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ABSTRACT 
Recently, design researchers have begun to use neuroimaging methods (e.g., functional magnetic 
resonance imaging, fMRI) to understand a variety of cognitive processes relevant to design. However, 
common neuroimaging analysis techniques require significant assumptions relating temporal and spatial 
information during model formulation. In this work, we apply hidden Markov Models (HMM) in order 
to uncover patterns of brain activation in a design-relevant fMRI dataset. The underlying fMRI data 
comes from a prior research study in which participants generated solutions for twelve open-ended 
design problems from the literature. HMMs are generative models that are able to automatically infer 
the internal state characteristics of a process by observing state emissions. In this work, we demonstrate 
that distinct states can be extracted from the design ideation fMRI dataset, and that designers are likely 
to transition between a few key states. Additionally, the likelihood of occupancy within these states is 
different for high and low performing designers. This work opens up the door for future research to 
investigate the patterns of neural activation within the discovered states. 
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1 INTRODUCTION 

Understanding the cognitive processes underpinning design activity is a critical area of investigation 

within the design research community. Typically, these questions are answered using “black-box” 

experiments, in which the output of carefully designed behavioural studies are analysed in order to 

infer how internal processes of the mind relate to aspects of design activity. Despite their power, one 

limitation of design cognition studies is that the research team is left to infer the internal workings of 

the brain during design activity and what that may imply regarding design behaviour. In response to 

these limitations, an emerging research area, broadly termed “design neurocognition”, seeks to apply 

techniques for directly measuring brain activity (e.g., with functional magnetic resonance imaging- 

fMRI) in order to advance knowledge of the design process. Design neurocognition studies allow for 

researchers to more directly understand the neurocognitive processes supporting design activity. 

However, brain activity is itself dynamic. Classical models of analysing brain activation data rely on 

significant assumptions relating temporal and spatial information together in order to extract 

meaningful statistics linking brain activity to participant behaviour in response to experimental tasks 

and/or stimuli. In this work we use Hidden Markov Models (HMM), a machine learning technique, to 

automatically infer cognitive states in underlying fMRI data related to design cognition without prior 

assumptions regarding the temporal and spatial properties of the data. 

 The fMRI data used to explore the HMM state estimation approach in this work was collected as 

part of a prior study on design concept generation with and without the support of inspirational stimuli 

(Goucher-Lambert et al., 2019). The prior research study uncovered specific areas of brain activation 

correlated with productive moments of idea generation via insight, as well as a separate network 

correlated with continued (unsuccessful) search for concept solutions. These aforementioned areas of 

brain activity were determined based on regression-based estimation techniques (i.e., general linear 

model - GLM), in which defined model parameters were fit to the temporal brain activation data to 

obtain approximate brain activity levels within each voxel element. Using the HMM approach there is 

no assumption being made regarding the underlying model structure, and therefore we are able to 

automatically uncover latent patterns (states) in the design cognition fMRI data. As an initial 

investigation towards this broader objective, we demonstrate that distinct states can be extracted from 

the fMRI data and that these states provide a meaningful difference between individuals who produce 

high quantities and low quantities of concepts. 

2 BACKGROUND 

The methods employed in this research study builds on a variety of related works within the design 

research, psychology, and neuroscience literatures. This section first provides a brief introduction to 

efforts within the design research community utilizing fMRI, as this is the neuroimaging technique for 

measuring brain activation employed in this work. It is important to note that several researchers are 

investigating other neuroimaging modalities (e.g., Electroencephalography, functional near-infrared 

spectroscopy, etc.), however this is outside of the scope of the current work. Additionally, applications 

of HMMs both within the design community, as well as recent work applying HMMs to neuroimaging 

data, is introduced and discussed. 

2.1 fMRI and design cognition 

There have been a limited amount of neuroimaging studies investigating questions relevant to design. 

