Glasgow Math. J. 49 (2007) 509-514. © 2007 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089507003837. Printed in the United Kingdom

AN EXTENSION OF THE HERMITE-HADAMARD
INEQUALITY THROUGH SUBHARMONIC FUNCTIONS*

MIHAI MIHAILESCU and CONSTANTIN P. NICULESCU

Department of Mathematics, University of Craiova, 200585 Craiova, Romania
e-mail: mmihailes@yahoo.com  cniculescud47@yahoo.com

(Received 15 December, 2006; accepted 31 March, 2007)

Abstract. In this paper we obtain a Hermite-Hadamard type inequality for a
class of subharmonic functions. Our proofs rely essentially on the properties of elliptic
partial differential equations of second order. Our study extends some recent results
from [1], [2] and [6].
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1. Introduction and main result. The classical Hermite-Hadamard inequality
provides a valuable two-sided estimate of the mean value of a continuous convex
function f : [a,b] —> R :

a+b f@)+/®)
H(40) = 5t [ rar= "0, (n

This fact was extended within the Choquet theory to the general framework of
continuous convex functions on a compact convex subset K (of a metrizable locally
convex space) and of Borel probability measures i on K. See [7] for details. Is it possible
to extend Choquet’s theory to the more general case of signed measures? Recently,
A. Florea and C. P. Niculescu [2] solved completely the case of compact intervals,
based on carlier work due to A. M. Fink [1]. More precisely, they provided a full
characterization of those signed Borel measures u on [a, b] such that u([a, b]) > 0 and
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b— Xu
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for all continuous convex functions f : [a, )] — R, where

1
= d
= D) M

is the barycenter of u. Besides the case of Borel probability measures, other examples
are offered by the family du = (x> + 1) dx on [—1, 1], when A > —1/6. See [2].
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A natural method to extend results regarding convex functions of one real variable
to several variable functions is due to P. Montel [5] and appeals to subharmonic
functions. By a subharmonic function u defined on a domain D ¢ RV (N > 2), we
understand a C?-differentiable function on D with the property that

Au>0, inD,

where A = YV | 2 Fre denotes the Laplace operator.

C. P. Niculescu and L.-E. Persson gave in [6] an extension of the Hermite-
Hadamard inequality to this context. They proved that if @ ¢ RY is a bounded
open subset with smooth boundary, u € C*(€2) N C'(Q) is subharmonic and ¢ €

C?*(2) N C'(Q) is a solution of the problem

Ap=1, forxeQ
¢ =0, for x € AQ

then
/udV</ u(Ve -n)dS 2
Q a0

except for harmonic functions (when equality occurs).

In the particular case when €2 is the open ball Bg(a) (centered in a and of radius R)
in R3, the maximum principle for elliptic problems combined with the above result yield
the following Hermite-Hadamard type inequality for subharmonic functions (which
are not harmonic):

u(a) < V()%ﬁg(a) / / /BR([I) u(x)dV < m / /SR(a) u(x) ds. 3)

Formula (3) shows that for the measure du = W() dV there exists a measure

dv dS concentrated on the boundary of Q = Bg(a) such that

_ 1
~ Area Sg(a)
/ fdu< [ fav,
Q Q2

for all subharmonic functions f".

In this paper we prove that a similar result works when the Laplace operator is
replaced by a strictly elliptic self-adjoint linear differential operator of second order
which admits a Green function.

More precisely, we shall deal with operators L : C*(Q) — C(R2) defined by

Lu= Z Z aj(x) + Z b; (x)— + c(x)u, @)
i=1 j=1
where a;(x) = a;(x) € C'(Q), bi(x) € C(Q) and ¢(x) € C(Q) is a negative function in

Q.
As above, @ C R (N > 2) will be a bounded domain with smooth boundary.
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We assume that L is strictly elliptic on 2, i.e.
N N

DD a(0EE = MEP, VxeQ, V(&,... &) eRY,

i=1 j=1
for some positive constant A and self-adjoint, i.e.

N
da;(x .

b,(x)_z . Vi=1,...,N, VxeQ.
J=1
For the strictly elliptic, self-adjoint, linear second order differential operator L on the
domain Q we introduce the Green function G : Q x Q — R as a function having the
following three properties:

(G1) G(x, &)|x — £|¥~% is a bounded function of & and has a positive lower bound

for & near x;

(G2) Le[G(x, £)]=0 in Q for & # x. The notation L means that we apply the
operator L to the coordinates (&1, ..., &y) of &€ in G(x, &) and keep x=(xq, ..., xy)
fixed;

(G3) G(x,&)=0for & € 92 and x € Q.
Since L is self-adjoint, Green’s function is symmetric, in the sense that

G(x, &) =G, x), VX, &eQ.

As noticed in [9, pp. 87-88], a Green function with properties (G1)—(G3) exists for
an operator L as above if the coefficients of L and the boundary of 2 are sufficiently
smooth and in addition the problem

{ Lu(x) = h(x), forx e Q

u(x) = g(x), forxecaQ ®)

has a unique solution for suitable data. Under these circumstances a solution u of
equation (5) is given by the formula:

IG(x, §)
oVy

u(E) = — fg Glx, )h(x) dx — /d e do(x). ©)

The main result of this paper is the following theorem.

