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Abstract. Greenlees has conjectured that the rational stable equivariant homotopy
category of a compact Lie group always has an algebraic model. Based on this idea, we
show that the category of rational local systems on a connected finite loop space always
has a simple algebraic model. When the loop space arises from a connected compact
Lie group, this recovers a special case of a result of Pol and Williamson about rational
cofree G-spectra. More generally, we show that if K is a closed subgroup of a compact Lie
group G such that the Weyl group WGK is connected, then a certain category of rational
G-spectra “at K” has an algebraic model. For example, when K is the trivial group, this is
just the category of rational cofree G-spectra, and this recovers the aforementioned result.
Throughout, we pay careful attention to the role of torsion and complete categories.
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1. Introduction. The category of non-equivariant rational spectra is very simple;
it is equivalent to the derived category of Q-modules. Greenlees has conjectured that for
a compact Lie group G, the category of rational equivariant G-spectra is equivalent to the
derived category of an abelian category A(G) [21, Conjecture 6.1]. For example, when G is
a finite group, the conjecture holds, and is relatively elementary to prove [19, Appendix A].
The conjecture has also been proved in various other cases including (but not limited to)
tori [26], O(2) [3], and SO(3) [34]. In these cases, we say that the category of rational
G-equivariant spectra has an algebraic model. One can additionally ask for more struc-
ture to be preserved, for example, one can ask for an equivalence of symmetric monoidal
categories.

Inside the category of G-spectra sit the category of free and cofree (or Borel com-
plete) G-spectra. The category of free G-spectra consists of those G-spectra that can be
constructed from free cells �∞+ G. More specifically, it can be constructed as the localiz-
ing subcategory inside G-spectra generated by �∞+ G. Equivalently, these are the G-spectra
for which EG+ ⊗ X → X is an equivalence, where EG+ is the suspension spectra of the
universal free G-space (see Section 3.2). The category of cofree G-spectra is the Bousfield
localization of SpG at �∞+ G, or equivalently the G-spectra for which X → F(EG+, X )

is an equivalence. Similarly, we can construct the categories of free and cofree rational
G-spectra, which we denote by Spfree

G,Q and Spcofree
G,Q , respectively. In fact, these categories

are equivalent, although not by the identity functor. These categories fit into a general
construction of torsion and complete categories, see Section 2.1.
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It is reasonable to conjecture that there is an algebraic model for these categories,
and this is indeed the case [23, 25, 46]. We state the result for a connected compact Lie
group, however we note that the cited results consider more generally arbitrary compact
Lie groups.

THEOREM 1.1 (Greenlees–Shipley, Pol–Williamson). Let G be a connected compact
Lie group and I be the augmentation ideal of H∗(BG). Then there are Quillen equivalences

Spfree
G,Q � ModI−tors

H∗(BG),inj and Spcofree
G,Q �⊗ ModI−comp

H∗(BG),proj

Here the categories ModI−tors
H∗(BG),inj and ModI−comp

H∗(BG),proj are the categories of I-torsion

dg-H∗(BG)-modules and LI
0-complete dg-H∗(BG)-modules, respectively, equipped with

an injective and projective module category structure, respectively (see Section 2.3).
Moreover, the second equivalence is even shown to be symmetric monoidal.1

In fact, Greenlees and Shipley have given two proofs for the equivalence between
free G-spectra and torsion H∗(BG)-modules when G is a connected compact Lie group.
The first [23] passes from equivariant homotopy to algebra almost immediately, while the
second [25] (which also deals with the non-connected case) stays in the equivariant world
as long as possible. As noted by the authors, staying in the equivariant worlds seems to
help the extension to the non-connected case. In the cofree case, the authors also stay in
the equivariant world as long as possible. Our approach is to move away from equivariant
homotopy immediately, and as such is closer in spirit to the original proof of Greenlees
and Shipley. Indeed, we begin with the observation that there is a symmetric monoidal
equivalence of ∞-categories

Spcofree
G,Q �⊗ Fun(BG, ModHQ), (1.2)

see Proposition 3.11, where Fun(−, −) denotes the ∞-category of functors and BG is
considered as an ∞-groupoid. We call this the ∞-category of rational local systems on BG.

An advantage of moving away from equivariant homotopy is that one can work
more generally. For a space Y (again thought of as an ∞-groupoid) we let LocHQ(Y ) =
Fun(Y , ModHQ) denote the ∞-category of rational local systems on Y .

QUESTION 1.3. For which spaces Y does the ∞-category LocHQ(Y ) have an
algebraic model?

The above results show that this is true whenever Y = BG for a compact Lie group G.
A connected compact Lie group is a particular example of a connected finite loop space.
Our first main result is the following.

THEOREM A (Theorem 5.6). Let X be a connected finite loop space, then there is an
equivalence of symmetric monoidal ∞-categories

LocHQ(BX ) �⊗ D
(

ModI−comp
H∗(BX )

)
.

Here, D(ModI−comp
H∗(BX ) ) is the symmetric monoidal stable ∞-category underlying the

category ModI−comp
H∗(BX ),proj of LI

0-complete dg-H∗(BX )-modules, again equipped with the pro-
jective model structure. We note that there do indeed exist connected finite loop spaces
not rationally equivalent to compact Lie groups [1]. The key fact is that the rational

1Throughout, we indicate such an equivalence by the symbol �⊗.
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cohomology of the classifying space of any connected finite loop space is a polynomial
algebra

H∗(BX ; Q) ∼= Q[y1, . . . , yr],
where the generator yi is in (even) degree 2di. In fact, the integers {d1, . . . , dr} uniquely
determine the rational homotopy type of the finite loop space X . This is the key compu-
tational result that we need, along with the fact that rational polynomial rings are formal.
Finally, we note that such an X is always homotopy equivalent to a manifold by the main
result of [11].

The proof proceeds through a series of equivalences of symmetric monoidal stable
∞-categories, as indicated below.

LocHQ(BX )
(5.1)�⊗ LHQ ModC∗(BX ;Q)

(2.23)�⊗ ModI−comp
C∗(BX ;Q)

(5.5)�⊗ DI−comp
H∗(BX )

(2.20)�⊗ D(ModI−comp
H∗(BX ) ).

The first equivalence relies on the concept of a unipotent stable ∞-category introduced in
[41], and relies heavily on their work. As we explain in Remark 4.4, one could also deduce
the result using the compactly generated localization principle of Pol and Williamson [46,
Theorem 3.14], or Proposition 2.11 in this paper.

In equivariant homotopy, we work with a bit more generality than with just free and
cofree G-spectra. For a closed subgroup K of G, we define ∞-categories SpG,〈K〉 and Sp〈K〉

G
of G-spectra “at K” as well as their rationalized versions. The terminology is used because
a nontrivial G-spectrum M ∈ SpG,〈K〉 if and only if its geometric isotropy is exactly K,
i.e., its geometric K-fixed points are nontrivial, and its geometric H-fixed points are trivial
for all H �= K. The rational categories SpG,〈K〉,Q also appear in the computation of the
localizing tensor-ideals of SpG,Q [22]; these are precisely the minimal localizing tensor-

ideals. Finally, we note that the categories Sp〈K〉
G appear naturally in the work of Ayala–

Mazel-Gee–Rozenblyum [2] and Balchin–Greenlees [7], see Remark 3.21.
Our second theorem is the following.

THEOREM B (Corollary 5.7 and 5.8). Let G be a compact Lie group, and K a closed
subgroup such that the Weyl group WGK = NGK/K is a connected compact Lie group, then
there are equivalences of stable ∞-categories

SpG,〈K〉,Q �D(ModI−tors
H∗(B(WGK))) and Sp〈K〉

G,Q
�⊗ D(ModI−comp

H∗(B(WGK))).

When G is a connected compact Lie group and K is the trivial subgroup, this recovers
Theorem 1.1. When G is an arbitrary compact Lie group and K = G, then SpG,Q,〈G〉 �
Sp〈G〉

G,Q
�⊗ SpQ, the ordinary category of rational non-equivariant spectra, and this is just the

statement that the rational stable homotopy category is equivalent to the derived category
of Q-vector spaces.

We finish by constructing an Adams spectral sequence in the category LocHQ(BX ) for
X a connected finite loop space. In fact, we show that the Adams spectral sequence can
easily be constructed using the universal coefficient spectral sequence for ring spectra [17,
Theorem IV.4.1].

Conventions We work throughout mainly with ∞-categories although some results
need to be translated from model categories to ∞-categories; in Appendix A we give a
very brief recap of what we need, as well as references to more detailed accounts.

An adjunction F : C �D : G between symmetric monoidal stable ∞-categories will
be called symmetric monoidal if F is a symmetric monoidal functor. Note that in this case
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G automatically acquires the structure of a lax symmetric monoidal functor [38, Corollary
7.3.2.7].

For a compact Lie group G, we will write SpG for the ∞-category of G-equivariant
spectra; in the non-equivariant case, we write Sp. For a space X , and an ∞-category C,
we will write Fun(X , C) for the ∞-category of functors from X to C, where X is thought
of as an ∞-groupoid. For example, when X = BG, the category Fun(BG, C) denotes the
∞-category of objects in C with a G-action.