One of the first examples was research by Alexiou and colleagues who used fMRI to investigate an 

apartment layout task, which was generally considered to be a configuration design problem (Alexiou et 

al., 2009). In the work by Alexiou et al., the authors proposed a specific set of brain regions that 

appeared to be more active in design thinking tasks compared to problem-solving tasks; suggesting that 

design thinking could be distinguished from more general problem-solving. Sylcott et al. used fMRI to 

examine user preference judgments involving form and function trade-offs (Sylcott et al., 2013). Also, 

within the context of user decision-making, Goucher-Lambert et al. used fMRI to investigate product 

preference judgments where the environmental impact was a decision variable (Goucher-Lambert et al., 

2017). The work by Goucher-Lambert et al. found areas of that areas of the brain related theory of mind 

reasoning were active when evaluating sustainability as a decision variable. Both the works by Sylcott et 

al. and Goucher-Lambert et al. provide deep insights into the underlying cognitive processes involved 
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when users engage in complex decision-making scenarios relevant to design. In essence, neuroimaging 

methods have allowed researchers to not only observe the resulting behaviour from a task/decision, but 

to also make inferences regarding why that decision was made. 

 In more recent work related to designer cognition (rather than user cognition), Goucher-Lambert 

and colleagues utilized fMRI to investigate design ideation and concept generation with and without 

the support of inspirational stimuli (e.g., text based analogies) (Goucher-Lambert et al., 2018). 

Goucher-Lambert et al. identified two separate patterns of brain activation associated with both the 

successful application of inspirational stimuli to generate design solutions via insight, as well as the 

open (currently unsuccessful) search for a solution (more common in the absence of inspirational 

stimuli). Similar to the previous work discussed in this section, the work by Goucher-Lambert et al. 

used regression-based contrast estimates to understand the relative differences between experimental 

conditions (e.g., inspirational stimuli vs. control), for both event (e.g., when idea was generated) and 

mixed event-block designs (e.g., average across the entire idea generation period). These analysis 

techniques are locked to specific time points (e.g., when ideas are generated) and therefore do not 

uncover connections between brain regions that may be correlated in space and in time. 

2.2 Hidden Markov models in fMRI 

As briefly mentioned previously, an HMM is a probabilistic model that is able to describe data in 

terms of discrete states, while also allowing for a flexible definition of state distribution. Using HMMs 

researchers are able to uncover recurrent patterns in brain activation data throughout entire datasets, 

even when the visits (or occurrences) of these patterns are relatively short in time (e.g., 5-15 seconds 

for fMRI data) (Vidaurre et al., 2018). Due to this flexibility, HMMs have been previously applied to 

fMRI data. A key assumption in the application of HMM to fMRI brain activity data is that it is 

reasonable to 1) represent brain activation in a discrete number of states, 2) at each point in time there 

is only one active state which is probabilistically assigned, and 3) that the current state being occupied 

is dependent on previous state occupancies (Vidaurre et al., 2017). One of the first examples of HMM 

applied to fMRI data was work by Anderson et al., who applied HMM to capture characteristics of 

mathematical problem solving (Anderson, 2012; Anderson et al., 2010, 2016). Here, the HMM was 

able to identify discrete states both with and without labels (defining task boundaries) that participants 

visited while solving mathematical problems. More recently, Baldassano and colleagues used HMM to 

detect event boundaries in narrative perception (e.g., blocks of a story) as shifts between patterns of 

brain activation that were independent of stimulus annotations (Baldassano et al., 2018). Vidaurre et 

al. used HMM with Human Connectome Project (HCP) data (more than 800 subjects) to show not 

only that brain activation data can be well represented in these cognitive states, but also that these 

states are hierarchically organized in time (Vidaurre et al., 2017). Here, Vidaurre et al. found that a set 

of meta-states emerged, for which participants were more likely to cycle within than switch between. 

