W1 (dy, §,) = d(z, y). The metric space (P1(X), W7) is called
1-Wasserstein space; it is separable and complete. Unless X is compact, the topology on
P1(X) is stronger than the weak topology. In fact, we have the following characterizations
of convergence:
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Theorem 4.3 (Villani [29, Theorem 7.12]). For all (u,) and p in P1(X), the
following statements are equivalent:

(a) Wl (,un’ .u) — 0.

(b) if¢: X — R is a continuous function such that ﬁ is bounded, then [ ¢ du,, —
[ ¢du.

(¢) pn — pand [d(-, zo)dp, — [d(-, o) dp.

(d) pn — p and the following ‘tightness condition’ holds:

lim lim sup/ [1+d(-,z0)] dur, = 0. (4.7
R X\Br(z0)

where Br(xg) denotes the open ball of centre xy and radius R.
The next lemma should be compared to Corollary 4.2:

Lemma 4.4. Suppose that (u,) is a sequence in P1(X) converging to some measure

u, and that (¢,,) is a sequence of continuous functions on X converging uniformly on

bounded subsets to some function ¢. Furthermore, assume that the functions %

are bounded by a constant C' independent of n. Then, [ ¢y, du, — [ ¢ dp.

Proof. Fix ¢ > 0. By part (d) of Theorem 4.3, there exists R > 0 such that, for all
sufficiently large n,

/ [1+d(z,z0)] dun(x) <e. (4.8)
X\Br(zo)

Then, we write:

[ ndun [ odu= [ (60~ )dn+ [0t

X\Br(zo) Br(o)
@ )

By part (b) of Theorem 4.3, the term (3) tends to 0 as m — oo. By the assumption
of uniform convergence on bounded sets, |@| < supp, (4, [¢n — ¢| tends to 0 as well.
Finally,

<[ (6l +I6dun <20 [1+ d(2,20)] dyin(2) < 2Ce,  (4.10)
X\Br(z0) X\Br(zo)

for all sufficiently large n. Since € > 0 is arbitrary, we conclude that f On Aty — f ¢ du,
as claimed. O
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Let us now consider the specific case of the metric space (X, d) = (Ry, dug), where:
dus(z,y) := [log(1 + x) —log(1 + y)] - (4.11)

Then the finite-first-moment condition (4.5) becomes our usual integrability condition
(2.6), so the 1-Wasserstein space P1(X) becomes Pus(R.).

4.2. Lower and upper semicontinuity

The HS barycenter is definitely not continuous with respect to the weak topology,
since the complement of Pyg(R,) is dense in P(R,), and the barycenter is co there
(by Proposition 2.5). Nevertheless, lower semicontinuity holds, except in the critical
configuration:

Theorem 4.5. For every (u, ¢) € P(Ry) x [0, 1), we have:

(~li~1)n i(nf )[ﬂ]a > [ple unless p(0) =1—c and [p]. > 0. (4.12)
f,&)—(p,c

To be explicit, the inequality above means that for every A < [u]., there exists a neigh-
borhood U C P(R,) x [0, 1) of (u, ¢) with respect to the product topology (weak X
standard) such that [a]z > A for all (i, €) € U.

Proof. Let us first note that:

uw(0)=1-cand [gl. >0 = liminf [f]z < [p]e- (4.13)
(£,)=(ps0)
Indeed, if ¢, :=c+1/n, then (y, ¢,) — (i, ¢). By Proposition 2.11, we have that
[¢]e, = 0. Thus,
0= lim [p]., = liminf [f]z < [p]e- (4.14)
n—oo (,8)—= ()
We now consider the converse implication: given (u, ¢) € P(R,) x [0, 1) such that
w(0) #1 —c or [u]. =0, we want to show that liminf; z)—(,c)[f]z > [u]c. There are
some trivial cases:

o If [u]c = 0, then the conclusion is obvious.
o If 4(0) > 1 — ¢, then [u]. = 0 by Proposition 2.11, and again the conclusion is clear.

