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We characterise quasivarieties and varieties of ordered algebras categorically in terms of

regularity, exactness and the existence of a suitable generator. The notions of regularity and

exactness need to be understood in the sense of category theory enriched over posets.

We also prove that finitary varieties of ordered algebras are cocompletions of their theories

under sifted colimits (again, in the enriched sense).

1. Introduction

Since the very beginning of the categorical approach to universal algebra, the intrinsic

characterisation of varieties and quasivarieties of algebras has become an interesting

question. First steps were taken already in John Isbell’s paper (Isbell 1964), William

Lawvere’s seminal PhD thesis (Lawvere 1963) and Fred Linton’s paper (Linton 1966).

The compact way of characterising varieties and quasivarieties can be, in modern language,

perhaps best stated as follows:

A category A is equivalent to a (quasi)variety of algebras iff it is (regular) exact and

it possesses a ‘nice’ generator.

For the excellent modern categorical treatment of (quasi)varieties of algebras in the sense

of classical universal algebra, see the book by Adámek et al. (2011).

In the current paper, we will give a characterisation of categories of varieties and

quasivarieties of ordered algebras in essentially the same spirit:

A category A , enriched over posets , is equivalent to a (quasi)variety of ordered algebras

iff it is (regular) exact and it possesses a ‘nice’ generator.

Above, however, the notions of regularity and exactness need to be reformulated so that

the notions suit the realm of categories enriched over posets.

There are at least two approaches to what an ordered algebra can be. Let us briefly

comment on both:

The approach of Bloom and Wright (1983) A signature Σ specifies for each natural num-

ber n a set Σn of operation symbols. An algebra for a signature Σ consists of a poset
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X, together with a monotone map [[σ]] : Xn −→ X, for each specified n-ary operation

σ, where n is a set . A homomorphism is a monotone map, preserving the operations

on the nose.

Such a concept is a direct generalisation of the classical notion of an algebra (Cohn

1981).

The approach of Kelly and Power (1993) A signature Σ specifies for each finite poset n

a set Σn of operation symbols. An algebra for a signature Σ consists of a poset X,

together with a monotone map [[σ]] : Xn −→ X, for each specified n-ary operation σ.

Here, Xn denotes the poset of all monotone maps from n to X. A homomorphism is a

monotone map, preserving the operations on the nose.

This concept stems from the theory of enriched monads. It allows for operations that

are defined only partially . As we will see later, such an approach is also quite natural

and handy in practice.

We will choose the first concept as the object of our study. For technical reasons, we will

also allow the collection Σn of all n-ary operations to be a poset. Then, for every algebra

for Σ on a poset X, the inequality [[σ]] � [[τ]] is required to hold in the poset of monotone

functions from Xn to X, whenever σ � τ holds in the poset Σn of all n-ary operations.

Varieties and quasivarieties in the first sense were studied by Stephen Bloom and Jesse

Wright in Bloom (1976) and Bloom and Wright (1983). In Bloom (1976), a Birkhoff-style

characterisation of classes of algebras is given follows:

1. Varieties are defined as classes of algebras satisfying formal inequalities of the form

t′ � t

where t′ and t are Σ-terms. Varieties can be characterised as precisely the HSP-classes

of Σ-algebras.

2. Quasivarieties are defined as classes of algebras that satisfy formal implications (or,

quasi-inequalities) of the form

(
∧
i∈I

s′
i � si) ⇒ t′ � t

where I is a set, s′
i, si, t′ and t are Σ-terms. Quasivarieties can be characterised as

precisely the SP-classes of Σ-algebras.

One has to be precise, however, in saying what the closure operators H and S mean. As it

turns out, when choosing monotone surjections as the notion of a homomorphic image,

then the proper concept of a subalgebra is that of a monotone homomorphism that

reflects the order. This means that a subalgebra inherits not only the algebraic structure

but also the order structure.

Example 1.1 (Varieties).

1. Since a signature in the sense of Bloom and Wright specifies the same data as a

signature in the sense of ordinary universal algebra, it is the case that any ordinary

variety is contained in the variety of ordered algebras for the same signature and

equations, the ordinary algebras appearing as the algebras with a discrete order. This
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gives rise to a large class of examples which includes ordered monoids and ordered

semigroups, which play an important role in automata theory, see Pin (1997).

2. In some important examples such as Boolean algebras, Heyting algebras or groups,

the discrete order is the only order that makes all operations monotone. In this case,

the varieties are just the ordinary varieties.

3. Another important source of examples are ordinary varieties which have a semi-lattice

reduct. Then the order is equationally definable via x � y ⇔ x∨y = y. These examples

are varieties in the ordered sense if equipped with the above order, but cannot be

expected to be varieties in the ordered sense if they are equipped with the discrete

order, see the comment following Example 3.21.

4. Ordered algebras arise naturally as solutions of domain equations. In order to build

semantic domains which contain both infinite elements (to give semantics to loops

and recursion) and their finite approximants, one works with ordered algebras, the

partial order capturing the order of approximation, see e.g. Scott (1971). For example,

infinite lists over a set A and their finite approximants arise as a certain algebra for

the functor F : Pos −→ Pos given by

FX = {⊥} + A × X = {(a, x) | a ∈ A, x ∈ X}/(∀z.⊥ � z)

F-algebras form a variety with the signature given by one constant ⊥ and unary

operation symbols a for all a ∈ A and with one inequality given by ∀z.⊥ � z. The

initial algebra contains all finite lists over A and is ordered by the prefix relation. Its

completion by ω-chains or directed joins (Goguen et al. 1977) also contains the infinite

lists over A. This algebra can also be elegantly described as the final F-coalgebra.

Example 1.2 (Quasivarieties).

1. Sets and mappings form a quasivariety of ordered algebras. More precisely:

a. Let Σ be a signature with no specified operation. Hence, Σ-algebras are exactly the

posets and Σ-homomorphisms are the monotone maps.

b. Let the objects be Σ-algebras, subject to the implication

x � y ⇒ y � x.

Clearly, any object can be identified with a set and Σ-homomorphisms can be identified

with mappings.

It is easy to see that Set is an SP-class in the category of all Σ-algebras. But it is not

an HSP-class: consider the identity-on-objects monotone mapping e : 2 −→ 2, where

2 is the discrete poset on two elements and 2 is the two-element chain. Then 2 is an

object of A , while 2 is not.

2. More generally, since discreteness is definable by quasi-inequalities, any ordinary

quasivariety can be considered as a quasivariety of discrete algebras.