A localizing category D of C is a full, stable, subcategory of C that is closed under
extension, retracts, and filtered colimits. It is additionally an ideal if X ∈D and Y ∈ C
implies X ⊗ Y ∈D. Given a collection of objects {Xi}i∈I ∈ C we will write Loc({Xi | i ∈ I})
for the smallest localizing subcategory of C containing each Xi. In the case of a single
object X , we simply write Loc(X ).

Finally, if C is a closed symmetric monoidal category with internal hom object
F(−, −) and monoidal unit 1, then we write DX = F(X , 1) for the internal dual of an
object X .

2. Completion and torsion in algebra and topology. We begin by reviewing the
construction of torsion and complete categories in a symmetric monoidal stable ∞-
category. We consider torsion and completion for ring spectra and dg-algebras, and relate
the latter to algebraic categories of torsion and complete objects.

2.1. Torsion and complete objects. We recall the basics of torsion and complete
objects in a symmetric monoidal presentable stable ∞-category (C, ⊗, 1). For simplicity,
we assume that C is compactly generated by dualizable objects. Note that our assumptions
imply that C is closed monoidal, and we write HomC(−, −) for the internal Hom object
in C. They also imply that all compact objects are dualizable [9, Lemma 2.5] (with the
converse holding if the unit 1 is compact). The theory in this section goes back to (at least)
Hovey–Palmieri–Strickland [32], and has also been considered by Dwyer–Greenlees [14],
Mathew–Naumann–Noel [41], and Barthel–Heard–Valenzuela [8].

We consider three full subcategories of C defined in the following way.

DEFINITION 2.1 Let A= {Ai} be a set of compact (and hence dualizable) objects of C.

(1) We say that M ∈ C is A-torsion if it is in the localizing subcategory of C gener-
ated by the set A. We let CA−tors ⊆ C denote the full subcategory of A-torsion
objects.

(2) We say that M ∈ C is A-local if for any N which is A-torsion, the space of maps
HomC(N, M) � 0, or equivalently, if Ai ⊗ M � 0 for each Ai ∈A [41, Proposition
3.11]. We let CA−loc ⊆ C denote the full subcategory of A-local objects.

(3) We say that M ∈ C is A-complete if for any N ∈ C which is A-local the space
of maps HomC(N, M) � 0. We let CA−comp ⊆ C denote the full subcategory of
A-complete objects.

REMARK 2.2 Note that we do not assume that CA−tors is a localizing ideal, i.e., is not
automatically closed under tensor products. However, in practice, we will often be in the
situation where every localizing subcategory is automatically a tensor ideal (for example,
this holds whenever the category C has a single compact generator [32, Lemma 1.4.6])

The following is shown in [32, Theorem 3.3.5] or [8, Theorem 2.21].
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THEOREM 2.3 (Abstract local duality). Let C and A be as above.

(1) The inclusion functor ιtors : CA−tors ↪→ C has a right adjoint �A, and the inclusion
functors ιloc : CA−loc ↪→ C and ιcomp : CA−comp → C have left adjoints −[A−1] and
�A, respectively.

(2) There are cofiber sequences

�AX → X → X [A−1]
and

�A(X ) → X → �AX

for all X ∈ C. In particular, �A is a colocalization functor and both −[A−1] and
�A are localization functors.

(3) The functors �A : CA−tors → CA−comp and �A : Ccomp → C tors are mutually
inverse equivalences of stable ∞-categories.

(4) Considered as endofunctors of C, there are adjunctions

HomC(�AX , Y ) � HomC(X , �AY )

and

HomC(�AX , Y ) � HomC(X , �AY )

between �A and �A.

REMARK 2.4. We note that the functors and categories above do not depend on the
set A, but only on the thick subcategory it generates.

REMARK 2.5. If CA−tors is a localizing ideal, then �A and −[A−1] are both smashing,
i.e., �A(X ) � �A(1) ⊗ X and similar for −[A−1].

REMARK 2.6. In the literature A-torsion objects are also sometimes referred to
as A-cellular objects, for example, in [24] (see in particular [24, Proposition 2.5 and
Corollary 2.6])

Pictorially, we can represent the functors and categories in the following digram.
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CA−comp,
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(2.7)

Each of the pairs (CA−tors, CA−loc) and (CA−loc, CA−comp) form a semi-orthogonal decom-
position of C in the sense of [39, Definition 7.2.0.1].

We note the following, which is [8, Proposition 2.34].

LEMMA 2.8. Suppose that A ∈ C, and let A= {A ⊗ D} where D ∈ C runs over a set of
compact generators of C.2 The inclusion CA−comp ↪→ C has a left adjoint given by Bousfield
localization at A, i.e., CA−comp �⊗ LC

A.

2This conditions forces CA−loc to be the localizing tensor ideal generated by A [32, Lemma 1.4.6].
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We now present a simplified version of the Greenlees–Shipley cellularization principle
[24, Corollary 2.7] that suffices for our purposes.

PROPOSITION 2.9 (Greenlees–Shipley). Let C and D be stable ∞-categories, and let

F : C D : G

be an adjunction.

(1) Let K be in C and suppose that the following hold:
(a) K is compact is C, and F(K) is compact in D.
(b) The unit η : K → GF(K) is a natural isomorphism.
Then, there is an equivalence of ∞-categories

CK−tors �DF(K)−tors .

(2) Let L be in D and suppose that the following hold:
(a) L is compact in D, and G(L) is compact in C.
(b) The counit ε : FG(L) → L is a natural isomorphism.
Then, there is an equivalence of ∞-categories

CG(L)−tors �DL−tors .

Proof. We prove (1), and leave the minor adjustments for (2) to the reader. We first
claim that (F, G) gives rise to an adjunction

F′ : CK−tors DK−tors : G′ (2.10)

Indeed, because F preserves colimits, F(Loc(L)) ⊆ Loc(F(K)), see, for example, [4,
Lemma 2.5]. We can, therefore, take F′ to be the restriction of F to Loc(K). Setting
G′ = �KG, one verifies that (F′, G′) form an adjoint pair, which we claim is an equivalence.

Indeed, consider the full subcategory of Ctors consisting of those X for which the unit
X → GF(X ) is an equivalence. This is a localizing subcategory containing K by assump-
tion. Since K generates CK−tors this localizing subcategory is all of C tors. Likewise, the full
subcategory of Dtors consisting of those Y for which the counit FG(Y ) → Y is an equiv-
alence, is localizing. Moreover, it contains F(K) by the triangle identities, and hence is
equal to DF(K)−tors.

A sort of dual result, due to Pol and Williamson, is the compactly generated localiza-
tion principle [46, Theorem 3.14]. Again, we only prove a special case of their theorem
which will suffice for our purposes.

PROPOSITION 2.11 (Pol–Williamson). Let C and D be symmetric monoidal stable
∞-categories and

F : C D : G

a symmetric monoidal adjunction.

(1) Let E ∈ C and suppose that the following hold:
(a) LE C is compactly generated by K and LF(E)D is compactly generated by F(K).
(b) The unit map ηK : K → GF(K) is an equivalence.
Then, there is a symmetric monoidal equivalence of ∞-categories

LE C �⊗ LF(E) D
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(2) Let E′ ∈D and suppose that the following hold:
(a) LE′ D is compactly generated by L and LG(E′)D is compactly generated

by G(L).
(b) The counit maps εL : FG(L) → L and εE′ : FG(E′) → E′ are equivalences.
Then, there is a symmetric monoidal equivalence of ∞-categories

LG(E′) C �⊗ LE′ D
Proof. We prove (1); the proof for (2) is similar—the extra assumption is only used to

ensure that the adjunction descends to the localized categories, as we now describe in (1).
First observe that if Y ∈ C is E-acyclic, then F(Y ) ∈D is F(E)-acyclic because F is

a symmetric monoidal functor. We claim it follows that if N ∈ LF(E) D, then G(N) ∈ LE C.
To see this, choose an E-acyclic Y , then we must show that HomC(Y , G(N)) � ∗. But
HomC(Y , G(N)) � HomD(F(Y ), N) � ∗ because F(Y ) is F(E)-acyclic and N ∈ LF(E) D
by assumption.

Let F′ = LF(E) ◦ F, then by inspection we have a symmetric monoidal adjunction
F′ : LA C � LF(E) D : G′, where G′ is the restriction of G to LF(E) D, which we claim is
an equivalence.

First, because F(K) ∈ LF(E) D, it is not hard to see that assumption (b) implies that the
unit map η′

K : K → G′F′(K) is also an equivalence. Note that F′ preserves colimits, and
since it preserves compact objects by assumption (a), its right adjoint G′ preserves colimits
as well. It follows that the unit is always an equivalence, and that F′ is fully faithful.

It then follows from the triangle identities that the counit F′G′(F(K)) → F(K) is also
an equivalence, and a localizing subcategory argument shows then that the counit is always
an equivalence. Hence, G′ is also fully faithful, and (F′, G′) is an adjoint equivalence as
claimed.

2.2. Torsion and completion for graded commutative rings. Throughout this
section, we fix a graded commutative ring A, and let ModA denote the category of
dg-A-modules. We can give this category the projective model structure [12, Theorem 3.3]
with weak equivalences the quasi-isomorphisms, fibrations degreewise surjections, and
cofibrations the subcategory of maps which have the left lifting property with respect to
every map which is simultaneously a fibration and a weak equivalence. This is a compactly
generated (in the sense of [12, Definition 6.5]) monoidal model category, and we write DA

for the associated symmetric monoidal stable ∞-category (see Section A for a very brief
summary of the translation between model categories and ∞-categories).