This implied that a hierarchy of “meta-states” can represent higher or lower orders of cognitive 

function. Taken together, previous work in cognitive neuroscience has demonstrated HMM as a viable 

approach to represent brain activation data in a variety of contexts for which information regarding 

recurrent patterns of activity is of interest. In the work presented within this paper we are interested in 

uncovering both the states that emerge, as well as how people transition between different states, 

during design concept generation. 

2.3 Hidden Markov models in design 

The motivation for applying HMMs to neuroimaging data on design ideation comes not only from 

prior work on using HMMs to explore fMRI data (see Section 2.2), but also from previous work that 

has demonstrated HMMs as a valuable tool for capturing patterns in design process data. Prior work 

by the authors has applied HMMs to both assess and simulate sequential patterns of activity in the 

design of truss structures as well as internet-connected home cooling systems (McComb et al., 2017a, 

2017b, 2018; Raina et al., 2018). 

 More generally, the ability of human beings to learn and employ sequences (temporal patterns of 

activity) has long been of interest to both psychologists (Clegg et al., 1998; Curran and Keele, 1993; 

Nissen and Bullemer, 1987; Perruchet and Amorim, 1992; Reed and Johnson, 1994; Willingham et al., 

1989) and design researchers. Within design, the interest in sequencing spans several levels of 

abstraction (McComb et al., 2016). At the highest level of abstraction are design stages (e.g., customer 

needs assessment, conceptual design, detailed design) which also tend to occur at the longest timescales 
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(Atman et al., 2007; Goldschmidt and Rodgers, 2013; Radcliffe and Lee, 1989; Stempfle and Badke-

schaub, 2002). At a slightly lower degree of abstraction, and at short timescales, is the sequencing of 

specific design tasks, also referred to as sub-problems (Meier et al., 2007; Rogers, 1996; Sen et al., 

2010; Todd, 1997; Waldron and Waldron, 1988). Sequencing at short timescales and low abstraction is 

a combination that is of interest because of its direct impact on the solution concepts that are developed, 

but this regime has been studied little in engineering design (McComb et al., 2017c). The current work, 

in examining the sequencing of cognitive states as imaged through fMRI, identifies and assesses a short 

time-scale sequence has not previously been examined in engineering design. The intersection of 

neuroimaging, design ideation, and analysis via hidden Markov models is a novel contribution. 

3 METHODS 

3.1 fMRI experiment and task overview 

The underlying fMRI data utilized for this study was collected as part of a prior research study on design 

concept generation with and without the assistance of inspirational stimuli (Goucher-Lambert et al., 

2019). The task completed in the MRI scanner was a design-thinking task, where participants developed 

as many solutions as possible to 12 open-ended design problems (each problem represented a separate 

run). For each problem, participants spent a total of 2 minutes generating solutions (Figure 1), which was 

separated into two 60 second blocks. The experiment was broken into three separate conditions: two 

where participants were given inspirational stimuli (near or far), and a third where participants were 

given words from the design problem (control). In the work presented in this paper, we do not separate 

the three experimental conditions. Three counter-balanced experimental groups provided an even 

distribution of problem-condition pairs for the participants. Both the problems and inspirational stimuli 

were taken from previous work by the authors (Goucher-Lambert and Cagan, 2019). In that work, over 

1300 crowd-workers provided text-based solutions to the 12 design problems. A text-mining approach 

was then used to extract common/uncommon words from the crowd solutions and separate them into 

different distances based on word-frequency and bi-directional path length textual similarity. A full 

description of the design problems, inspirational stimuli, and acquisition methods for the inspirational 

stimuli can be found in: (Goucher-Lambert and Cagan, 2019). 

  

Figure 1. fMRI run components and timing. Only fMRI images collected during concept 
generation periods were included in the HMM analysis. 