3. Every ordinary quasivariety gives rise to a quasivariety of ordered algebras for the

same signature and quasi-equations. For example, the quasivariety of cancellative

ordered monoids is a quasivariety which is not monadic in the ordered sense for the

same reason that cancellative monoids are not monadic in the ordinary sense.
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4. The Kleene algebras of Kozen (1994), which axiomatize the algebra of regular lan-

guages, form a quasivariety of algebras in the order induced by the underlying semiring.

5. Continuing from Example 1.1(4), recursive functions on data-types are conveniently

defined using quasi-equations. For example, a function member(a,−) which takes as

an argument a list and returns a truth-value may be defined on finite lists as follows.

It would be natural to formulate this in a many-sorted setting, see Remark 5.11, but

for the purposes of this example just assume that we added a constant true to our

signature. Then

member(a, al) = true

member(a, l) = true ⇒ member(a, bl) = true

is an axiomatic description of a function member.

Example 1.3 (Monadic categories).

1. To continue from Example 1.2(1), the obvious discrete-poset functor U : Set −→ Pos

is easily seen to be monadic. Hence, Set appears as a ‘variety’ in the world where

arities can be posets. More precisely: consider the signature Γ, where Γ2 = 2 and

Γn = � otherwise. Then the set of equations

σ0(x, y) = y, σ1(x, y) = x,

defines Set over Pos equationally, where σ0 � σ1 are the only elements of Γ2. See Kelly

and Power (1993) for more details on presenting monads by operations and equations.

2. More generally, any ordinary variety gives rise to a monadic category of discretely

ordered algebras. Indeed, given a monadic functor K −→ Set composition with the

discrete-poset functor Set −→ Pos is monadic, as can easily be checked using Beck’s

theorem.

3. An example of a monadic category that is not a quasivariety is given in Example 5.12.

4. Examples of quasivarieties that are not monadic are cancellative monoids or Kleene

algebras.

Remark 1.4 ((Quasi)varieties vs. monadic categories).

1. Despite of the focus on (quasi)varieties, monadic categories still play an important

role both in Bloom and Wright (1983) and in this paper. Indeed, an important

ingredient of the main results is the following relationship: Every quasivariety is the

full reflective subcategory of a monadic category for a surjection-preserving monad

and every monadic category for a surjection-preserving monad is a quasivariety.

2. From the point of view of monads, one may ask why the restriction to surjection-

preserving monads is of special interest. One of the important good properties of

universal algebra that one loses beyond the surjection-preserving situation is that

quotients are surjections. Indeed, for general monads on Pos it may happen that

the quotient A −→ A′ of an algebra A by additional inequalities is not onto. The

reason is that in the presence of ordered arities, adding new inequations may lead to

the generation of new terms. Hyland and Power (2006) give further reasons why the

restriction to discrete arities can be of interest.
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3. To summarize, the ordered universal algebra of Bloom and Wright (1983) studied in

this paper is concerned with a universal algebra where taking a quotient means to add

further inequations without generating new elements.

4. In the finitary case, a satisfactory reconciliation of varieties and monadic categories

is obtained in Theorem 6.9: The finitary varieties are the monadic categories for

sifted-colimits-preserving monads.

5. Let us also emphasize that both in the approach of Bloom and Wright (1983) and in

the approach of Kelly and Power (1993) operations are monotone. An investigation

into a categorical universal algebra where operations such as negation, implication, or

inverse are antitone is outside the scope of this paper.

The system (monotone surjective maps, monotone maps reflecting orders) is a factorisation

system in the category Pos of posets and monotone maps. One can therefore ask whether

this system can play the role of the (regular epi, mono) factorisation system on the

category of sets that is so vital in giving intrinsic categorical characterisations of varieties

and quasivarieties in classical universal algebra. We prove that this is the case, if we pass

from the world of categories to the world of categories enriched in posets. Namely:

1. We give the definition of regularity and exactness of a category enriched in posets. We

show that Pos is an exact category.

2. We give intrinsic characterisations of both varieties and quasivarieties of ordered

algebras, see Theorems 5.9 and 5.13 below. Our main results then have the same

phrasing as in the classical case, the only difference is that all the notions have their

meaning in category theory enriched in posets.

1.1. Related work

The notion of regularity and exactness for 2-categories goes back to Street (1982), but we

were also much inspired by its polished version of Mike Shulman (http://ncatlab.org/nlab/

show/2-congruence) and the recent PhD thesis of Bourke (2010). Bourke studies exactness

for a different factorisation system, though. After our submission, we learned of Bourke

and Garner (2014), where general notions of regularity and exactness with respect to

a factorisation system are studied in the realm of enriched category theory. Varieties

and quasivarieties from the current text were named P-varieties and P-quasivarieties by

Stephen Bloom and Jesse Wright in Bloom and Wright (1983). The authors did not use

the standard terminology and they only worked with kernel pairs (see Remark 3.9) and

not with congruences (Definition 3.8) and hence they missed the notion of exactness.

However, they give an ‘almost intrinsic’ characterisation of varieties and quasivarieties

that we found extremely useful.

1.2. Organisation of the text

The necessary notions of enriched category theory are recalled in Section 2. Regularity

and exactness are defined in Section 3. Section 4 contains the technicalities that we need

in order to prove our main characterisation results in Section 5. We prove in Section 6,
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that finitary varieties of ordered algebras can be characterised as algebras for a special

class of monads — the strongly finitary ones. In Section 7, we indicate directions for

future work.

2. Preliminaries

We briefly recall the basic notions of enriched category that we will use later on. For

more details, see Max Kelly’s book (Kelly 2005).

We will work with categories enriched in the cartesian closed category (Pos,×,1) of

posets and monotone maps. We will omit the prefix Pos- when speaking of Pos-categories,

Pos-functors, etc. Thus, in what follows:

1. A category X is given by objects X, Y , . . . such that every hom-object X (X,Y ) is

a poset. The partial order on X (X,Y ) is denoted by �. We require the composition

to preserve the order in both arguments: (g′ · f′) � (g · f) holds, whenever g′ � g and

f′ � f.

2. A functor F : A −→ B is given by the functorial object-assignment that is locally

monotone, i.e. Ff � Fg holds, whenever f � g.

When we want to speak of non-enriched categories, functors, etc., we will call them

ordinary .