We can also give ModA the injective model structure with weak equivalences the quasi-
isomorphisms, cofibrations degreewise monomorphisms, and fibrations those maps which
have the right lifting property with respect to every map that is simultaneously a cofibration
and a weak equivalence. Because the weak equivalences are the same as in the projective
model structure, the underlying ∞-category DA does not depend on which model struc-
ture we use. However, the injective model structure is not monoidal, and so from this
perspective, one does not see the symmetric monoidal structure on DA.

For any x ∈ A, we define the unstable Koszul complex as

K(x) = fib(�|x|A ·x−→ A),

where the fiber is taken in DA, and the stable Koszul complex

K∞(x) = fib(A → A[x−1]),
where, as usual, A[x−1] is defined as the colimit of the multiplication by x map.
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Let I = (x1, . . . , xn) be a finitely generated ideal, and then define

K(I) = K(x1) ⊗A · · · ⊗A K(xn) and K∞(I) = K∞(x1) ⊗A · · · ⊗A K∞(xn).

DEFINITION 2.12. Let DI−tors
A denote the localizing subcategory of A generated by

the compact object K(I).

Accordingly, applying the general machinery of Section 2.1, we have the following
categories and functors:

�I : DA →DI−tors
A ,

−[I−1] : DA →DA[A−1],
�I : DA →DI−comp

A ,

as well as an equivalence of ∞-categories DI−tors
A �DI−comp

A .

REMARK 2.13. As shown in [14, Section 6], we have �A(−) � K∞(I) ⊗A −, and
hence �A(−) � HomA(K∞(I), −) by local duality.

REMARK 2.14. The notation −[I−1] is suggestive. Indeed, suppose that I = (x1) is
principal, then it is straightforward to see that M[I−1] � M[x−1

1 ] � M ⊗ A[x−1
1 ]. In fact,

DI−loc
A �DA[x−1

1 ]. More generally, M[I−1] � ⊗n
i=1 M[x−1

i ], where the tensor product is

taken in DA. In particular, we see that M ∈DI−tors
A if and only if M[x−1

i ] � 0 for 1 ≤ i ≤ n.
This characterization will prove useful later.

REMARK 2.15. The categories DI−tors
A and DI−comp

A can both be characterized purely
homologically. Indeed, using the local cohomology and homology spectral sequences (see
[8, Proposition 3.20] or [14, Section 6]) one sees that

DI−tors
A = {M ∈DA | H∗M is I − torsion,}

DI−comp
A = {M ∈DA | H∗M is LI

0 − complete,}
where the I-torsion and LI

0-completion are discussed in more detail in Section 2.3.

2.3. Algebraic torsion and completion for graded rings. In this section, we com-
pare the categories constructed via local duality in the previous section with derived
categories of certain abelian categories. We now suppose that A is Noetherian, and that
I is generated by a regular sequence. These assumptions can be weakened; it would suffice
to take A to be a commutative ring and I to be a weakly proregular sequence (see [45,
Definition 3.21]), however they suffice for our purposes.

Let I ⊂ A be an ideal, and let ModI−tors
A be the abelian subcategory of I-torsion mod-

ules, i.e. those M ∈ ModA for which every element of the underlying graded module is
annihilated by a power of I , see [13]. We note that ModI−tors

A is Grothendieck abelian, see
[52, Tag 0BJA] and is hence locally presentable [5, Proposition 3.10].

We recall that there is an adjunction

i : ModI−tors
A ModA : �0

I .

We give ModI−tors
A the injective model structure induced by �0

I using [29, Theorem 2.2.1]
and let D(ModI−tors

A ) denote the associated ∞-category. Note that this does not have
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a natural monoidal structure. The above adjunction is Quillen (where ModA is given
the injective model structure), and so by Lemma A.3 gives rise to an adjunction of
∞-categories

i : D(ModI−tors
A ) DA : �0

I

The following appears in various forms throughout the literature, e.g., [14, 23, 45, 10].

THEOREM 2.16. There is an equivalence of ∞-categories

D(ModI−tors
A ) �DI−tors

A

Proof. There are a number of ways to do this—we follow [24, Section 5] and use
the cellularization principle Proposition 2.9. Thus, we take L = K(I) noting that this is
compact in DA. The homology of K(I) is I-power torsion, and hence we also write K(I)
to refer to the same object in D(ModI−tors

A ). We observe that K(I) is in fact a compact
generator of D(ModI−tors

A ) (see the proof of Proposition 6.1 of [14] and the discussion in
the last paragraph of page 180 of [24]), so that Loc(K(I)) =D(ModI−tors

A ). Finally, the
counit i ◦ �0

I (K(I)) → K(I) is clearly an equivalence. Thus, the cellularization principle

gives an equivalence D(ModI−tors
A ) �DI−tors

A , as claimed.

REMARK 2.17. As noted, there are other approaches to this. One other way is to show
directly that i is fully faithful (see for example [44, Theorem 1.3]), with essential image
the full subcategory of DA consisting of those complexes whose homology is I-torsion [45,
Corollary 4.32]. By Remark 2.15 this is precisely the category DI−tors

A .

We now move onto the completion functor. Here, the algebraic version of completion
we use is not I-adic completion (which is neither left nor right exact in general) as one
may expect, but rather LI

0-completion, which we recall now (for a useful summary, see [33,
Appendix A]).

DEFINITION 2.18. Let LI
0 denote the zeroth left derived functor of the (non-

exact) I-adic completion functor, then M is said to be LI
0-complete if M → L0

I (M) is an
isomorphism.

EXAMPLE 2.19. In the simple case where A = Z and I = (p), Bousfield and
Kan defined a notion of Ext −p completeness by asking that the natural map
M → Ext1Z(Z/p∞, M) is an isomorphism, or equivalently, that HomZ(Z[p−1], M) =
Ext1Z(Z[p−1], M) = 0. This turns out to be equivalent to asking that M is LI

0 complete.

For a dg-module M , we say that M is LI
0-complete if the underlying graded module

is, and let ModI−comp
A denote the full subcategory of LI

0-complete dg-modules. There is an
adjunction

LI
0 : ModA ModI−comp

A : i,

which is symmetric monoidal, where the monoidal structure on ModI−comp
A is given by

LI
0(M ⊗A N).

The subcategory ModI−comp
A of LI

0-complete modules is abelian, but not Grothendieck,
as filtered colimits are not exact. Following unpublished notes of Rezk [48], Pol and
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Williamson [46, Proposition 7.5] showed that ModI−comp
A admits a projective model struc-

ture with weak equivalences the quasi-isomorphisms, fibrations degreewise surjections,
and cofibrations the subcategory of maps which have the left lifting property with respect
to every map which is simultaneously a fibration and a weak equivalence. This model
structure is symmetric monoidal, and the above adjunction is a Quillen adjunction [46,
Proposition 7.7], which is symmetric monoidal because LI

0 is monoidal and the unit A is
cofibrant.

We let D(ModI−comp
A ) denote the underlying ∞-category of ModI−comp

A , then there is a
symmetric monoidal adjunction of stable ∞-categories

LI
0 : DA D(ModI−comp

A ) : i

THEOREM 2.20 (Pol–Williamson). There is a symmetric monoidal equivalence of
∞-categories

DI−comp
A �⊗ D(ModI−comp

A ).

Proof. As shown by Rezk [48, Theorem 10.2], the counit of the above adjunction is
an equivalence (i.e., i is a fully faithful functor and LI

0 is a Bousfield localization), with
image these complexes whose homology is L-complete. The essential image is then pre-
cisely DI−comp

A , see Remark 2.15. The equivalence is symmetric monoidal because LI
0 is a

symmetric monoidal functor.

2.4. An algebraic geometric description of local objects. Let X be a quasi-
compact separated scheme, then we can associate to it the derived ∞-category Dqc(X )

of quasi-coherent sheaves of OX -modules [38, Definition 1.3.5.8]. Given a morphism
f : X →Y of quasi-compact separated schemes, we can define (derived) pushforward and
pullback functors

f∗ : Dqc(X ) →Dqc(Y) and f ∗ : Dqc(Y) →Dqc(X ),

where the pair ( f ∗, f∗) are adjoint.
We now continue with the notation as in the previous section, and so we fix a graded

Noetherian ring A and a homogeneous ideal I = (x1, . . . , xn). Geometrically, we let X =
Spec(A) (the spectrum of homogeneous prime ideals in the graded ring A), Z = V(I),
the closed subset of X defined by I , and U =X −Z . We then have an open immersion
j : U →X . We define the ∞-category DZ

qc(X ) as the full-subcategory of Dqc(X ) consisting
of those F for which j∗F � 0 in Dqc(U).

LEMMA 2.21. The equivalence of categories Dqc(X ) �DA restricts to an equiva-
lence of ∞-categories

DZ
qc(X ) �DI−tors

A

Proof. Observe that U can be written as a union of open subschemes of the form
Spec A[x−1

i ] for 1 ≤ i ≤ n. Let F be in Dqc(X ) and let M ∈DA denote the corresponding
complex. Then F ∈DZ

qc(X ) if and only if M ⊗A A[x−1
i ] � M[x−1

i ] � 0 for 1 ≤ i ≤ n if and

only if M ∈DI−tors
A (see Remark 2.14).
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Using this, we can given an identification of the local category DI−loc
A . We learned that

such an approach is possible from [45, Section 7].