In what follows, we assume that p(0) <1 —c¢ and [u]. > 0. Fix a sequence (i, ¢,)
converging to (i, ¢). We need to prove that:

linnl}ioréf[,un]cn > [ule- (4.15)

We may also assume without loss of generality that [u,]., < oo for each n. We divide the
proof in two cases:

Case ¢ > 0: We can also assume that ¢, >0 for every n. By Proposition 2.5,

the hypothesis [u,]c, < oo means that p, € Pus(R:). By Portmanteau’s Theorem

[23, Theorem 6.1(c)], limsup,,_, o £4n(0) < p(0) < 1 — ¢. Thus, for sufficiently large values
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of n we have p,(0) < 1 — c¢,. In this setting, the HS barycenter [ty]., can be computed
by Proposition 2.7. Recall from (2.16) that n(f, ¢) denotes the unique positive solution
of the equation [ dii = 1. Note that n(u, ¢) is well defined even in the case

51-}-(1—6)7}
[£]c = oo (see Proposition 2.8). We claim that:
Jim 7 (pn, cn) = (4, ©)- (4.16)
O

Proof of the claim. Fix numbers «g, a3 with 0 < ap < 1(g, ¢) < 1. Then a mono-
tonicity property shown in the proof of Proposition 2.7 gives:

z x
——d 1 ——dpu. 4.1
/cx+(1—c)a0 = >/c1}—|—(1—c)a1 H (4.17)

Note the uniform bounds:
T

T+ (1—en)a;

< (inf cn) 7t (4.18)

So, using Corollary 4.2, we see that [ m dppn, — [ m du. In particular,
for all sufficiently large n,

x x
dit, > 1> dity, 4.19
/ cnx + (1 —cp)ap H / enx + (1 —cp)ag H ( )

and thus, ag < n(pn, ¢n) < aq, proving the claim (4.16). O

For simplicity, write y,, := n(un, ¢,). By Proposition 2.2.(b),
K (2,yn, cn) = K(0,yn, ) = logyn + ¢, log(1 —¢,) > —=C (4.20)

for some finite C, since sup,, ¢, < 1 and inf,, y, > 0. This allows us to apply Proposition
4.1 and obtain:
liminf [ K(x,yn,cn) din > /K (2, Yoo, C) dpt, (4.21)

n—oo

where Yoo 1= limy, 00 yn = Nk, ¢). Using formula (2.10), we obtain (4.15). This completes
the proof of Theorem 4.5 in the case ¢ > 0.

Case ¢ =0: By Proposition 4.1 we obtain, liminf [z du, > liminf [z du, that is,
lim inf[pn]o > [#]e. So we can assume that ¢, > 0 for every n, like in the previous case.

In order to prove (4.15) in the case ¢ = 0, let us fix an arbitrary positive A < [u]op =
[ xdu, and let us show that [u,]., > A for every sufficiently large n. By the mono-
tone convergence theorem, there exists m € N such that [min(z, m)du(z) > X. Let o
(respectively fi,) be the pushforward of the measure i (respectively p,) by the map
2 +— min(z, m). Then [fiJo > A and, by Proposition 2.6.(c), [fin]e, < [tn]c, . Furthermore,
we have fi,, — fi, since for every f € Cp(R,),

[ #din= [ finGe,m) dune) [ flinem) du(o) = [ fap @22

So, to simplify the notation, we remove the hats and assume that the measures u,, p are
all supported in the interval [0, m].
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The numbers n(p,, ¢,) and n(u, ¢) are well defined, as in the previous case, and fur-
thermore they belong to the interval [0, m], by Lemma 2.14. On the other hand, by
Proposition 4.1,

x T
liminf [ ——du, > | ~d 1. 4.23
it | e = [ 30 29
It follows that n(p,, ¢,) > A for all sufficiently large n. We claim that n(uy,, ¢,) — n(y, 0),
as before in (4.16). The proof is the same, except that the upper bound in (4.18) becomes
infinite and must be replaced by the following estimate:

O<gg<m} x m
N = <

< <
T+ (1—cp)a; T oepm+(1—cp)a; T

>3

L (424)

So a repetition of the previous arguments yields (4.16), then (4.20) and (4.21), and finally
(4.15). Therefore, Theorem 4.5 has been proved in both cases ¢ > 0 and ¢ = 0. O

Next, let us investigate the behaviour of the HS barycenter on the product space
Pus(R4) x [0, 1], where Pus(R.) is endowed with the topology defined in the end of
§ 4.1.