3.2 Collection and preprocessing of raw fMRI data 

The full details of the fMRI data acquisition parameters and processing are described in (Goucher-

Lambert et al., 2018), and as a result will only be briefly discussed here. All 21 participants underwent a 
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1-hr functional MRI brain scan where they were asked to generate solutions to 12 open-ended conceptual 

design problems (Section 3.1). Functional MRI data were collected from a Siemens 3T Verio MRI 

scanner using a 32-channel phased array head coil. Functional images were acquired using a T2*-

weighted multiband echo-planar imaging pulse sequence (45 oblique axial slices, in-plane resolution 

3mm x3mm, 3mm slice thickness, no gap, repetition time TR=1000ms, echo time TE=30ms, flip-

angle=64deg, multiband acceleration factor=3, matrix size=70x70, field of view=210mm, phase 

encoding direction = P>>A). 12 runs of functional data were acquired corresponding to the 12 design 

problems presented. Each run consisted of approximately 200 volume acquisitions, with the exact 

number dependent upon on self-paced portions of the run, resulting in approximately +/- 10 volume 

acquisition differences between runs. T1-weighted anatomical scans were collected using the MPRAGE 

sequence (0.8mm x 0.8mm x0.8mm, 176 sagittal slices, TR=2300ms, TI=900ms, flip angle=9 deg, 

Generalized Autocalibrating Partial Parallel Acquisition=2). Raw fMRI data were pre-processed using 

the AFNI software package (March 1, 2017 version 17.0.11) (Cox, 1996). Pre-processing steps within 

the pipeline used for the analyses included slice scan-time correction, 3D rigid-body motion correction, 

high-pass temporal filtering (110s, from FSL suite (Jenkinson et al., 2012)), and spatial smoothing 

(7mm FWHM). An anatomical image from each subject was co-registered to his or her corresponding 

functional images. The structural and functional images were transformed into Talairach space with 

3mm isometric voxels using AFNI’s auto_tlrc algorithm. 

3.3 Preparing raw fMRI data for HMM training 

The preprocessed fMRI timeseries dataset were sent through a multi-stage process to prepare them as 

training data for the hidden Markov model. The overall purpose of this multi stage preprocess was to 

reduce the entire dataset into a lower order spatial representation to more rapidly train hidden Markov 

models. First, every fMRI image was downsampled from the preprocessed fMRI data resolution of 

54×64×50 voxels (172,800 total voxels) to a resolution of 27×32×25 (21,600 total voxels). This has 

been established and leveraged as in work by others as a way to avoid overfitting (Anderson, 2012). 

Next, principal component analysis (PCA) was applied to flattened image vectors in order to 

accomplish data compression, resulting in each image being represented by 50 parameters. Finally, 

independent component analysis (ICA) was performed using the kurtosis-maximization algorithm to 

produce 50 new parameters with maximal independence. A value of 50 parameters was selected based 

on methodology from other work (Vidaurre et al., 2017, 2018). 

3.4 Hidden Markov modelling 

A hidden Markov model was trained on the pre-processed fMRI data in order to elicit the progression 

of latent states. The mathematics for this modelling approach were initially established by Baum and 

colleagues in several seminal papers (Baum, 1972; Baum et al., 1970; Baum and Eagon, 1967; Baum 

and Petrie, 1966; Baum and Sell, 1968). In essence, a hidden Markov model is a generative model of a 

process that assumes the underlying internal state of that process is not directly observable - instead, 

the model attempts to infer internal state characteristics by observing emissions from those states. In 

this work, the states are represented by average modes of brain activation that are emitted or enacted 

with some degree of variance. Specifically, we trained a hidden Markov model with Gaussian 

emissions which is appropriate for the data used here. We used the HMM-MAR (Hidden Markov 

Model - Multivariate Autoregressive) toolbox1 to accomplish the analysis. 

 Typically, an iterative procedure is used to estimate the appropriate number of states for such a 

model (McComb et al., 2017a). However, because of the relatively low sample size and high number 

of parameters present in the data used here, there was little difference in the log-likelihood of models 

trained with varying numbers of hidden states. For that reason, we elected to train all hidden Markov 

models using 12 states, a number used in other work on neuroimaging (Vidaurre et al., 2017, 2018). 