THEOREM 2.22. Let X ,Z and U be as above.

(1) The functor j∗ : Dqc(U) →Dqc(X ) is fully faithful.
(2) There is an equivalence of ∞-categories

DI−loc
A � j∗ Dqc(U)

where the right-hand side denotes the essential image of j∗.

Proof. (1) follows by applying the classical flat base change theorem (see, for example,
[42, Proposition 3.1.3.1]) to the diagram

U U

U X ,

j

j

which is a pullback because j is an open-embedding. Indeed, it implies that the counit
j∗j∗ → id is an equivalence, so that j∗ is fully faithful as claimed.

Let us write E for the essential image of j∗. Let ⊥E denote the left orthogonal to E ,
i.e., the full subcategory of Dqc(X ) on those objects F for which HomDqc(X )(F , G) � 0 for
each G ∈ E . Such a G is by definition of the form j∗H for H ∈Dqc(U). The vanishing condi-
tion is then equivalent to HomDqc(U)(j∗F ,H) � 0 for each H ∈Dqc(U), which is equivalent
to j∗F � 0. Thus F ∈DZ

qc(X ) �DI−tors
A by Lemma 2.21, and so ⊥E �DI−tors. It follows

from observations about semi-orthogonal decompositions (in particular, [39, Corollaries
7.1.2.7 and 7.1.2.8]) that E �DI−loc

A as claimed.

2.5. Torsion and complete objects for ring spectra. We now consider the case
where C = ModR for a commutative ring spectrum R with π∗R Noetherian. Suppose we
are given an ideal I = (x1, . . . , xn) ⊆ π∗R. We first construct natural analogs of the Koszul
complexes we constructed for graded rings.

To that end, for x ∈ π∗R we let K(x) be the fiber of the map �|x|R x−→ R, and then define
the unstable Koszul complex as

K(I) =
n⊗

i=1

K(xi).

We then define ModI−tors
R to be the category of torsion objects with respect to the compact

object A = K(I), and so we also obtain categories ModI−loc
R and ModI−comp

R .
We also define K∞(x) to be the fiber of R → R[1/x], and then

K∞(I) =
n⊗

i=1

K∞(xi).

The following is implicit in the proof of [15, Proposition 9.3].

PROPOSITION 2.23. Suppose that k is a field, R is a coconnective commutative aug-
mented k-algebra, and that π∗R is Noetherian, such that the augmentation induces an
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isomorphism π0R ∼= k. Let I denote the augmentation ideal, then there is a symmetric
monoidal equivalence of ∞-categories

ModI−comp
R �⊗ Lk ModR,

where Lk ModR is the Bousfield localization of ModR at k in the category of R-modules.

Proof. By Lemma 2.8 we have ModI−comp
R � LK(I) ModR, so it suffices to show that

there is an equivalence of Bousfield classes 〈k〉 = 〈K(I)〉, i.e., that for any M ∈ ModR we
have k ⊗R M � 0 if and only if K(I) ⊗R M � 0. It is clear that π∗K(I) is finite dimensional
over k, and hence by [15, Proposition 3.16] K(I) is in the thick subcategory of R-modules
generated by k (note that it is here where the conditions on R and k are required). This
easily implies that if k ⊗R M � 0, then K(I) ⊗R M � 0.

For the converse, we first claim that k is in the localizing subcategory generated by
K(I). Indeed, k ⊗R K∞(I) � �I(k) � k by Remark 2.13, and so k ∈ LocR(K(I)). Once
again, a simple argument now shows that if K(I) ⊗R M � 0, then k ⊗R M � 0. This
completes the proof.

3. Equivariant homotopy theory. In this section, we study the stable equivariant
category of a compact Lie group G. To that end, we let SpG be the symmetric monoidal
∞-category of genuine G-spectra for G a compact Lie group, see [41, Section 5], which
is based on the model theoretic foundations of Mandell and May [40]. This is compactly
generated by the set {G/H+ ∈ SpG}H≤G where H ≤ G is a closed subgroup (we are omitting
the suspension from our notation). Moreover, these objects are dualizable by [35, Corollary
II.6.3]. The category SpG is closed-monoidal, and we will let F(−, −) denote the internal
hom object in G-spectra.

3.1. Change of group functors. There are a variety of functors in use in equivariant
homotopy. Here we recall what we need. Details can be found in, for example, [35] or
Appendix A of [27] or [50, Chapter 3].

(1) Any group homomorphism f : H → G induces a symmetric monoidal functor
f ∗ : SpG → SpH . If f is the inclusion of a subgroup, then we denote this as
ResG

H : SpG → SpH . Note that if H is the trivial subgroup, then ResG
{e} is in fact

a functor SpG → Fun(BWGK, Sp), where WGK = NGK/K is the Weyl group of K
inside G.

(2) Restriction has a left adjoint, given by induction. Specifically, IndG
H : SpH → SpG

is given by X �→ G+ ∧H X for X ∈ SpH .
(3) If f : G → G/N is a quotient map associated to a normal subgroup N � G, then f ∗

is the inflation functor SpG/N → SpG.
(4) The right adjoint to inflation is the categorical fixed point functor (−)N : SpG →

SpG/N . If K ≤ G is an arbitrary subgroup, we let (−)K : SpG → SpWGK denote the
composite (−)K ◦ ResK

NGK .
(5) For a normal subgroup N � G, we have a geometric fixed points functor

�N : SpG → SpG/N (see also Remark 3.16 for a direct construction). If K ≤ G is an
arbitrary subgroup, we write �K : SpG → SpWGK for the composite �NGK ◦ ResG

NGK .

We also let φK : SpG → Fun(BWGK, Sp) denote the composite resWGK
{e} ◦�K . It is

not hard to check that φK � �K ◦ resG
K , where we again observe that �K : SpK →

Sp has a residual action by the Weyl group WGK (see [50, Remark 3.3.6]). By
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[50, Proposition 3.3.10] the functors {φK} as K runs through the closed subgroups
of G are jointly conservative. These also have the property that

φH(�∞
+ X ) � �∞

+ (X H) (3.1)

for any G-space X and that they are symmetric monoidal, colimit preserving
functors.

3.2. Torsion and complete objects for genuine equivariant G-spectra. We now
review the construction of the category of free and cofree (or Borel complete) G-spectra in
the context of torsion and complete objects as studied in Section 2.1.

We recall the definition of a family of subgroups.

DEFINITION 3.2. A family of closed subgroups is a non-empty collection F of closed
subgroups of G closed under conjugation and passage to subgroups.

Associated to F are G-spaces EF and ẼF with the properties that

(EF)H =
{

∅ if H �∈F
∗ if H ∈F .

and (ẼF)H =
{

S0 if H �∈F
∗ if H ∈F .

(3.3)

In fact, the G-spaces EF and ẼF are determined up to homotopy by their behavior on fixed
points [36, Theorem 1.9].

Associated to these spaces is a cofiber sequence of pointed G-spaces

EF+ → S0 → ẼF . (3.4)

We will also let EF+ and ẼF denote the suspension spectra of the same pointed G-space.

EXAMPLE 3.5. (1) If Fe = {{e}}, the family consisting only of the trivial subgroup,
then a model for EFe is the universal G-space EG.

(2) If F = All, the family of all closed subgroups of G, then a model for EF is a point.

Given a family F we let AF = {G/H+ | H ∈F}.
DEFINITION 3.6. A G-spectrum X is F−torsion if it is AF -torsion (i.e., in the local-

izing subcategory of SpG generated by AF ),3 is F-local if it is AF -local, and is F-complete
if it is AF -complete.

The situation can be shown diagrammatically as follows.

SpF−loc
G

��

��

�
�
�
�
�

�

SpG

−[A−1
F ]

��

�AF�����
��
��
�� �AF

����
���

���
��

SpF−tors
G

���������

∼ ��

��

	



�
�
�

�

SpF−comp
G .



����������

(3.7)

The following is essentially the content of [20, Section 4]. For finite G, see also [41,
Propositions 6.5 and 6.6].

3In this case, this is automatically a localizing ideal by the Mackey decomposition formula.

https://doi.org/10.1017/S0017089520000658 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089520000658


RATIONAL LOCAL SYSTEMS AND CONNECTED FINITE LOOP SPACES 149

PROPOSITION 3.8. The AF -torsion, localization, and completion functors are
given by

�AF � EF+ ⊗ −
−[A−1

F ] � ẼF ⊗ −
�AF � F(EF+, −).

Proof. For finite G, this is [8, Theorem 8.6], however, the same proof works for a
compact Lie group. Indeed, the key observation is due to Greenlees [20, Section 4], who
shows that �AF (SG) = EF+. Because �AF is smashing, this determines its behavior on all
of SpG. The identification of −[A−1

F ] then comes from comparing the cofiber sequences of
Theorem 2.3(2) and (3.4), while local duality (Theorem 2.3(4)) gives the identification
of �AF .