Theorem 4.6. For every (u, ¢) € Pus(Ry) x [0, 1], we have:

limsup [fi]z < [p]. unless ¢ =0 and [p]y < oo, (4.25)
(7,8)—= ()
(~li~r)n i{lf )[ﬂ]é > [p]e unless 1(0) =1 — ¢ and [u]. > 0. (4.26)
,8)—(p,c

Proof of part (4.25) of Proposition 4.6. Let us start by proving the following
implication:

€ Pus(Ry), ¢=0, and [ulo <oo = limsup [f]z > [p]c- (4.27)
(#,8)—=(,¢)

Consider measures i, := "T_l w+ %(SH. Clearly, p, — u; moreover,

(I+n)

/1og(1 +x)d(p — pn)(z) = log - — 0. (4.28)

So using characterization (c) of Theorem 4.3, we conclude that u, — p in the topology
of Pus(R4). On the other hand, [1,]o = 21 [ulo + 1 — []o + 1. This proves (4.27).
Next, let us prove the converse implication. So, let us fix (u, ¢) such that ¢ # 0 or
[#]o = o0, and let us show that if (p, ¢,) is any sequence in Pus(R,) x [0, 1] converg-
ing to (u, ¢), then limsup,, , [tn]e, < [i]c. This is obviously true if [u]. = oo, so let us
assume that [p]. < co. Then our assumption becomes ¢ > 0, so by removing finitely many
terms from the sequence (u,, ¢, ), we may assume that inf, ¢,, > 0. Fix some finite num-
ber A > [p].. By Definition 2.3, there is some yo > 0 such that [ K(z, yo, ¢) du(z) < log \.

K (2, Yo, cn)|
1+log(1+x)
culation shows. Furthermore, K(-, yo, ¢») — K (-, 3o, ¢) uniformly on compact subsets

of R;. So Lemma 4.4 ensures that [ K(z, yo, ¢n) dpn(z) — [ K(z, yo, ¢) du(x). Now it

The sequence of continuous functions is uniformly bounded, as a direct cal-
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follows from Definition 2.3 that [un]c, < A for all sufficiently large n. Since A > [u]. is
arbitrary, we conclude that limsup,,_, . [tinle, < [#]e, as we wanted to show. O

Proof of part (4.26) of Proposition 4.6. First, we prove that, for all (y,c) €
Pus(Ry) x [0, 1],

uw(0)=1—¢, and [p]. >0 = (~li~r)n i(nf )[ﬂ]g < [1]e- (4.29)
i1,8)— (p,c

Consider measures p, := ”T’l W+ %50. Clearly, p, — p in the topology of Pus(R,). By
Proposition 2.11.(b), [un]. = 0. This proves (4.29). For ¢ € [0, 1) the converse is a direct
consequence of Theorem 4.5, since the topology on Pug(R,) is stronger. If ¢ =1 and
[#]1 =0 then the result is obvious. If [u]; > 0 then, as the example above shows, the
result does not hold. d

4.3. Continuity for extremal values of the parameter

Theorem 4.6 shows that the HS barycenter map on Pys(R.4) x [0, 1] is not continuous
at the pairs (i, 0) (except if [u]p = 00), nor at the pairs (u, 1) (except if [u]; = 0). Let
us see that continuity can be ‘recovered’ if we impose extra integrability conditions and
work with stronger topologies.

If we use the standard distance d(z, y) := | — y| on the half-line X = R, = [0, +00),
then the resulting 1-Wasserstein space is denoted P; (R, ). On the other hand, using the
distance

dg(z,y) := [logz —logy| on the open half-line X =R, (4.30)

the corresponding 1-Wasserstein space will be denoted Pg(R,,). We consider the latter
space as a subset of P(R,), since any measure p on R, can be extended to R, by setting
1(0) = 0. The topologies we have just defined on the spaces Pi(R,;) and Pg(R..) are
stronger than the topologies induced by Pys(R.); in other words, the inclusion maps
below are continuous:

7)1(|R+)
S~
PHS ([R+) — P(R+)
T

Pg(R..) (4.31)

Note that the ‘arithmetic barycenter’ []o is finite on P;(R,), while the ‘geometric
barycenter’ [-]; is finite and non-zero on Py (R, ).