The progression through states in the hidden Markov of high- and low-performing participants was 

also examined. This was accomplished by summing the total number of concepts generated by each 

participant over all runs and then assigning the participants who generated the most concepts to a high-

performing group and those who developed the fewest concepts to the low-performing group. 

                                                      

1 https://github.com/OHBA-analysis/HMM-MAR 
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4 RESULTS AND DISCUSSION 

Using the methods outlined in Section 3, initial analyses examined the patterns observed in both the state 

transitions, as well as the time-varying state assignments for the aggregated fMRI design conceptualization 

data. Additionally, a second analysis differentiates the study participants according to the number of ideas 

generated during the original cognitive study assigning each participant to either a high or low performing 

category. The state assignment patterns were then re-examined based on this bifurcation in order to identify 

states that may be associated with high (or low) rates of concept generation. 

4.1 Patterns in aggregated data 

The left side of Figure 2 shows the fraction of participants who were in a given state at any point 

during the study. The time variable on the x-axis concatenates Word Set 1 (0-60 seconds) and Word 

Set 2 (60-120 seconds), such that only time periods where participants were actively attempting to 

generate solutions is included. Participants only rarely displayed activation in states 5, 8, 9, 10, and 12, 

indicating that a model with fewer states may be capable of adequately describing the data. Future 

work will examine whether a lower number of states or parameters may be a better fit for the 

neuroimaging data. 

 During a run, participants were most likely to be found in states 2, 4, 6, 7, and 11, with State 4 

having the highest likelihood of being occupied compared to any state. States 1, 6, and 11 show 

distinct increases in state occupation probability that occur directly after the introduction of Word Set 

1 (at 0 seconds) and Word Set 2 (at 60 seconds). Recall, it is at these points in time that participants 

were provided with inspirational stimuli that were intended to support their idea generation 

productivity. States 2, 4, and 7 generally show complementing activity that occurs in the spans after 

Word Set introductions. 

 The state transition matrix for the hidden Markov model is provided on the right in Figure 2. This 

matrix depicts the probability that a participant will transition from one state to another between 

successive images. The matrix is strongly diagonal, indicating that participants are likely to stay in a 

single state across multiple brain image acquisitions (TR = 1 second), rather than switch to a new 

state. Many of the other strong off-diagonal elements represent transitions involving with very low 

probabilities of occurring (e.g., states 5, 8, 9, 10, and 12), and should be interpreted as spurious 

quantities. One of the strongest off diagonal elements between commonly occurring states indicates a 

transition from state 6 to state 4 (31% probability). Other strong off-diagonals between common states 

include 16 (22%), 211 (21%), 72 (16%), and 116 (17%). These connections represent an 

interwoven process between differing brain activation states. For example, based on the state 

occupancy timing, the transition from State 16 could be representative of early switching between 

encoding characteristics of the problem (State 1) to problem planning/goal setting (State 6). 

  

Figure 2. Results of hidden Markov model trained on aggregated data showing empirical 
progress through states (left) and transition matrix between states (right). 
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4.2 Performance-differentiated patterns 

Individuals were partitioned into two post-hoc conditions based on the total number of ideas they 

generated across all runs during the experiment. Specifically, the 10 participants who generated the 

most concepts across all runs (12 problems x 2 runs per problem) were assigned to a high-performing 

group (average 145.5 concepts, SD=32.9), and the 10 participants who generated the fewest concepts 

were assigned to a low-performing group (average 89.4, SD=14.7). The average rate at which 

participants in these two groups generated ideas across an experimental run is depicted in Figure 3. On 

average, the high-performing individuals produce more concepts than the low-performing individual 

in every 15-second block. The most pronounced differences between these two groups can be seen 

directly after the introduction of a new Word Set (time = 0, 60 seconds). It is also in the periods 

directly following the introduction of new inspirational stimuli where idea generation is most 

productive. Due to the differences between the high and low performing participants, one might also 

expect their state transitions to be different as well. 