DEFINITION 3.9. X is said to be free (respectively, cofree) if it is AF -torsion (respec-
tively, AF -complete) for the family F = {{e}} consisting only of the trivial subgroup.

The following is [41, Proposition 6.19] in the case when G is a finite group. The same
proof works for compact Lie groups, with the exception that we only need to use closed
subgroups because {G/H+ ∈ SpG}H≤G is a set of generators for SpG, where H ≤ G is a
closed subgroup.

PROPOSITION 3.10. Suppose X is a G-spectrum with underlying spectrum with
G-action Xu ∈ Fun(BG, Sp). Then the following are equivalent:

(1) X is cofree, i.e., the natural map X → F(EG+, X ) is an equivalence in SpG.
(2) For each closed subgroup H ≤ G the map X H → X hH

u is an equivalence of spectra.

We now introduce an alternative model of cofree G-spectra. For finite G, this is [41,
Proposition 6.17] or [43, Theorem II.2.7], where for the latter we use Proposition 3.10 to
identify Scholze and Nikolaus’ Borel-complete G-spectra with cofree spectra. The latter
proof generalizes to compact Lie groups.

PROPOSITION 3.11. There are equivalences of symmetric monoidal ∞-categories

Spcofree
G �⊗ Fun(BG, Sp) and Spcofree

G,Q �⊗ Fun(BG, ModHQ).

Proof. We explain the global case; the rationalized case is identical. We first observe
that there is a natural functor SpG → Fun(BG, Sp), see [43, p. 249]. Alternatively, this is
just the observation that the restriction from SpG → Sp naturally lands in Fun(BG, Sp).

Using Proposition 3.8 the same argument4 as in [43, Theorem II.2.7] shows that
the functor SpG → Fun(BG, Sp) factors over �G (which is the functor denoted L by
Nikolaus–Scholze) and that, moreover, the functor Spcofree

G → Fun(BG, Sp) has an inverse
equivalence BG : Fun(BG, Sp) → Spcofree

G . Finally, the equivalence is symmetric monoidal,
because the induced functor Spcofree

G → Fun(BG, Sp) is symmetric monoidal.

3.3. The category of G-spectra at K . We now construct a category of G-spectra “at
K”, where K is a closed subgroup of G. If K = {e} is the trivial subgroup, then this will
just be the category of cofree G-spectra, while if K = G itself, then this will be equivalent
to the ordinary category of non-equivariant spectra.

4To be precise, one needs the analog of the equivalence of (i) and (ii) in Theorem 7.12 of [49] used in [43]. This
follows, for example, from [40, Proposition V.3.2].
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DEFINITION 3.12. For a closed subgroup K ≤ G, let F �≥K denote the family of closed
subgroups H of G such that K is not subconjugate to H . This defines a localized cate-
gory SpG[A−1

F �≥K
]. Additionally, let F≤K denote the family of closed subgroups H that are

subconjugate to K, and F<K the family of proper subgroups subconjugate to K.

If we let (H) denote the conjugacy class of a closed subgroup H ≤ G, and write
(H) ≤ (K) when H is subconjugate to G, then we can write

F �≥K = {H ≤ G | (H) �≥ (K)}
F≤K = {H ≤ G | (H) ≤ (K)}
F<K = {H ≤ G | (H)� (K)}.

REMARK 3.13. If K is a closed normal subgroup, then SpG[A−1
F �≥K

] is known as the
category of G-spectra concentrated over K, see [35, Chapter II.9].

LEMMA 3.14. The following are equivalent for a G-spectrum X :

(1) X ∈ SpG[A−1
F �≥K

].
(2) φH(X ) � 0 for all H ∈F �≥K.

Proof. See [47, Lemma 3.20] for the finite group case, although the argument holds
equally well in the case of compact Lie groups. For the benefit of the reader, we spell the
details out.

If (1) holds, then X → ẼF �≥K ⊗ X is an equivalence by Proposition 3.8. Given that φH

is symmetric monoidal, (3.1) and the behavior of fixed points of ẼF≥K (see (3.3)) show that
(2) then must hold. Conversely, suppose that (2) holds. To show that (1) holds, it suffices to
show that X ⊗ EF�≥K � 0. By [50, Proposition 3.3.10] we can test this after applying φH ,
as H runs through the closed subgroups of G. We then have

φH(X ⊗ EF �≥K) ∼= φH(X ) ⊗ φH(EF �≥K) ∼= φH(X ) ⊗ (EF �≥K)H

By assumption (2) and (3.3) this is always trivial, as required.

The following is [35, Corollary II.9.6] in the global case, and the rational case follows
with an identical argument.

PROPOSITION 3.15 (Lewis–May–Steinberger). Let G be a compact Lie group, then
for any closed normal subgroup N � G categorical fixed points induces equivalences of
symmetric monoidal ∞-categories

SpG[A−1
F �≥N

] �⊗ SpG/N and SpG,Q[A−1
F �≥N

] �⊗ SpG/N,Q.

More specifically, the (non-rationalized) equivalence is given as the composite

SpG[A−1
F �≥N

] ⊆ SpG
(−)N−−→ SpG/N

with inverse given by inflation followed by the localization.

REMARK 3.16. The geometric fixed points functor �N : SpG → SpG/N is defined as
the composite

SpG

−⊗ẼF �≥N−−−−−→ SpG[A−1
F �≥N

] ⊆ SpG
(−)N−−→ SpG/N .

In general, the above composite makes sense for arbitrary K ≤ G, and defines a functor
�̃K : SpG → SpWGK . We claim that �̃K � �K , where the latter is defined in Section 3.1.
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In order to make the dependence on the group clear, we write FG
�≥K = {H ≤ G | (H) �≥ (K)}

and FNGK
�≥K = {H ≤ NGK | (H) �≥ (K)}. The two are related by FNGK

�≥K =FG
�≥K ∩ Sub(NGK),

where Sub(NGK) is the set of closed subgroups of NGK. It is also then not hard to check
using fixed points that ResG

NGK(ẼFG
�≥K) is a model for ẼFNGK

�≥K .

To see that the two functors are the same, we first claim that ResG
NGK : SpG → SpNGK

restricts to a functor ResG
NGK : SpG[A−1

FG
�≥K

] → SpNGK[A−1

FNGK
�≥K

] between the localized cate-

gories. Let M ∈ SpG[A−1
FG

�≥K
], then by Lemma 3.14 we must show that φH(ResG

NGK M) � 0

for all H ∈FNGK
�≥K . By the definition of φH , we have

φH(ResG
NGK M) ∼= �H resNGK

H resG
NGK M

∼= �H resG
H M

∼= φH M .

Since H ∈FNGK
�≥K we see that H ∈FG

�≥K as well. By Lemma 3.14 and the assumption on M ,

we deduce that φH(ResG
NGK M) ∼= φH M ∼= 0, as required.

It now follows that the diagram

SpG SpG[A−1
FG

�≥K
] SpG SpWGK

SpNGK SpNGK[A−1

FNGK
�≥K

] SpNGK SpWGK

−⊗ẼFG
�≥K

ResG
NGK ResG

NGK

(−)K

ResG
NGK

−⊗ẼFNGK
�≥K

(−)K

commutes; the first square commutes by the discussion above, the middle square is clear,
and the third square commutes by definition of (−)K . This is precisely the claim that
�̃K � �K .

As noted in [47, Remark 3.28], a set of compact generators for SpG[A−1
F �≥K

] is given

by {G/H+ ⊗ ẼF �≥K | H �∈F �≥K a closed subgroup} (this also follows from the fact that the
localization is smashing and Proposition 3.8).

DEFINITION 3.17. Let SpG,〈K〉 denote the localizing subcategory of SpG[A−1
F �≥K

] gen-

erated by {G/H+ ⊗ ẼF �≥K | H ∈F≤K}, and let Sp〈K〉
G denote the corresponding complete

category.

Of course, we can make similar definitions in the rational case. Diagrammatically the
situation is as follows.

Sp〈K〉−loc
G

��

��

�
�
�
�
�

�

SpG[A−1
F �≥K

]

��

�����
���

���
�

����
���

���
�

SpG,〈K〉

����������

∼ ��

��

�

�

�
�
�

�

Sp〈K〉
G .

�����������

(3.18)
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REMARK 3.19. By [47, Lemma 3.25], we could also first localize with respect to the
family F<K instead of F≥K . This follows because F<K =F≥K ∩F≤K .

LEMMA 3.20. A nontrivial G-spectrum X is in SpG,〈K〉 if and only if

φH(X ) = 0 if H �= K and φH(X ) �= 0 if H = K,

as H runs through the conjugacy classes of subgroups of G. In other words, the geometric
isotropy of X is exactly K.

Proof. We have already seen that X ∈ SpG[A−1
F �≥K

] if and only if φH(X ) � 0 for all

H ∈F�≥K . A similar argument shows that X ∈ SpG,〈K〉 if and only if φH(X ) � 0 for the set
{H | H ∈F�≥K or H �∈F≤K}. This set contains all the subgroups of G except for K. Finally,
note that because X is nontrivial, we must have φK(X ) �= 0 by [50, Proposition 3.3.10].