Finally, let us establish continuity of the HS barycenter for the extremal values of the
parameter with respect to these new topologies:

Proposition 4.7. Consider a sequence (jin, ¢;) in Pus(Ry) x [0, 1].
(@) If (pn, en) = (1, 0) in Pr(Ry) x [0, 1), then [pnle, — [1]o-
(b) If (pns ¢n) = (p; 1) in Pg(Ry) > (0, 1], then [pn]e, — [ph-
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Proof of part (a) of Proposition 4.7. Note that if ¢, =0 for every n € N, the
result is direct from the definition of the topology in P;(R,) (use characterization (c)
of Theorem 4.3). We assume now that ¢, > 0, for every n € N. It is a consequence of
Theorem 4.5 that:

lim inf nle, = . 4.32
(M,Cn)ﬂ(#yo)[u ] [12]o (4.32)

The same proof as that of part (4.25) of Proposition 4.6 can be used to prove,

lim sup [Nn]cn < [,U']O (433)
(/’Ln:cn)‘)(lho)

Indeed, in the topology of P;(R,) the HS kernels K(z, y, ¢,) satisfy the assumptions of
Lemma 4.4. For this, it suffices to notice that, for any fixed value yo > 0, the sequence
of continuous functions ‘K(ml;yric;c)‘ is uniformly bounded, and that K(z, yo, ¢n) —

K(x, yo, 0) uniformly on compact subsets of R,. O

Proof of part (b) of Proposition 4.7. In the case that ¢, = 1 for every n € N, the
result is direct from the topology in Py(R..) (use characterization (c) of Theorem 4.3).
We assume that ¢, < 1, for every n. It is a consequence of (4.25) of Proposition 4.6 that:

limsup [tnle, < [t1- (4.34)
(l‘nwcn)‘)(l"vl)

Recall that the HS barycenter is decreasing in the variable ¢; see Proposition 2.6.(e). In

particular, [uy]e, > [un]1, for every n € N. Noticing that logz is a test function for the
convergence in the topology of Pg(R..), we obtain:

lim inf{pp]e, > liminf{u,]q (4.35)

= exp(lim inf/log:cd,un) = exp/logxdu = [u):.
n—oo
The result follows combining (4.34) and (4.35). O

The following observation complements part (b) of Proposition 4.7, since it provides a
sort of lower semicontinuity property at ¢ = 1 under a weaker integrability condition:

Lemma 4.8. Let c € [0, 1) and let u € P(R,) be such that log™ (z) € L*(p). Then:

e = exp [ (¢ og™ (a) ~ log™ (2) du(o). (4.36)

Proof. By definition, [u]. > [ K(z, 1, ¢) du(z). Note that if z > 1, then K(z, 1, ¢) =
c tog(cx +1—c¢) > c tloga, while if x <1, then K(z, 1, ¢) > loga by Proposition
2.2.(e). In any case, K(z, 1, ¢) > ¢ 'log™*(x) —log™ (), and the Lemma follows. O
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5. Ergodic theorems for symmetric and HS means

Symmetric means (3.3) are only defined for lists of non-negative numbers. On the other
hand, HS barycenters are defined for probability measures on R, and are therefore much
more flexible objects. In particular, there is an induced concept of HS mean of a list of
non-negative numbers, which we have already introduced in (3.1). We can also define the
HS mean of a function:

Definition 5.1. If (2, F, P) is a probability space, f: £ — R, is a measurable non-
negative function, and c¢ € [0, 1], then the Haldsz—Székely mean (or HS mean) with
parameter ¢ of the function f with respect to the probability measure P is:

[f | ]P]c = [f*]P)]c' (5'1)

that is, the HS barycenter with parameter ¢ of the pushforward measure on R,. In the
case ¢ = 1, we require that log f is semi-integrable.

For arithmetic means, the classical ergodic theorem of Birkhoff states the equality
between limit time averages and spatial averages. From the probabilistic viewpoint,
Birkhoff’s theorem is the strong law of large numbers. We prove an ergodic theorem
that applies simultaneously to symmetric and HS means and extends the results of
[15, 28]:

Theorem 5.2. Let (Q, F, P) be a probability space, let T: Q — Q be an ergodic
measure-preserving transformation, and let f: Q) — R, be a non-negative measurable
function. Then there exists a measurable set R C Q with P(R) =1 with the following
properties. For any w € R, for any ¢ € [0, 1] such that

c#1-P(f71(0) (5.2)
and
¢ <1 unlesslog f is semi-integrable, (5.3)

and for any sequence (c¢y,) in [0, 1] tending to ¢, we have:

nh_)néo hsme, (f(w), f(Tw),..., F(T" W) = [f | Pl.; (5.4)
furthermore, for any sequence (k,) of integers such that 1 <k, <n and k,/n — ¢,
we have:

T symy, (7(@). f(Tw)..... [(T""w)) =[] | Bl (5.5)