THEOREM 1. Assume p € C**(Q), for some a € (0,1). Then a necessary and
sufficient condition for the inequality

G )
[romeas < [ s | [ 255200 ax| dote m
Q aQ Q Ve

to hold for all f € C>*(Q) with
If(x) >0, VxeQ, (3
is that the solution of the Dirichlet problem

Lv(x) = p(x), forxeQ 9
v() =0,  forxedQ ©)

satisfies v(x) <0 for all x € Q.
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Here, G(x, &) is Green’s function for the operator L on the domain 2, and % denotes
the derivative in direction y = (y1, ..., Yn).

REMARK 1. Problem (9) has a unique solution via [3, Theorems 6.8 and
4.3]. Furthermore, if p(x)>0 for all x € , then the maximum principle (see [3,
Corollary 3.2]) implies that solution v is negative in 2.

REMARK 2. There exist functions p(x) which may take negative values in € and
such that problem (9) still has a negative solution. Indeed, in the particular case when
Q is the unit ball centered in the origin of RY, L= A (the Laplace operator), and
p(x)=|x|> — %, the solution of problem (9) is given by

Ix(|x]> = 1)

v(x) = 12

<0, VxeBi(0).

REMARK 3. Theorem 1 extends both the right hand side inequalities in (1) and (3).
The boundary measure associated to p(x) dx appears to be [— fQ 30@ x) =2 p(x) dx] do(§).

REMARK 4. It is worth noticing that Theorem 1 can be easﬂy extended to the
general framework of signed Borel measures. For this it suffices to replace the Dirichlet
problem (9) by a similar problem having the right-hand side a measure.

2. Proof of Theorem 1. Inequality (7) is equivalent to

OE/Q[f(x)_F/;Q dG(E, x)f(é)d (g)]p(x) do. (10)

Since f € C>*(Q) it follows that If € C%*(Q) and thus by [3, Theorems 6.8 and 4.3]
we infer that /" is the unique solution of the problem

Lw(x)=Lf(x), forxeQ
w(x) = f(x), for x € 09Q2.

Hence, by (6), we get

BG(E x)

F(x) = f Ge, X)L f () di / 99 ) ) do ), (11)

and (10) is equivalent to

Oz/ |:—/ G(&, x)p(x) dx:| d&. (12)
Q Q

A new appeal to formula (6) yields
w©) = - [ G 6o dx
Q
- [ e 0pto ax,

taking into account the symmetry of G.
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Consequently, relation (12) can be restated as
0= [ wOLr) i
Q

Or, Lf > 0in Qand L f runs over C%*(Q)(D> Cy(2)) when f runs over C>*(Q). Thus,
the last inequality holds true if and only if v <0 over Q.
The proof of Theorem 1 is complete.

3. A particular case. In this section we point out once more the connection
between Theorem 1 and the Hermite-Hadamard inequality. To do that we consider
the particular case where L = A, Q = Bg(0) (the ball of radius R centred in the origin
in RN (N >2)) and p(x)=1in Q.

We denote by E(x) the fundamental solution of the Laplace equation on RV (see
[4, p. 8]), that is

1 1

TN v HNZ3 XA

E(x) =
— - In(|x]), fN=2 x#0
2

where wy represents the area of the unit ball in R".
Then it is known (see [4]) that Green’s function for N > 3 is given by the formula

RA\N2
(m) -E(x*—&)— E(x—¢&), forxe Bg(0)\ {0}
G(x,§) =

_(2 _ N)C()NRN_z - E(E), forx=0

while Green’s function for N =2 is given by the formula

1
5 “(=In(|x — &) + In(|x* — &[ - |x|/R)), for x € Br(0)\ {0}
JT
G(X, g) = 1
~—(—1In(|&| + In(R))), forx=20
27

where x* = R?/|x|?x, for all x € Bg(0) \ {0}.
A simple computation (see [4, p. 13]) shows that the normal derivative of Green’s
function is given by

9G(x, &)  |x]* — R
e Roylx— £V’

(13)

forall N > 2.
By Theorem 1 we infer that for any function f € C>%(Q) with Af > 0 in Q the
following inequality holds:

1

VolBx(0) BR(O)f(X) dx

<

- /(’;BR(O)f(%-). [VOIFR(O) BR(0)< wyR

R? — |x|2) 1
|

x =&Y

dx] do(£). (14
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The above inequality is a Hermite-Hadamard type inequality since for any x €
Br(0) we have

R — |x|2f 1
do(§) = 1.
onR Sy 1x — &Y ©

The last equality is an immediate consequence of Poisson’s formula (see [4, p. 14-15])
and of the fact that the unique solution of the Dirichlet problem

Au(x) =0, for x € Bgr(0)
u(x) =1, for x € 3Bg(0),

is u =1 via the maximum principle.

More generally, relation (14) still works for a weighted Lebesgue measure, p(x) dx,
where p(x) satisfies a Dirichlet problem of the type (9). In that situation Vol(Bz(0))
must be replaced by || Ba(0) p(x) dx.

AN OPEN PROBLEM. Based on the above considerations, it seems very likely that
the main result of this paper remains valid for all operators L that possess a Green
function. In particular, for the biharmonic operator in R (see, e.g. [8, p. 194]),

w2 +2 i + "
T axt 0x20y2 9yt
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