REMARK 3.21. The categories Sp〈K〉
G and SpG,〈K〉 appear naturally in the work of

Ayala–Mazel-Gee–Rozenblyum [2] and Balchin–Greenlees [7]. In fact, Corollary 3.24
proved below is essentially the identification of the Kth stratum of SpG, in the sense of
Ayala–Mazel-Gee–Rozenblyum, as the category Fun(BWGK, Sp). Such a result is also
obtained in [2, Theorem 5.1.26]. Using Lemma 3.20 one sees that the rational cate-
gory SpG,Q,〈K〉 also appears in Greenlees’ computation of the localizing tensor ideals of
SpG,Q [22], where it is denoted G-spectra〈K〉. Greenlees proves that these are precisely the
minimal localizing tensor ideals in SpG,Q.

We let T : SpG[A−1
F �≥K

] → SpWGK denote the composite

SpG[A−1
F �≥K

] ⊆ SpG

ResG
NGK−−−→ SpNGK

(−)K−−→ SpWGK

This is a composite of right adjoints, and so has a left adjoint F given as the composite

SpWGK

Infl
NGK
WGK−−−→ SpNGK

IndG
NGK−−−→ SpG

−⊗ẼF �≥K−−−−−→ SpG[A−1
F �≥K

].
Explicitly, the left adjoint takes L ∈ SpWGK to (G+ ⊗(NGK)+ L) ⊗ ẼF �≥K

THEOREM 3.22. The functor T : SpG[A−1
F �≥K

] → SpWGK induces equivalences of
symmetric monoidal stable ∞-categories

Sp〈K〉
G �⊗ Spcofree

WGK and Sp〈K〉
G,Q

�⊗ Spcofree
WGK,Q.

Proof. We use the compactly generated localization principle Proposition 2.11 applied
to the adjunction

F : SpWGK SpG[A−1
F �≥K

] : T

Here, T(M) = MK and F(L) = (G+ ⊗(NGK)+ L) ⊗ ẼF≥K .
Note that the category Sp〈K〉

G is compactly generated by the object

{G/H+ ⊗ ẼF �≥K | H �∈ ẼF�≥K, H ∈F≤K} = {G/K+ ⊗ ẼF �≥K}
For simplicity, we let E′ denote this object. The category Spcofree

WGK is compactly generated
by (WGK)+. Hence, it suffices to show that T(E′) = (WGK)+ and that FT(E′) → E′ is an
equivalence.5 The second in fact follows from the first condition, as then

5Note that the two conditions in part (b) of Proposition 2.11(2) are equivalent in this case.
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FT(E′) � (G+ ⊗(NGK)+ (NGK/K)+) ⊗ ẼF≥K � E′,

and one checks using the triangle identities that FT(E′) → E′ is indeed an equivalence.
Finally, for the first equivalence, we argue similar to the proof of Theorem 3.22 of [2];

we have equivalences

T(E′) = T(G/K+ ⊗ ẼF≥K) = (G/K+ ⊗ ẼF≥K)K

� �K(G/K+) [Remark 3.16]
� ((G/K)K)+ [Equation (3.1)]
� (WGK)+

where the last step uses that (G/K)K = WGK as WGK-spaces.
Thus, the assumptions of Proposition 2.11(2) are satisfied and show that

L(WGK)+ SpWGK �⊗ LG/K+⊗ẼF �≥K
SpG[A−1

F �≥K
].

By Lemma 2.8 this is the statement that

Spcofree
WGK �⊗ Sp〈K〉

G

as claimed.

By local duality, or by a similar argument using the cellularization principle
(Proposition 2.9(2)), we deduce the following.

COROLLARY 3.23. The functor T : SpG[A−1
F �≥K

] → SpWGK induces equivalences of
stable ∞-categories

SpG,〈K〉 � Spfree
WGK and SpG,〈K〉,Q � Spfree

WGK,Q

By combining Theorem 3.22 with Proposition 3.11, we obtain the following.

COROLLARY 3.24. Let G be a compact Lie group and K a closed subgroup, then
there are equivalences of symmetric monoidal stable ∞-categories

Sp〈K〉
G �⊗ Fun(BWGK, Sp) and Sp〈K〉

G,Q
�⊗ Fun(BWGK, ModHQ).

It is worthwhile commenting on the two extreme cases: if K = {e}, the trivial subgroup,
then BWGK � BG, Sp〈{e}〉

G is the category of cofree G-spectra, and the above result is just
Proposition 3.11. On the other hand, if K = G, then BWGK � B{e}, the one point space,
and this is just the obvious equivalence between Sp and Fun(B{e}, Sp) that holds more
generally for any category.

4. Unipotence. In this section, we review the unipotence criterion of Mathew,
Naumann, and Noel [41], and give conditions on E that ensure that LocE(BX ) is unipotent
for a connected finite loop space X .

4.1. A unipotence criterion. Throughout this section, we fix a presentable symmet-
ric monoidal stable ∞-category (C, ⊗, 1). We recall that there is an adjunction

ModR C, (4.1)
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where R = EndC(1), the left adjoint is the symmetric monoidal functor given by − ⊗R 1
and the right adjoint is given by HomC(1, −).

DEFINITION 4.2 ([41, Definition 7.7]). C is unipotent if (4.1) is a localization, i.e., if
the right adjoint is fully faithful.

For us, the most important result will be the following unipotence criterion [41,
Proposition 7.15].

PROPOSITION 4.3. Let C be a presentable symmetric monoidal stable ∞-category
(C, ⊗, 1). Suppose C contains an algebra object A ∈ Alg(C) with the following properties:

(1) A is compact and dualizable in C.
(2) DA is compact and generates C as a localizing subcategory.
(3) The ∞-category ModC(A) is generated by A itself, and A is compact in ModC(A).
(4) The natural map

HomC(1, A) ⊗R HomC(1, A) → HomC(1, A ⊗ A)

is an equivalence, where R = EndC(1).

Then C is unipotent. More specifically, the adjunction (4.1) gives rise to a symmetric
monoidal equivalence of ∞-categories

C �⊗ LAR ModR,

where AR = HomC(1, A) ∈ Alg(Mod(R)) and the Bousfield localization is taken in the
category of R-modules.

REMARK 4.4. We now show how to recover the unipotence criterion Proposition 4.3
from the compactly generated localization principle Proposition 2.11. In fact, the proof
of the unipotence criterion uses [41, Proposition 7.13], so we assume the existence of a
commutative algebra object A satisfying the following:

(1) A is compact and dualizable in C.
(2) DA generates C as a localizing subcategory.
(3) A belongs to the thick subcategory generated by the unit.

Assuming these three conditions, we show how to use the compactly generated localization
principle to deduce that C �⊗ LAR ModR.

We will apply Proposition 2.11 to the adjunction

F : ModR C : G,

where R = EndC(1), the left adjoint is the symmetric monoidal functor given by
F = − ⊗R 1 and the right adjoint is given by G = HomC(1, −).

We let E = AR = G(A) � HomC(1, A), then the counit AR → GF(AR) is an equiva-
lence. Indeed, GF(AR) � GFG(A) � G(A) � AR, see the first paragraph of the proof of
[41, Proposition 7.13] (which uses assumption (3)), and the counit AR → GF(AR) is then
the identity map by the triangle identities. Moreover, LF(AR) C � LAC � C by the second
paragraph of the proof, which uses assumption (2).

By [41, Proposition 2.27] DAR is a compact generator for LAR (this uses assumption
(1)), and F(DAR) � DA is a compact generator of LF(AR) C � C by assumption (2). Thus,
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applying Proposition 2.11, we deduce that there is an equivalence of symmetric monoidal
stable ∞-categories

LAR ModR �⊗ C
as claimed by the unipotence criterion.

4.2. Unipotence for local systems. We begin be recalling the definition of local
systems on a space.

DEFINITION 4.5. Let E be a commutating ring spectrum, then for Y a connected
space, we let LocE(Y ) = Fun(Y , Mod(E)) be the ∞-category of E-valued local systems
on Y . This is a presentable symmetric monoidal stable ∞-category, where the monoidal
structure is given by the pointwise tensor product.

REMARK 4.6. With E and Y as above we also define spectra

C∗(Y ; E) = F(�∞
+ Y , E) and C∗(Y ; E) = �∞

+ Y ⊗ E.

Note that because E is a commutative ring spectrum, so is C∗(Y ; E), via the diagonal map.
If E = HQ, we will simply write C∗(Y ; Q) and C∗(Y ; Q).

We will usually be interested in the case where E = HQ, but there is no harm in
working more generally for now.

Let e : ∗ → Y correspond to a choice of base-point for the connected space Y . By
the adjoint functor theorem, the symmetric monoidal pullback functor e∗ : LocE(Y ) →
LocE(∗) � ModE has a left and right adjoint, denoted e! and e∗, respectively, (these are
given by left and right Kan extension along e, respectively, see [37, Section 4.3.3]). The
following is a special case of [30, Lemma 4.3.8] (recall that we assume Y connected).

LEMMA 4.7. The ∞-category LocE(Y ) is generated under colimits by e!(E).

REMARK 4.8. Suppose more generally that f : X → Y is a map of connected spaces,
then there is a symmetric monoidal pull-back functor f ∗ : LocE(Y ) → LocE(X ), which, by
the adjoint functor theorem, has a left and right adjoint, denoted f! and f∗.

We now introduce the class of spaces we are most interested in.