Example 2.1. The category Set is the category of sets and functions with discretely ordered

hom-sets. The category Pos is the category of posets and monotone maps with the order

on hom-sets Pos(X,Y ) induced by Y , that is, f � g if f(x) � g(x) for all x ∈ X. As

ordinary categories Set and Pos do not have an order on their hom-sets. This distinction

is relevant: there is the ‘discrete’ functor D : Set −→ Pos, but forgetting the order is only

an ordinary functor Pos −→ Set. On the other hand, there is a ‘connected component’

functor Pos −→ Set, which is left-adjoint to the discrete functor D.

Remark 2.2. Categories and functors are called P-categories and P-functors in Bloom and

Wright (1983).

In diagrams, we will denote, for parallel morphisms f, g, the fact f � g by an arrow

between morphisms and we will speak of a 2-cell :

X

g
��

f
��

↑ Y

This notation complies with the fact that categories enriched in posets are (rather special)

2-categories.

The category of functors from A to B and natural transformations between them is

denoted by [A ,B]. The opposite category X op of X has just the sense of morphisms

reversed, the order on hom-posets remains unchanged.

The proper concept of a limit and a colimit in enriched category theory is that of

a weighted (co)limit. In our setting, the main reason for this is that pullbacks and

https://doi.org/10.1017/S096012951500050X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500050X


Quasivarieties and varieties of ordered algebras 1159

coequalizers need to be adapted to inequalities. In particular, comma objects will replace

pullbacks in the construction of kernels and coinserters will replace coequalizers in the

construction of quotients.

More in detail, for every diagram D : D −→ X , D small, we define its tilde-conjugate

D̃ : X −→ [Dop,Pos], X 
→ X (D−, X)

and its hat-conjugate

D̂ : X −→ [D ,Pos]op, X 
→ X (X,D−).

Then, a colimit of D weighted by W : Dop −→ Pos is an object W ∗D, together with an

isomorphism

X (W ∗D,X) ∼= [Dop,Pos](W, D̃X)

of posets, natural in X. A limit of D weighted by W : D −→ Pos is an object {W,D},
together with an isomorphism

X (X, {W,D}) ∼= [D ,Pos]op(D̂X,W )

of posets, natural in X.

Hence, for a category X admitting all colimits of the diagram D : D −→ X , the

assignment X 
→ X ∗D is the value of a left adjoint to D̃ : X −→ [Dop,Pos]. A

special instance is the case of a one-morphism category D: the diagram D : D −→ X

can be identified with an object D of X , the functor D̃ is the representable functor

X (D,−) : X −→ Pos and its left adjoint assigns the tensor X • D of the object D and

the poset X.

Analogously, the assignment X 
→ {X,D} is a right adjoint to D̂ : X −→ [D ,Pos]op in

case X admits all limits of W : D −→ X .

Recall from Kelly (1982) that a (co)limit is finite, if it is weighted by a finite weight. The

latter is a functor W : D −→ Pos such that D has finitely many objects, every D(d′, d) is

a finite poset, and every Wd is a finite poset.

We will, besides other finite (co)limits, use comma objects and coinserters .

1. A comma object is a weighted limit. The weight W : D −→ Pos for comma objects is

the functor

b

g

��
a

f
�� c


→

1

1

��

1
0

�� 2

In elementary terms, a comma object in X of a diagram

B

g

��

A
f

�� C
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is a ‘lax commutative square’ of the form

f/g
p1 ��

p0

��

B

g

��

A
f

��

↗

C

(i.e. the inequality f · p0 � g · p1 holds) that satisfies the following universal property:

a. Given any ‘lax commutative square’

Z
h1 ��

h0

��

B

g

��

A
f

��

↗

C

there is a unique h : Z −→ f/g such that p0 · h = h0 and p1 · h = h1.

b. For any parallel pair k′, k : Z −→ f/g of morphisms such that p0 · k′ � p0 · k and

p1 · k′ � p1 · k, the inequality k′ � k holds.

2. A coinserter is a weighted colimit. The weight W : Dop −→ Pos for coinserters has D

consisting of a parallel pair of morphisms that is sent to the parallel pair

1
1 ��

0
�� 2

in Pos. In elementary terms, a coinserter in X of a parallel pair

X1

d1 ��

d0

�� X0

consists of a morphism c : X0 −→ C such that c · d0 � c · d1 holds and such that it

satisfies the following couniversal property:

a. For any h : X0 −→ D such that h · d0 � h · d1 there is a unique h� : C −→ D such

that h� · c = h.

b. For any pair k′, k : C −→ D that satisfies k′ · c � k · c, the inequality k′ � k holds.

Thus the (co)universal property of a (co)limit has two aspects: the 1-dimensional aspect

(concerning 1-cells) and the 2-dimensional aspect (concerning the order between 1-cells).

This will be always the case for weighted (co)limits that we encounter and it is caused

by the fact that we enrich over posets. As such, our (co)limits will be rather special

2-(co)limits. The enrichment in posets will usually simplify substantially the 2-dimensional

aspect of 2-(co)limits. See Kelly (1989) for more details.

Example 2.3 (Explicit computation of comma objects in Pos). Suppose that a diagram

B

g

��

A
f

�� C
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in Pos is given. The ‘lax commutative square’

f/g
p1 ��

p0

��

B

g

��

A
f

��

↗

C

is a comma object of the above diagram, where by f/g we denote the poset of all

pairs (a, b) of elements of A and B such that fa � gb holds in C . The pairs (a, b) are

ordered pointwise, using the orders of A and B. The monotone maps p0 : f/g −→ A and

p1 : f/g −→ B are the projections.

Example 2.4 (Explicit computation of coinserters in Pos). Suppose that

X1

d1 ��

d0

�� X0

is a pair of morphisms in Pos. The coinserter c : X0 −→ C of d0, d1 is obtained by adding

for all f ∈ X1 an inequality d0(f) � d1(f) to X0 and can be described formally as follows:

1. Define a binary relation R on the set ob(X0) of objects of X0 as follows:

x′ R x iff there is a finite sequence f0, . . . , fn−1 of objects in X1 such that the

inequalities

x′ � d0(f0), d1(f0) � d0(f1), d1(f1) � d0(f2), . . . , d1(fn−1) � x

hold in X0.

It is easy to see that R is reflexive and transitive. Put E = R ∩ Rop to obtain an

equivalence relation on the set ob(X0).

2. The poset C has as ob(C) the quotient set ob(X0)/E, we put [x′] � [x] in C to hold iff

x′ R x holds. The monotone mapping c : X0 −→ C is the canonical map sending x to

[x].

It is now routine to verify that we have defined a coinserter.