Remark 5.3. Since we allow HS means to take infinity value, we do not need inte-
grability conditions as in [15, 28], except for the unavoidable hypothesis (5.3). In the
supercritical case P(f~1(0)) > 1 — ¢, both limits (5.4) and (5.5) are almost surely attained
in finite time. In the critical case P(f~1(0)) = 1 — ¢, strong convergence does not neces-
sarily hold, and the values sym;, (f(w), ..., f(T" 'w)) may oscillate. However, in the IID
setting, van Es proved that the sequence of symmetric means converges in distribution,
provided that the sequence (v/n(k,/n — c)) converges in [—oco, cc]: see [28, Theorem Al

(b)]-
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As we will soon see, part (5.4) of Theorem 5.2 is obtained using the results about
continuity of the HS barycenter with respect to various topologies proved in § 4, and
then part (5.5) follows from the inequalities of Theorem 3.4 and Remark 3.6.

To begin the proof, let us fix (2, F, P), T, and f as in the statement, and let p :=
f«P € P(R,) denote the pushforward measure. Given w € ), we consider the sequence of
associated sample measures:

_ @) FOray t o gty

“ 5.6
e - 59

As the next result shows, these sample measures converge almost surely!l :

Lemma 5.4. There exists a measurable set R C Q with P(R) = 1 such that for every
w € R, the corresponding sample measures converge weakly to p :

fn = 5 (5.7)
furthermore, stronger convergences may hold according to the function f :
(a) iflog(1+ f) € L' (P), then u¥ — w in the topology of Pus(R.);
(b) if f € L*(P), then u* — p in the topology of P1(Ry);
(c) if |log f| € L'(P), then u% — w in the topology of Pg(R..).

Proof. Let C C Cy(R,) be a countable set of bounded continuous functions which is
sufficient to test weak convergence, i.e., with property (4.1). For each ¢ € C, applying
Birkhoff’s ergodic theorem to the function ¢ o f, we obtain a measurable set R C Q with
P(R) = 1 such that for all w € R,

n—1
Jim [ 6dus = lim S o(r(1%w) = [ oo fap = [odn. (5.8)
j=0

Since C is countable, we can choose a single measurable set R of full probability that works
for all ¢ € C. Then we obtain p2 — p for all w € R. To obtain stronger convergences, we
apply Birkhoff’s theorem to the functions log(1+ f), f, and |log f|, provided they are
integrable, and reduce the set R accordingly. If, for example, f is integrable, then for all
w € R we have:

n—00

n—1
tim [ wdps(@) = lim i;o F(Tw) = / FdP = / vdu(z). (5.9)

Applying part (c) of Theorem 4.3 with xg =0 and d(z, z¢) = z, we conclude that p
converges to u in the topology of P1(R.). The assertions about convergence in Pus(R;)
and Pg(R..) are proved analogously, using instead the corresponding distances (4.11)
and (4.30). O

I [23, Theorem I1.7.1] contains a similar result, with essentially the same proof.
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Proof of Theorem 5.2. Let R be the set given by Lemma 5.4. By the semi-integrable
version of Birkhofl’s theorem (see e.g. [19, p. 15]), we can reduce R if necessary and assume
that for all w € R,

Jim S log (£(7')) = [ log* (/(0)) dB@). (5.10)

0

Fix a point w € R and a number ¢ € [0, 1] satisfying conditions (5.2) and (5.3). Consider
any sequence (c,,) in [0, 1] converging to c¢. Let us prove (5.5), or equivalently,

[, — [ple- (5.11)

There are several cases to be considered, and in all but the last case we will use Lemma
5.4:

o First case: 0 < ¢ < 1 and [p]. = co. Since p — p, (5.11) is a consequence of Theorem
4.5.

e Second case: 0 < ¢ < 1 and [u]. < co. Then log(1 + f) € L*(P). Therefore, u — u
in the topology of Pys(R,), and Proposition 4.6 implies (5.11).

o Third case: ¢=0 and [u]op < co. Then log f € L*(P), and hence pu“ — u in the
topology of P;1(R;). So (5.11) follows from Proposition 4.7.(a).

o Fourth case: ¢=1 and [u]; =0. Then log(1 + f) € L'(P). Thus, u* — p in the
topology of Pus(R,), and Proposition 4.6 yields (5.11).

o Fifth case: ¢ =1 and 0 < [u]; < oco. Then |log f| € L*(P). Therefore, u& — u in the
topology of Py(R4+), and (5.11) becomes a consequence of Proposition 4.7.(b).

o Sixth case: ¢ = 1 and [u]; = co. Then log™(f) is integrable, but log™ (f) is not. If n
is large enough then ¢, > 0, so Lemma 4.8 gives:

log[u],,, > / (et log™ (z) — log™ (2)) dus () (5.12)
1 1 + i 15, i
= LN o (W)~ - 3 log (F(T), (5.13)
n i=0 i=0

which by (5.10) tends to co. This proves (5.11) in the last case.