DEFINITION 4.9. A connected finite loop space is a triple (X , BX , e) where X is a
connected finite CW -complex, BX is a pointed space, and e : X → BX is an equivalence.

We will often just refer to the finite loop space as X . To apply the unipotence criteria,
we need to discuss the relevance of the Eilenberg–Moore spectral sequence. We recall the
definition from [41] here.

DEFINITION 4.10. Let Y be a space and E a commutative ring spectrum. We say that
the E-based Eilenberg–Moore spectral sequence (EMSS) is relevant for Y if the square

C∗(Y ; E) E

E C∗(Y ; E)

is a pushout of commutative ring spectra, i.e., the induced map E ⊗C∗(Y ;E) E → C∗(Y ; E)

is an equivalence.
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Finally, we need the following, which is a special case of a definition in [15,
Section 8.11].

DEFINITION 4.11. We say that C∗(Y ; E) is a Poincaré duality algebra if there exists an
a such that C∗(Y ; E) → �a HomE(C∗(Y ; E); E) is an equivalence. In the case that R = Hk
for a field k, then C∗(Y ; k) satisfies Poincaré duality if and if H∗(Y ; E) satisfies algebraic
Poincaré duality.

Now suppose that Y is a finite CW -complex, then we have

HomE(C∗(Y ; E); E) � HomE(C∗(Y ; S) ⊗ E; E)

� Hom(C∗(Y ; S); E)

� Hom(C∗(Y ; S); S) ⊗ E

� C∗(Y ; S) ⊗ E

� C∗(Y ; E).

With these preliminaries in mind, we now have the following, which is strongly
inspired by the closely related result [41, Theorem 7.29].

REMARK 4.12. We recall that given a commutative ring spectrum R, we can form
Bousfield localization in the category of R-modules, see, for example, [17, Chapter VIII].
In particular, if E is an R-module, then M ∈ ModR is E-acyclic if E ⊗R W � ∗, and a
map f : S → T of R-modules is an E-equivalence if id ⊗R f : E ⊗R M → E ⊗R N is a weak
equivalence. Then, there is always a localization of M ∈ ModR, i.e., a map λ : M → LEM
such that λ is an E-equivalence, and ME is E-local, i.e., FE(W , ME) = 0 for any E-acyclic
R-module W .

For the following, we apply this in the case R = C∗(BX ; E) with E, considered as an
R-module via the natural augmentation C∗(BX ; E) → E.

THEOREM 4.13. Let X be a connected finite loop space and E a commutative ring
spectrum. Suppose that C∗(X ; E) is a Poincaré duality algebra, then LocE(BX ) is unipo-
tent if and only if the E-based Eilenberg–Moore spectral sequence for BX is relevant.
Moreover, if this holds then there is a symmetric monoidal equivalence of ∞-categories

LocE(BX ) �⊗ LE ModC∗(BX ,E),

where the Bousfield localization is taken in the category of C∗(BX ; E)-modules.

Proof. We first show that if the E-based EMSS for X is relevant, then LocE(BX ) is
unipotent. To do this, we will apply the unipotence criteria of Mathew–Naumann–Noel
given in Proposition 4.3 to the commutative algebra object A = C∗(X ; E) in C = LocE(BX ).
Throughout, we let p : BX → ∗ and e : ∗ → BX denote the canonical maps.

Note that A = e∗(E), and that e!(E) � C∗(X ; E). Moreover, the functor e! preserves
compact objects (as its right adjoint e∗ preserves small colimits), and so we deduce that we
deduce that C∗(X ; E) is compact in C.

We also have

R = EndC(1) � HomC(p∗(E), p∗(E)) � HomE(E, p∗p∗(E)) � p∗p∗(E) � C∗(BX ; E)

and

AR = HomC(1, A) � HomC(1, e∗(E)) � HomE(e∗(1), E) � E.
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We now show that the (4) conditions of Proposition 4.3 are satisfied, which will imply that
LocE(BX ) is unipotent.

(1) Because e!(E) � C∗(X ; E) is compact in C, the assumption that C∗(X ; E) is a
Poincaré duality algebra implies that C∗(X ; E) is also compact.

(2) DA � C∗(X ; E) � e!(E), and hence is compact. That C is compactly generated by
DA follows from Lemma 4.7.

(3) Consider the adjoint pair (e∗, e∗). The left adjoint is given by forgetting the base-
point, and the right adjoint takes M ∈ ModE to C∗(X ; M). Using this, one sees that
the projection formula holds, i.e., that

e∗(M) ⊗ N → e∗(M ⊗ e∗(N))

is an equivalence for N ∈ C and M ∈ ModE. Because e! and e∗ agree up to a
shift, e∗ commutes with arbitrary colimits. Finally e∗ is conservative. We can now
apply [41, Proposition 5.29], which shows the adjunction (e∗, e∗) gives rise to an
equivalence of ∞-categories ModC(A) � ModE, which implies the result because
e∗(E) � C∗(X ; E) = A.

(4) By assumption the E-based EMSS for BX is relevant, and hence by [41, Proposition
7.28] the natural map

HomC(1, A) ⊗R HomC(1, A) → HomC(1, A ⊗ A)

is an equivalence.

Conversely, assume that LocE(BX ) is unipotent. By [41, Corollary 7.19] the natural map

HomC(1, A) ⊗R HomC(1, A) → HomC(1, A ⊗ A)

is an equivalence, because A is compact in C by (1) above. It follows from [41, Proposition
7.28] that the E-based EMSS for BX is relevant.

5. Rational cochains and algebraic models. We now put the results of the previous
sections together and construct an algebraic model for LocHQ(X ) for a connected finite
loop space X .

PROPOSITION 5.1. Let X be a connected finite loop space, then there is a symmetric
monoidal equivalence of ∞-categories

LocHQ(BX ) �⊗ LHQ ModC∗(BX ,Q),

where the Bousfield localization is taken in the category of C∗(BX ; Q)-modules.

Proof. This is a consequence of Theorem 4.13 in the case E = HQ. Indeed,
π∗C∗(X ; Q) ∼= H−∗(X ; Q) ∼= �Q(x1, . . . , xr), and in particular satisfies algebraic Poincaré
duality, and hence C∗(X ; Q) is a Poincaré duality algebra. Thus, it suffices to show that the
Eilenberg–Moore spectral sequence for BX is relevant, but because BX is simply connected
and we work over Q, [16] applies to show this.

Applying Proposition 2.23 we deduce the following.

COROLLARY 5.2. Let X be a connected finite loop space, then there are symmetric
monoidal equivalence of ∞-categories

LocHQ(BX ) �⊗ ModI−comp
C∗(BX ;Q)

.
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In order to identify the right hand side of this equivalence, we begin by first identifying
ModC∗(BX ;Q) with dg-modules over the graded ring H∗(BX ). In order to do this, we first
need a few words on free E∞-algebras. In particular, we recall that the free E∞-ring on
a generator t is defined (as a spectrum) by S{t} = ⊕n≥0B�k , and is characterized by the
property that

MapCAlg(Sp)(S{t}, R) � ∞R

naturally. In particular, given a ring spectrum with a class x ∈ π0R, we obtain a map of
commutative algebras S{t} → R sending the class t ∈ π0S{t} to x.

More generally, if A is an E∞-ring spectrum, the free E∞-A-algebra on a generator t is
defined as

A{t} = Sym∗(A) =
⊕

(A⊗n)h�n ,

where the �n action is by permutation on the factors. If we wish t to have degree d, then
we can define A{t} = Sym∗(�dA). Iterating this procedure, we can define A{t1, . . . , tn} as
(A{t1, . . . , tn−1}){tn}. If the degrees of the ti are all even, then there is a canonical map

A{t1, . . . , tn} → HA[t1, . . . , tn],
which is not an equivalence in general. Here H is the generalized Eilenberg–Maclane spec-
trum functor, which is right inverse to the functor π∗ : Sp → GrAb. However, in the case
that A = HQ this canonical map is an equivalence because the higher rational homology
of symmetric groups is trivial.

We deduce the following.

LEMMA 5.3. The free E∞-Q-algebra on n generators x1, . . . , xn concentrated in even
degrees is HQ[x1, . . . , xn].

This is one part of the input into the following proposition.

PROPOSITION 5.4. There is a symmetric monoidal equivalence of ∞-categories

θ : ModC∗(BX :Q) �⊗ DH∗(BX ).

Proof. Because H∗(BX ; Q) ∼= Q[x1, . . . , xn], the universal property of the free
E∞-Q-algebra gives a morphism

φ : HQ[x1, . . . , xn] → C∗(BX ; Q)

of E∞-ring spectra, which is clearly an equivalence. As such one gets a symmetric
monoidal equivalence of ∞-categories

ModC∗(BX ;Q) �⊗ ModHQ[x1,...,xn].

The latter is equivalent (as a symmetric monoidal ∞-category) to DH∗(BX ) by [51,
Proposition 2.10] or [38, Section 7.1.2] and we are done.

Because θ is symmetric monoidal, it preserves the tensor unit, i.e., θ(C∗(BX ; Q)) �
H∗(BX ). It follows (again using that θ is symmetric monoidal) that θ(K(I)) � K(I), and
one deduces the following.