Remark 2.5. Comma objects f/f are called P-kernels and coinserters are called P-

coequalizers in Bloom and Wright (1983).

3. Regularity and exactness

Regularity and exactness in ordinary category theory (Barr et al. 1971) is defined relative

to a factorisation system. In this section, we will introduce the factorisation system

(surjective on objects, representably fully faithful)

on the class of morphisms of a general category X . When X = Pos, the above

system coincides with the factorisation system (monotone surjective maps, monotone

maps reflecting orders).

We introduce the factorisation system by starting with its ‘mono’ part. The ‘strong

epi’ part of the factorisation system is then derived by the orthogonal property that is
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appropriate for the enrichment in posets. We then show that, in cases of interest, the

‘strong epi’ part of the factorisation system is given by a suitable generalisation of a

coequalizer. This is the gist of the second part of this section: we introduce congruences

and their quotients and the corresponding notions of regularity and exactness.

3.1. The factorisation system

Definition 3.1. We say that m : X −→ Y in X is representably fully faithful (or, that it

is an ff-morphism), provided that the monotone map X (Z,m) : X (Z,X) −→ X (Z, Y )

reflects orders (i.e. if it is fully faithful as a functor in Pos), for every Z .

A morphism e : A −→ B is surjective on objects (or, that it is an so-morphism), provided

that the square

X (B,X)
X (e,X)

��

X (B,m)

��

X (A,X)

X (A,m)

��

X (B, Y )
X (e,Y )

�� X (A, Y )

(3.1)

is a pullback in Pos, for every ff-morphism m : X −→ Y .

We say that X has (so,ff)-factorisations if every f can be factored as an so-morphism

followed by an ff-morphism.

Example 3.2. An ff-morphism is necessarily mono. In Pos, so-morphisms are exactly the

monotone surjections, ff-morphisms are order-reflecting monotone maps. Clearly, Pos has

(so,ff)-factorisations.

The description extends to ‘presheaf’ categories [S op,Pos], where S is small, in the

usual ‘pointwise’ way.

Remark 3.3. The ff-morphisms are called P -monics in Bloom and Wright (1983), and

chronic in Street (1982). We choose the acronym ff to remind us of (representably) fully

faithful Street and Walters (1978). The so-morphisms are called surjections in Bloom and

Wright (1983) and acute in Street (1982). Our justification to replace familiar terminology

from posets such as monotone order-reflecting map by categorical terminology such as

ff-morphism is the following. The main idea of our approach here is to specialise methods

that work for categories enriched over categories to categories enriched over posets. Not

surprisingly, by going from categories to posets, notions that are different for categories

over categories collapse for categories over posets. Nevertheless it seems important to us

to use a terminology that remains valid if going to the richer setting of categories over

categories.

Remark 3.4. We defined the factorisation system in the manner that is common in

enriched category theory. More precisely, we chose the ‘monos’ and defined the ‘epis’

via orthogonality expressed by a pullback in the base category of posets. That the

diagram (3.1) is a pullback on the level of sets states the usual ‘diagonal fill-in’ property.

Hence, classes of so-morphisms and ff-morphisms are mutually orthogonal . This means
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that in every commutative square

A
e ��

u

��

B

v

��

d

��

X
m

�� Y

with e an so-morphism and m an ff-morphism, there is a unique diagonal d as indicated,

making both triangles commutative.

That the diagram (3.1) is in fact a pullback on the level of posets describes a finer,

2-dimensional aspect of orthogonality.

Namely, for two pairs u1 � u2 : A −→ X, v1 � v2 : B −→ Y such that both squares

A
e ��

u1

��

B

v1

��

X
m

�� Y

A
e ��

u2

��

B

v2

��

X
m

�� Y

commute, we have an inequality d1 � d2 for the respective diagonals. In fact, the 2-

dimensional aspect can be omitted here, since it follows from the fact that m is ff .

3.2. Congruences and their quotients

We will define congruences and their quotients.† Since the general poset-enriched concept

of a congruence is rather technical, we start with the following intuition for equivalence

relations on sets:

An equivalence relation E on a set X is a ‘recipe’ how to glue elements of X together.

That is: E imposes new equations on the set X, besides those already valid.

Remark 3.5 (Category object, equivalence relation). In a category with finite limits an

equivalence relation (Barr et al. 1971; Duskin 1969) is a diagram

A2

d2
2 ��

d2
1

��

d2
0

��
A1

s

��
d1

1 ��

d1
0

��
A0i00

��

where

1. the square

A2

d2
2 ��

d2
0

��

A1

d1
0

��

A1

d1
1 �� A0

is a pullback

2. d1
1 ◦ d2

1 = d1
1 ◦ d2

2, d
1
0 ◦ d2

1 = d1
0 ◦ d2

0,

† The standard terminology of 2-category theory for quotients is codescent , see Lack (2002) or Bourke (2010).

We prefer to use the term quotient to comply with the intuitions of classical universal algebra.
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3. d1
1 ◦ i00 = d1

0 ◦ i00 = id,

4. 〈d1
0, d

1
1〉 : A1 −→ A0 × A0 is mono,

5. d1
1 ◦ s = d1

0, d
1
0 ◦ s = d1

1.

Without s and under conditions (1)–(3) one speaks of a category object. (4) expresses

that A1 together with projections d1
0, d

1
1 is a relation on A0, (1–2) say that the relation is

transitive, (3) says that it is reflexive, and s and (5) are required to express symmetry. The

quotient of A0 by the equivalence relation can be computed as the coequalizer of d1
0, d

1
1.

A congruence E on a poset X should impose new inequalities besides those already

valid. Moreover, E should be a poset again. Hence, an ‘element’ of a congruence E should

be a formal ‘broken’ arrow x′ � ��x that specifies the formal inequality x′ is smaller than x.

The formal arrows should interact nicely with the actual arrows (representing already valid

inequalities in X), i.e. both x′′ ��x′ � ��x and x′ � ��x ��x′′ should have an unambiguous

meaning (and both should compose to a ‘broken’ arrow). Furthermore, ‘broken’ arrows

should compose (imposing inequalities is reflexive and transitive).

The above can be stated more formally: a congruence is a category object, whose

domain-codomain span is a two-sided discrete fibration of a certain kind. Before giving

the precise definition (Definition 3.8 below), let us see an example of a congruence in Pos:

Example 3.6 (Kernel congruences in posets). Every morphism f : A0 −→ B in Pos gives

rise to a kernel congruence ker(f) on A0 as follows:

1. Form a comma object

A1

d1
1 ��

d1
0

��

A0

f

��

A0
f

��

↗

B

That is: objects of A1 are pairs (a, b) such that fa � fb holds in B. The pair (a, b)

should be thought of as a new inequality that we want to impose. We denote such a

formal inequality by a � ��b .