Part (5.4) of the theorem is proved, and now lets use it to prove part (5.5). Consider a
sequence (k) of integers such that 1 <k, <n and ¢, := k,/n tends to ¢. By Theorem
3.4,

( n ) —1/ky
kn

B(en)
If [u]e = o0, i.e. [u¥]., — 00, then the first inequality forces the symmetric means to tend
to oo as well. So let us assume that [u]. is finite. If ¢ > 0 then, by Lemma 3.5, the fraction

[15]e, < symy, (f(w), f(Tw),.... F(T" " w)) < [1)e, - (5.14)

https://doi.org/10.1017/50013091522000372 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091522000372

The Haldsz—Székely Barycenter 909

on the RHS converges to 1 as n — 0o, and therefore, we obtain the desired limit (5.5). If
¢ =0, then we appeal to Maclaurin inequality in the form

symy,, (f(w), f(Tw),..., f(T""'w)) < symy (f(w), f(Tw), ..., F(T" " w)). (5.15)

So:

1o, < symy, (F(@), F(Tw), ..., (T ) < [, (5.16)
Since (5.11) also holds with ¢, = 0, we see that all three terms converge together to [u].,
thus, proving (5.5) also in the case ¢ = 0. O

Like Birkhoff’s Ergodic Theorem itself, Theorem 5.2 should be possible to generalize in
numerous directions. For example, part (5.4) can be easily adapted to flows or semiflows
(actions of the group R or the semigroup R, ). One can also consider actions of amenable
groups, like [2, 22]. We shall not pursue these matters. In another direction, let us note
that Central Limit Theorems for symmetric means of i.i.d. random variables have been
proved by Székely [27] and van Es [28].

A weaker version of Theorem 5.2, in which the function f is assumed to be bounded
away from zero and infinity, was obtained in [5, Theorem 5.1] as a corollary of a fairly
general pointwise ergodic theorem: the Law of Large Permanents [5, Theorem 4.1].
We now briefly discuss a generalization of that result obtained by Balogh and Nguyen
[3, Theorem 1.6]. Suppose that T is an ergodic measure-preserving action of the semi-
group N? on the space (X, u). Given an observable g : X — R,, and a point 2 € X, we
define an infinite matrix whose (i, j)-entry is g(7*/)z). Consider square truncations of
this matrix and then take the limit of the corresponding permanental means as the size
of the square tends to infinity. It is proved that the limit exists p-almost everywhere. But
not only that, it is also possible to identify the limit. It turns out that it is a functional
scaling mean. This is a far reaching generalization of the matrix scaling mean (3.27): see
[5, Section 3.1].

Additional information

The interested reader may find in the ArXiv an extended version of this paper, https://
arxiv.org/abs/2103.05182. It contains two extra sections, 6 and 7. In Section 6, we study
concavity properties of the HS barycenter. Among other results,

e we obtain a version of Newton’s inequality for the HS barycenter;

e we prove that as a function of the measure, the HS barycenter is log-concave but not
quasi-affine;

o we provide a formula for the Hessian of the function log[]..

In Section 7, we introduce another barycenter which provides the best quasi-affine
approximation of the HS barycenter, and is a deviation mean in a sense akin to Dardczy.

After this paper was written, the first-named author found more situations where
HS barycenters arise. The hypergeometric means introduced by Carlson in [9] include
symmetric means and many others as particular cases: see [7, § 3]. In a forthcoming paper,
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the first-named author will show that Halasz—Székely barycenters can be defined for all
real values of the parameter ¢, and that they govern the limit behaviour of hypergeometric
means. For instance, the fixed parameter ¢ in the convergence result [7, Theorem 3] can
be replaced by any asymptotically linear sequence t(n) ~ —cn, with the corresponding
arithmetic means being replaced by Halasz—Székely means with parameter c.
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