  

Figure 3. Average number of ideas generated per run for high-performing and low-
performing individuals (error bars indicate ±1 S.E.). 

 The empirical progress through states for each of the groups was computed with the same 

methodology used to produce Figure 2. The hidden Markov model was trained on the same aggregated 

data as presented previously, in order to ensure that the aggregated states (Figure 2) were directly 

comparable with the high-performing and low-performing states (Figure 4). Although some 

differences are apparent (particularly regarding activation in State 7), the amount of noise in these two 

images makes it difficult to comprehend the differences between them. 

 In order to better elucidate distinguishing characteristics between the high and low performing 

individual state occupation matrices, the difference between the two plots in Figure 4 was computed 

and averaged into 15-second block increments (shown in Figure 5). This highlights the major 

differences that are observable in a qualitative comparison of Figure 4. From this analysis it can be 

seen that high-performing individuals spend more time occupying State 7. Based upon this, it appears 

that occupying State 7 may be indicative of high performing participants and/or productive periods of 

design ideation more generally. 

 As can be seen in Figure 5, the largest difference in State 7 occupation occurs during the period 

between 16 seconds and 45 seconds, which is in the middle of ideation for Word Set 1. However, there 

is no unique difference in ideation activity (depicted in Figure 3) that co-occurs with this difference in 

activation. This may indicate some degree of latency between the underlying cognitive effort that 

leads to increased ideation and the eventual output that results from that effort. In other words, the key 

to better concept generation may be a cognitive precursor to the ideas themselves. One possible 
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explanation for this latency could be a delay in the hemodynamic (BOLD) response, which typically 

occurs 4-6 seconds after the stimuli presentation. Additionally, prior work from Goucher-Lambert et 

al. identified that the peak likelihood of generating a solution during Word Set 1 occurred 

approximately 9 seconds after the block onset (Goucher-Lambert et al., 2018). Based on this, one 

might expect the peak difference for State 7 to occur approximately 15 seconds into Word Set 1, 

however, here we observe State 7 having a higher likelihood of occupancy for high preforming 

individuals 16-45 seconds after block onset. Future work is needed to identify other representative 

characteristics of both high and low performing participants. 

  

Figure 4. Empirical progress through states for high-performing individuals (left) and low-
performing individuals (right). 

 

Figure 5. Differences between high- and low-performing individuals. 

5 CONCLUSION 

This work uses HMMs to automatically infer cognitive states in underlying fMRI data related to 

design concept generation. The underlying fMRI represents two concurrent 60 second blocks where 

participants were generating solutions to open ended design problems with and without the assistance 

of inspirational stimuli. Using this approach, the HMM model was able to represent the fMRI data in 

12 distinct states, as well as demonstrate that there was switching between these states. While this 

work chose to represent the data using 12 states, the current findings (e.g., low occupancy likelihood 

in a number of states) suggest a lower number of states should be explored in future work. 

Additionally, partitioning the brain activation data based on high and low performing individuals 

(determined based upon the quantity of ideas generated) produces meaningful differences in state 

occupancy for one of the defined states (State 7). This implies that State 7 may be correlated with 

productive periods of idea generation found more often in high performing participants.  

 Overall, the findings presented in this work demonstrate that HMMs are well suited for 

identifying important characteristics representing both the spatial and temporal dynamics that occur 

while participants are engaged in concept generation periods. This is critical, as transitions between 

separate brain states are not able to be identified using classical neuroimaging analysis techniques. 

Ongoing and future work will investigate the patterns of neural activation that are associated with the 

each of the states discovered here. Additionally, future work will also consider further techniques to 
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determine ICA components for the HMM input that may provide more stability (e.g., from large open-

source datasets).  Doing so will provide deeper insights into the cognitive underpinnings representing 

each of the states as well as the transitions between them relevant to design cognition during concept 

generation. 
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