The pairs (a, b) in A1 inherit the order from the product A0 × A0. In other words: the

map 〈d1
0, d

1
1〉 : A1 −→ A0 × A0 is an ff-morphism.

It will be useful to denote the inequality (a, b) � (a′, b′) in A1 by a formal square

a � ��

��

b

��

a′ � �� b′

Observe that there is an associative and unital way of vertical composition of formal

squares by pasting one on top of another.

https://doi.org/10.1017/S096012951500050X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500050X


Quasivarieties and varieties of ordered algebras 1165

It is well-known (see, e.g. Street (1974)) that the span (d1
0, A1, d

1
1) is a (two-sided)

discrete fibration . This means that for every pair

a

��

a′ � �� b

a � �� b

��

b′

of ‘niches’ there are ‘unique fill-ins’ of the form

a � ��

��

b

a′ � �� b

a � �� b

��

a � �� b′

and that every formal square

a � ��

��

b

��

a′ � �� b′

can be written uniquely as a vertical composite

a � �� b

��

a � ��

��

b′

a′ � �� b′

of such fillings.

2. Besides pasting the formal squares vertically, we show how to paste them horizontally

as in

a � ��

��

b

��

b � ��

��

c

��

→

a � ��

��

c

��

a′ � �� b′ b′ � �� c′ a′ � �� c′

To allow for the horizontal composition of the squares, form a pullback

A2

d2
2 ��

d2
0

��

A1

d1
0

��

A1
d1

1

�� A0

It is straightforward to see that the elements of A2 are triples (a′′, a′, a) satisfying

fa′′ � fa′ � fa. The triples are ordered pointwise. Every such triple (a′′, a′, a) can be

drawn as a ‘composable pair’ a′′ � ��a′ � ��a . of ‘broken’ arrows. We now define two

monotone maps

d2
1 : A2 −→ A1, d0

0 : A0 −→ A1,

https://doi.org/10.1017/S096012951500050X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500050X


A. Kurz and J. Velebil 1166

with the intention that d2
1 (the composition map) sends a′′ � ��a′ � ��a to a′′ � ��a and

d0
0 : A0 −→ A1 (the identity map) sends each a in A0 to the ‘identity broken arrow’

a � ��a .

One can use the universal property of the comma square to define d2
1 : A2 −→ A1 as

the unique map such that the equality

A2

d2
1

��
��

��
��

��

A1

d1
1 ��

d1
0

��

A0

f

��

A0
f

��

↗

B

=

A2

d2
2 ��

d2
0

��

A1

d1
1 ��

d1
0

��

A0

f

��

A1

d1
1 ��

d1
0

��

A0
f

��

f

��

↗

B

A0
f

��

↗

B B

holds. It is clear that d2
1 sends (a′′, a′, a) to (a′′, a).

Analogously, one can define i00 : A0 −→ A1 as the unique map such that the equality

A0

i00

��
��

��
��

��

A1

d1
1 ��

d1
0

��

A0

f

��

A0
f

��

↗

B

=

A0

f

��
��

��
��

��

B

holds. Explicitly: i00 sends a to the pair (a, a).

To summarise: the above constructions yield a category object

ker(f) ≡ A2

d2
2 ��

d2
1

��

d2
0

��
A1

d1
1 ��

d1
0

��
A0i00

��

in Pos such that 〈d1
0, d

1
1〉 is an ff-morphism and the span (d1

0, A1, d
1
1) is a two-sided discrete

fibration.

Remark 3.7. Clearly, the steps of the above construction of ker(f) can be performed in

any category X admitting finite limits. In fact, the resulting category object will have the

two additional properties as well, since:

1. A span (d1
0, A1, d

1
1) in a general category X is defined to be a two-sided discrete fibration

if it is representably so. This means that the span (X (X, d1
0),X (X,A1),X (X, d1

1)) of

monotone maps is a two-sided discrete fibration in Pos, for every X.

2. The morphism 〈d1
0, d

1
1〉 : A1 −→ A0 × A0 is easily proved to be an ff-morphism

in a general category X iff the morphism 〈X (X, d1
0),X (X, d1

1)〉 : X (X,A1) −→
X (X,A0) × X (X,A0) is an ff-morphism in Pos, for every X.

The above considerations lead us to the following definition:
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Definition 3.8 (Street 1982; http://ncatlab.org/nlab/show/2-congruence). Suppose A0 is an

object of X . We say that a category object

∼ ≡ A2

d2
2 ��

d2
1

��

d2
0

��
A1

d1
1 ��

d1
0

��
A0i00

��

in X , where the span (d1
0, A1, d

1
1) is a (two-sided) discrete fibration and 〈d1

0, d
1
1〉 : A1 −→

A0 × A0 is an ff-morphism, is a congruence on A0.

Remark 3.9. For a congruence ∼ as above, think of A0 as the object of objects, A1 as the

object of morphisms, i00 : A0 −→ A1 picks up the identity morphisms, d1
0 : A1 −→ A0 is

the domain map, d1
1 : A1 −→ A0 is the codomain map, A2 is the object of ‘composable

pairs of morphisms’ (since A2 is the vertex of a pullback of d1
0 and d1

1), in a composable

pair, d2
0 : A2 −→ A1 picks the ‘morphism on the left,’ d2

2 : A2 −→ A1 picks the ‘morphism

on the right,’ and d2
1 : A2 −→ A1 is the composition.

The same notion, in the category of posets, is used in Pin (1997) in a non-categorical

setting (Pin speaks of stable quasi-orders and also calls them congruences).

In Bloom and Wright (1983) a P-congruence is simply a pair (d1
0, d

1
1) of morphisms

that arises as a P-kernel (Remark 2.5) of some morphism. We need the more complicated

notion of congruence because we want to show that varieties are those quasivarieties

where all congruences arise as kernels.