COROLLARY 5.5. The equivalence θ restricts to a symmetric monoidal equivalence
of ∞-categories

θ : ModI−cmpl
C∗(BX :Q)

�⊗ DI−cmpl
H∗(BX ).
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We now come to our main theorem.

THEOREM 5.6. Let X be a connected finite loop space, then there is a symmetric
monoidal equivalence of ∞-categories

LocHQ(BX ) �⊗ D
(

ModI−comp
H∗(BX )

)
.

Proof. Combine Corollaries 5.2, 5.5 and Theorem 2.20.

Using Corollary 3.23 we deduce the following result.

COROLLARY 5.7. Let G be a compact Lie group and K a closed normal subgroup
such that the Weyl group WGK is a connected compact Lie group. There is an equivalence
of symmetric monoidal ∞-categories

Sp〈K〉
G,Q

�⊗ D
(

ModI−comp
H∗(B(WGK))

)
.

If K = {e}, then WGK � BG and we recover [46, Theorem 8.4].
Finally, we point out that local duality also gives a model for SpG,〈K〉,Q as well as the

local category Sp〈K〉−loc
G,Q

. Indeed, in the following diagram each of the three outer categories
on the left is equivalent to the corresponding category on the right:6

Using the algebraic models constructed in Theorems 2.16 and 2.22, we deduce the
following.

COROLLARY 5.8. Let G be a compact Lie group and K a closed normal subgroup
such that the Weyl group WGK is a connected compact Lie group.

(1) There is an equivalence of symmetric monoidal ∞-categories

SpG,〈K〉,Q �⊗ D
(

ModI−tors
H∗(B(WGK))

)
(2) Let X = Spec(H∗(B(WGK))), Z = V(I), and U =X −Z . Then there is an equiva-

lence of ∞-categories

Sp〈K〉−loc
G,Q

� j∗Dqu(U),

where the right-hand side denotes the essential image of the fully faithful functor
j∗ : Dqu(U) →Dqu(X ).

6. An Adams spectral sequence. In this final section, we construct an Adams
spectral sequence in the category C = LocHQ(BX ) when X is a connected finite loop

6Note that the middle categories are definitely not equivalent, however.
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space. We once again fix a graded commutative Noetherian ring A. We will denote the
abelian category ModI−comp

A of LI
0-complete dg-A-modules by A. As we will see, this

category has enough projectives, and so we can construct an Ext functor, denoted Êxt, in
this category. We also a notion of homotopy groups in C.

DEFINITION 6.1. For M ∈ C, let πC∗ (M) = π∗ HomC(1, M).

We also recall that H∗(X ) ∼= �Q(x1, . . . , xn); we say that the rank of a finite connected
loop space is the integer n. The spectral sequence then takes the following form.

THEOREM 6.2. Let X be a finite connected loop space, then for M, N ∈ C, there is a
natural, conditionally and strongly convergent, spectral sequence of H∗(BX )-modules with

Es,t
2

∼= Êxt
s,t
H∗(BX )(π

C
∗ M, πC

∗ N) ∼= Exts,tH∗(BX )(π
C
∗ M, πC

∗ N) =⇒ πt−s HomC(M, N).

Moreover, Es,t
2 = 0 when s > rank(X ).

As we will see, working with ring spectra makes the construction of such a spectral
sequence very simple; it is just an example of the universal coefficient spectral sequence
constructed in [17, Theorem IV.4.1].

We first observe that A has enough projectives; these are the In-adic completion of
free modules (also known as pro-free modules), see [33, Theorem A.9 and Corollary A.12].
By [6, Proposition A.15] if M ∈ ModH∗(BX ) is a flat H∗(BX )-module, then LI

0M is projective
in A, and the left derived functors LiLI

0M ∼= 0 for i > 0 by [18, Theorem 4.1]. Note this
implies that A has projective dimension equal to the rank of X ; indeed, suppose M ∈A
and choose a flat resolution of M ∈ ModH∗(BX )

0 → Fn → · · · → F2 → F1 → F0 → M .

A simple inductive argument on the short exact sequences associated to the resolution
shows that

0 → LI
0(Fn) → · · · LI

0(F2) → LI
0(F1) → LI

0(F0) → LI
0(M) ∼= M

is a projective resolution of M in A. Thus, A has projective dimension n. See also [31,
Proposition 1.10].

Because LI
0 is left adjoint to the inclusion functor A→ ModH∗(BX ), we deduce the

following, see also [46, Proposition 5.6] or [31, Theorem 1.11].

PROPOSITION 6.3. Let Êxt denote the Ext-groups in A, then for P, S ∈A we have

ÊxtH∗(BX )(P, S) � ExtH∗(BX )(P, S).

We also have the following, which is proved identically to [6, Corollary 3.14].

LEMMA 6.4. Suppose A ∈ ModC∗(BX ;Q), then A ∈ ModI−comp
C∗(BX ;Q)

if and only if π∗A ∈A.

Combining the previous two results, we deduce the following.

COROLLARY 6.5. If M, N ∈ C, then

ÊxtA(πC
∗ M, πC

∗ N) � ExtH∗(BX )(π
C
∗ M, πC

∗ N).

Proof. By Corollary 5.2, we have HomC(1, M) ∈ ModI−comp
C∗(BX ;Q)

, and so by Lemma 6.4,

we deduce πC∗ (M) ∼= π∗(HomC(1, M)) ∈A. The result follows from Proposition 6.3.

We now construct the Adams spectral sequence.
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Proof of Theorem 6.2. We recall that there is an equivalence of categories C �⊗
ModI−comp

C∗(BX ;Q)
, given by sending M ∈ C to HomC(1, M) ∈ ModI−comp

C∗(BX ;Q)
. Under this then, we

have

πt−s(HomC(M, N)) ∼= πt−s HomC∗(BX ;Q)I−comp(HomC(1, M), HomC(1, N))

∼= πt−s HomC∗(BX ;Q)(HomC(1, M), HomC(1, N)),

where the last step uses that ModI−comp
C∗(BX ;Q)

→ ModC∗(BX ;Q) is fully faithful.
The universal spectral sequence [17, Theorem IV.4.1] then takes the form

Es,t
2

∼= Exts,tH∗(BX )(π
C
∗ M, πC

∗ N) =⇒ πt−s HomC(M, N).

In general this spectral sequence is only conditionally convergent but in this case it is
strongly convergent because Es,t

2 = 0 for s > n since H∗(BX ) has projective dimension n.
Along with Proposition 6.3, this proves the theorem.

Translating back into equivariant homotopy, we deduce the following.

COROLLARY 6.6. Suppose G is a compact Lie group, and K a closed subgroup such
that the Weyl group WGK is connected. For X , Y ∈ Sp〈K〉

G,Q
, there is a natural, conditionally

and strongly convergent, spectral sequence of H∗(B(WGK))-modules with

Es,t
2

∼= Exts,tH∗(B(WGK))(π
WGK
∗ (X K), πWGK

∗ (Y K)) =⇒ [X K, Y K]WGK
t−s .

Moreover, Es,t
2 = 0 when s > dim(WGK).

When K = {e} is the trivial group, we recover the connected case of [46,
Theorem 10.6].

Using that there is an equivalence SpG,〈K〉,Q � ModI−tors
C∗(BX ;Q)

, a similar argument gives
the following.

PROPOSITION 6.7. Suppose G is a compact Lie group, and K a closed subgroup
such that the Weyl group WGK is connected. For X , Y ∈ SpG,〈K〉,Q, there is a natural,
conditionally and strongly convergent, spectral sequence of H∗(B(WGK))-modules with

Es,t
2

∼= Exts,tH∗(B(WGK))(π
WGK
∗ (X K), πWGK

∗ (Y K)) =⇒ [X K, Y K]WGK
t−s .

Moreover, Es,t
2 = 0 when s > dim(WGK).

When K = {e} is the trivial group we recover the spectral sequence of Greenlees and
Shipley [23, Theorem 6.1].
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Appendix A. Model categories and ∞-categories Throughout we work with ∞-categories
as developed in [38]. Since much of the existing work on rational models has used model categories, here we
present a very short summary of the relationship between model categories and ∞-categories. More details can
be found in [41, Section 5.1] or [38, Section 1.3.4], as well as [43, Appendix A]

DEFINITION A.1. Let C be a model category, and let Cc denote the full subcategory of C spanned by
the cofibrant objects. The model category C presents an ∞-category C, as the ∞-categorical (or Dywer–Kan)
localization C := Cc[W−1], where W is the collection of weak equivalences in Cc.
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REMARK A..2. If C admits functorial factorizations, then we can equivalently define C using fibrant objects
of C, of from the fibrant-cofibrant objects of C, see [38, Remark 1.3.4.16].

Suppose that F : C�D : G is a Quillen pair, then by the universal property of localizations one obtains
functors

F : C D : G

between the underlying ∞-categories.
The following result is [28, Proposition 1.5.1]

PROPOSITION A..3 (Hinich). The pair (F, G) form an adjoint pair of ∞-categories.

If C is a symmetric monoidal model category, then C is a symmetric monoidal ∞-category [38, Example
4.1.3.6]. Moreover, if F is a symmetric monoidal left Quillen functor, then F is a symmetric monoidal functor,
and because G is right adjoint to F by Lemma A.3, G is lax symmetric monoidal by [38, Corollary 7.3.2.7].
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