To treat congruences and their quotients (the coinserters of the (d1
0, d

1
1), see Remark 3.14)

conceptually, let us introduce the following notation:

Notation 3.10 (Bourke 2010). Let 1, 2, 3 denote the chains on one, two, three elements,

respectively. We denote by Δ−
2 the simplicial category truncated at stage two and with the

morphisms between stage three and stage two omitted. More precisely: the category Δ−
2

is given by the graph

Δ−
2 ≡ 1

δ1
1 ��

δ1
0

��
2

δ2
0 ��

δ2
1

��

δ2
2

��
ι00

�� 3

subject to equalities

ι00 · δ1
0 = 1, ι00 · δ1

1 = 1, δ2
0 · δ1

1 = δ2
2 · δ1

0 , δ2
1 · δ1

0 = δ2
0 · δ1

0 , δ2
1 · δ1

1 = δ2
1 · δ1

1 .

We denote by J− : Δ−
2 −→ Pos the inclusion.

Definition 3.11 (Lack 2002). A diagram D : Δ−
2

op −→ X is called a coherence datum in

X . The colimit J− ∗D is called a quotient of D.

Remark 3.12. The colimit J− ∗D of a coherence datum is called a codescent of D in Lack

(2002). In our context, we prefer to call the colimit J− ∗D a quotient of D rather than a

codescent of D.

Since every congruence is a coherence datum, the above definition can be applied to

congruences. Thus
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Definition 3.13. The quotient of a congruence is the quotient of the underlying coherence

datum.

Remark 3.14. Due to enrichment in posets, the computation of quotients of general

coherence data reduces to the computation of coinserters of Dδ1
0 , Dδ

1
1 . This follows from

the general coherence conditions for a quotients (see Lack (2002), where quotients are

called codescents), specialised to the case of enrichment over posets.

If a congruence happens to be an equivalence relation, then its quotient can be computed

as a coequalizer.

Although the computation of quotients of congruences can be simplified, the definition

of a congruence cannot be simplified. Observe that we need the full strength of the

definition of a congruence in the proof of exactness of Pos, see Proposition 3.20. More in

detail: congruences should be ‘transitive’ and this is exactly what the object A2 and the

morphism d2
1 : A2 −→ A1 are responsible for.

Definition 3.15. We say that a morphism is effective if it is a coinserter of some pair and

that a congruence is effective if it is a kernel congruence.

Remark 3.16. Effective congruences are the ordered analogue of effective equivalence

relations (Barr et al. 1971). Effective morphisms are called P-regular in Bloom and

Wright (1983).

Lemma 3.17. Any effective morphism is an so-morphism.

Proof. Easy: use couniversality of a coinserter. The 1-dimensional aspect yields the

required diagonal and the 2-dimensional aspect yields the 2-dimensional aspect of

orthogonality.

The above result establishes that ‘every reg-epi is strong epi’ for our factorisation system

of so-morphisms and ff-morphisms. The gist of the definition of regularity is the converse

of this statement. The gist of the definition of exactness is that ‘congruences are precisely

the kernel congruences.’

Definition 3.18. A category X is called regular , provided that the following four properties

are satisfied:

(R1) X has finite limits.

(R2) X has (so,ff)-factorisations.

(R3) so-morphisms are stable under pullbacks.

(R4) so-morphisms are exactly the effective morphisms.

If, in addition, X verifies the following condition

(Ex) Every congruence in X is effective, i.e. it is of the form ker(f),

then X is called exact .

Remark 3.19. Let us stress our convention: when we say a category, we mean a category

enriched in posets. Categories that are not enriched, are called ordinary.

In Example 3.21 below we show that the enriched category Set is regular but not exact

in the enriched sense, although the ordinary category Set is exact in the ordinary sense
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(see Barr et al. (1971)). The intuitive reason for this is that sets are closed under quotienting

by equations, but discrete posets are not closed under quotienting by inequations.

Proposition 3.20 (Exactness of Pos and presheaf categories). Every category [S op,Pos],

S small, is exact.

Proof. We prove exactness of Pos, exactness of [S op,Pos] follows by reasoning

pointwise.

The only non-trivial condition to verify is (Ex). Suppose therefore that

∼ ≡ A2

d2
2 ��

d2
1

��

d2
0

��
A1

d1
1 ��

d1
0

��
A0i00

��

is a congruence on A0. Form its quotient q : A0 −→ Q as in Example 2.4 and consider the

kernel

ker(q) ≡ P2

p2
2 ��

p2
1

��

p2
0

��
q/q

p1
1 ��

p1
0

��
A0p0

0
��

We claim that ker(q) = ∼.

Denote by z : A1 −→ q/q the unique morphism such that the equality

A1

z

���
��

��
��

�

q/q
p1

1 ��

p1
0

��

A0

q

��

↗

A0 q
�� Q

=

A1

d1
1 ��

d1
0

��

A0

q

��

↗

A0 q
�� Q

holds, where the lax square on the left is a comma object (see Example 2.3).

In particular, the diagram

A1
z ��

〈d1
0 ,d

1
1〉 		�

��
��

��
��

q/q

〈p1
0 ,p

1
1〉

��

A0 × A0

commutes. It follows that z reflects order, since 〈d1
0, d

1
1〉 does (∼ is a congruence). We need

to prove that z is surjective. To that end, consider an object of q/q, i.e. a pair (a′, a) such

that qa′ � qa. Use now the description of inequality in a quotient of Example 2.4 to find

a finite sequence f0, . . . , fn−1 of objects in A1 such that the inequalities

a′ � d1
0(f0), d1

1(f0) � d1
0(f1), d1

1(f1) � d1
0(f2), . . . , d1

1(fn−1) � a,

hold in A0.
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Using the fact that the span (d1
0, A0, d

1
1) is a two-sided discrete fibration, one can find a

sequence f∗
0 , . . . , f∗

n−1 of elements of A1 such that the equalities

a′ = d1
0(f

∗
0), d1

1(f
∗
0) = d1

0(f
∗
1), d1

1(f
∗
1) = d1

0(f
∗
2), . . . , d1

1(f
∗
n−1) = a,

hold in A0. Since ∼ is a category object, the sequence f∗
0 , . . . , f∗

n−1 composes (using d2
1) to

an element f∗ of A1 such that a′ = d1
0(f

∗) and d1
1(f

∗) = a. Hence, z(f∗) = (a′, a), and we

proved that z : A1 −→ q/q is surjective.

Thus q/q = A1, hence A2 = P2 by uniqueness of pullbacks. It remains to be proved

that d2
1 = p2

1. But this follows easily.

We proved that ker(q) = ∼, the proof of exactness of Pos is finished.

Example 3.21 (The category Set (having discrete orders on hom-sets) is regular but not

exact). Regularity of Set is easy: observe that the effective morphisms are precisely the

epis (and these are precisely the surjective mappings).

We exhibit a congruence that is not effective. Consider the truncated nerve

nerve(2) ≡ A2

d2
2 ��

d2
1

��

d2
0

��
A1

d1
1 ��

d1
0

��
A0i00

��

of the two-element chain 2.

More in detail: A0 is the two-element set {0, 1}, the set A1 has as elements the pairs

(i, j) with i � j in 2, the set A2 has as elements the triples (i, j, k) with i � j � k in 2. All

the connecting morphisms are defined in the obvious way.

It is easy to see that nerve(2) is a congruence. Yet there is no mapping f : A0 −→ X

such that ker(f) would be nerve(2). Suppose the contrary. Since comma objects in Set

reduce to pullbacks (the orders on hom-sets of Set are discrete), ker(f) is the following

diagram

ker(f) ≡ P2

d2
2 ��

d2
1

��

d2
0

��
P1

d1
1 ��

d1
0

��
A0i00

��

and the set P1 has either two elements (0, 0) and (1, 1) in case f0 �= f1, or four elements

(0, 0), (0, 1), (1, 0) and (1, 1) in case f0 = f1. But A1 in nerve(2) has three elements: (0, 0),

(0, 1) and (1, 1).

If we equip the Ai in the proof above with the operations of a (semi)lattice, the

same argument shows that the categories of discretely ordered semilattices, or lattices, or

distributive lattices are not exact. But note that if (semi)lattices are equipped with their

natural order, then these categories are definable by inequalities and, as any variety, they

are exact (Theorem 5.9).

As we are going to show now, the situation is the converse for Boolean algebras:

Whereas lattices form a variety with their natural order but not with the discrete order,

Boolean algebras form a variety with the discrete order but not with their natural order
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(for lattices discreteness is not definable by inequalities, whereas Boolean algebras are

necessarily discrete).

Example 3.22 (The category of Boolean algebras (having discrete orders on hom-sets) is

exact). We first show that hom-sets must be discretely ordered. To this end, assume that

in some Boolean algebra we have elements a � b in some order � about which we only

assume that it makes all operations monotone. It follows from a → a = b → b = 1 and

implication being monotone that a → b = 1 and b → a = 1, hence a = b. In other

words, the discrete order is the only order that makes all operations of a Boolean algebra

monotone.

To show that Boolean algebras are exact, let

A2

d2
2 ��

d2
1

��

d2
0

��
A1

d1
1 ��

d1
0

��
A0i00

��

be a congruence (in the ordered sense) of Boolean algebras. Due to A1 being an algebra,

if (a, b) ∈ A1 then imitating the reasoning of the previous paragraph, we also obtain

(b, a) ∈ A1. It follows that A1 is equipped with an operation s : A1 −→ A1 making it into

an equivalence relation (see Remark 3.5). But since Boolean algebras form an ordinary

variety, we know that equivalence relations are effective.

Remark 3.23.

1. The above proof works verbatim for Heyting algebras instead of Boolean algebras.

Actually, for Boolean algebras the argument in the second paragraph can be made

more succinct by noting that the morphism s is given by negation.

2. More generally, it will follow from Theorem 5.9 that any variety of ordinary algebras

which can be equipped only with the discrete order is exact. A further example of this

situation is given by the variety of groups.

3. The reason that Boolean algebras, Heyting algebras, and groups can only be discretely

ordered is that the enriched categorical setting studied in this paper enforces operations

to be monotone and does not allow us to have negation, implication, or inverse as

non-monotone but antitone.

4. Some technical results

In this section, we gather some auxiliary results that we will use in Section 5:

1. We prove that the category Cong(X ) of all congruences on an exact category X has

all limits that X has.

2. We summarise properties of an adjunction F � U : A −→ X in case the counit

εA : FUA −→ A is an effective morphism (i.e. when it is a coinserter of some pair).

3. We prove that the category X T of Eilenberg–Moore algebras for a monad T is regular,

whenever X is regular and the functor of the monad T preserves so-morphisms.

https://doi.org/10.1017/S096012951500050X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500050X


A. Kurz and J. Velebil 1172

4.1. Limits of congruences

We denote by Cong(X ) the full subcategory of [Δ−
2

op
,X ] spanned by congruences in X .

To be more specific: given coherence data

X ≡ X2

d2
2 ��

d2
1

��

d2
0

��
X1

d1
1 ��

d1
0

��
X0i00

�� and Y ≡ Y2

d2
2 ��

d2
1

��

d2
0

��
Y1

d1
1 ��

d1
0

��
Y0i00

��

then a morphism f : X −→ Y is a triple f0 : X0 −→ Y0, f1 : X1 −→ Y1, f2 : X2 −→ Y2

of morphisms in X making all the relevant squares commutative. Given morphisms

f, g : X −→ Y, we put f � g iff fi � gi for all i = 0, 1, 2.

Lemma 4.1. Suppose X is exact. Then the category Cong(X ) is reflective in [Δ−
2

op
,X ].

In particular, Cong(X ) is closed in [Δ−
2

op
,X ] under limits.

Proof. Suppose

X ≡ X2

d2
2 ��

d2
1

��

d2
0

��
X1

d1
1 ��

d1
0

��
X0i00

��

is a coherence datum. Define the congruence

X∗ ≡ X∗
2

d2
2 ��

d2
1

��

d2
0

��
X∗

1

d1
1 ��

d1
0

��
X∗

0i00
��

as ker(q), where q : X0 −→ Q is the quotient of X.

We claim that there is a morphism e : X −→ X∗ that is universal.

1. Definition of e.

The morphism e has to be a natural transformation. Thus we define morphisms

e0 : X0 −→ X∗
0 , e1 : X1 −→ X∗

1 , e2 : X2 −→ X∗
2 , and prove that all the naturality

squares commute.

We put e0 = 1X0
, morphisms e1, e2 are defined using universal properties:

X∗
0 q



��
���

�

X1
e1 �� X∗

1

d1
1

��������

d1
0

����
���

� Q

X∗
0

q



������

↑ =

X0 q

��		
				

X1

d1
1 ��







d1
0

�����
��� Q

X0
q

��������
↑

and

X∗
0 d1

0

����
���

�

X2
e2 �� X∗

2

d2
2

��������

d2
0

����
���

� X∗
0

X∗
1

d1
1

��������
=

X1
e1 �� X∗

1 d1
0

����
���

�

X2

d2
2

��������

d2
0

����
���

� X∗
0

X1 e1

�� X∗
1

d1
1

��������

where we use the universal property of a comma square and a pullback, respectively.

That e : X −→ X∗ is natural follows by straightforward computations.
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2. Universality of e.

Given f : X −→ Y where Y is a congruence, we define a unique f� : X∗ −→ Y extending

f along e.

Since X is exact, there is z : Y0 −→ K such that Y = ker(z). Further, the existence of

f yields z� : Q −→ K such that the square

X0
q

��

f0

��

Q

z�

��

Y0 z
�� K

commutes.

We put f�0 = f0, and f
�
1 , f�2 are defined by universal properties:

Y ∗
0 z



��
���

�

X∗
1

f
�
1 �� Y ∗

1

d1
1 ��������

d1
0

��		
			

	 K

Y ∗
0

z



������

↑ =

X∗
0 q



��
���

�

X∗
1

d1
1

��������

d1
0

����
���

� Q
z� �� K

X∗
0

q



������

↑

and

Y ∗
1 d1

0

��		
			

	

X∗
2

f
�
2 �� Y ∗

2

d2
2 ��������

d2
0

��		
			

	 Y ∗
0

Y ∗
1

d1
1

��������
=

X∗
1 d1

0

����
���

�

X∗
2

d2
2

��������

d2
0

����
���

� X∗
0

f
�
1 �� Y ∗

1

X∗
1

d1
1

��������

where we have used the universal property of a comma square and a pullback,

respectively.

The 2-dimensional aspect of universality of e is verified analogously, using the 2-

dimensional aspects of universality of comma objects and pullbacks.

Remark 4.2. Lemma 4.1 is the generalisation of the case of classical universal algebra:

congruences form a complete lattice; meet of congruences is the intersection of the

underlying relations; join of congruences is the congruence generated by the union of the

underlying relations.

Indeed: Cong(X ) is as (co)complete as X . Reflectivity states that limits in Cong(X )

are formed on the level of [Δ−
2

op
,X ]; whereas colimits in Cong(X ) are the reflections of

colimits in [Δ−
2

op
,X ].

4.2. Properties of F � U with an effective counit

In Proposition 4.7 below we show that, when the counit of F � U : A −→ X is effective,

then the underlying functor U has nice properties. The properties resemble the properties

of adjunctions of descent type in ordinary category theory. In proving these results we

were much inspired by arguments given by John Duskin in Duskin (1969) for the case of

monadicity over set-like ordinary categories.
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We first prove an easy result on the interaction of U with ff-morphisms, which does

not depend on U having a left-adjoint.

Lemma 4.3. Suppose that A has finite limits and U : A −→ X preserves them. Then U

preserves ff-morphisms. If, moreover, U is conservative (i.e. if U reflects isomorphisms),

then U reflects ff-morphisms.

Proof. It is easy to see that m : X −→ Y is an ff-morphism in A iff the canonical map

c(m) : 1X/1X −→ m/m between the comma objects is an isomorphism. Hence, U preserves

ff-morphisms if U preserves comma objects.

If, moreover, U reflects isomorphisms, then U reflects ff-morphisms, by the same

argument.

For the proof of Proposition 4.7 we will need the following ‘dual’ of ff-morphisms.

Definition 4.4. We say that e : A −→ B is a co-ff-morphism if it is ff in X op, or,

equivalently, if X (e, Z) : X (B,Z) −→ X (A,Z) is order-reflecting, for every Z .

Remark 4.5. A co-ff-morphism is necessarily epi. Co-ff-morphisms are called P -epis

in Bloom and Wright (1983), or absolutely dense in El Bashir and Velebil (2002).

We recall that when we say limit we mean limit in the sense of enriched categories.

Lemma 4.6. Suppose X has finite limits. Then every so-morphism is a co-ff-morphism.

Proof. Let e : A −→ B be an so-morphism. Consider u · e � v · e and form the inserter

i of u and v. Consider the unique mediating map k : A −→ E such that i · k = e. Then the

square

A
e ��

k

��

B

1B
��

E
i

�� B

commutes. Since i is ff by its universal property, we can infer that i is a split epi, hence

an isomorphism. Thus, u � v and we proved that e is a co-ff-morphism.

Proposition 4.7. Suppose F � U : A −→ X is an adjunction, such that every component

εA of the counit is effective. Then, the following hold:

1. U is locally order-reflecting. That is, the monotone action UA′ ,A : A (A′, A) −→
X (UA′, UA) of the functor U is order-reflecting, for every A′, A.

2. U preserves and reflects congruences.

3. U preserves and reflects limits.

4. The comparison functor K : A −→ X T is fully faithful.

5. If, moreover, A is regular, then U reflects effective morphisms.

Proof.

1. Every effective morphism is a co-ff-morphism (use couniversal property of coinserters

for that).
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Hence, every εA is a co-ff-morphism. Since the diagram

A (A′, A)
UA′ ,A

�� Pos(UA′, UA) ∼=
�� A (FUA′, A)

������
A (εA′ ,A)

commutes, the proof is finished.

2. Since U is a right adjoint, it preserves congruences. Indeed: suppose

A2

d2
2 ��

d2
1

��

d2
0

��
A1

d1
1 ��

d1
0

��
A0d0

0
��

is a congruence in A .

Since U preserves (finite) limits, it preserves category objects. Thus

UA2

Ud2
2 ��

Ud2
1

��

Ud2
0

��
UA1

Ud1
1 ��

Ud1
0

��
UA0Ud0

0
��

is a category object in X .

By the same argument U〈d1
0, d

1
1〉 ∼= 〈Ud1

0, Ud1
1〉. Since U preserves ff-morphisms (being

a right adjoint, see Lemma 4.3), we proved that 〈Ud1
0, Ud1

1〉 is an ff-morphism.

Since being a two-sided discrete fibration is a representable notion, see Remark 3.7,

the isomorphisms

X (X, 〈Ud1
0, Ud1

1〉) ∼= X (X,U〈d1
0, d

1
1〉) ∼= X (FX, 〈d1

0, d
1
1〉)

prove that the span (X (X,Ud1
0)X (X,UA1),X (X,Ud1

1)) is a two-sided discrete fibra-

tion, for any X. Hence, the span (Ud1
0, UA1, Ud1

1) is a two-sided discrete fibration.

For the reflection of congruences, consider a coherence datum D : Δ−
2

op −→ A such

that the composite UD : Δ−
2

op −→ X is a congruence. To prove that D is a congruence,

we need to prove that the composite A (A,D) : Δ−
2

op −→ Pos is a congruence, for

every A. Observe that every A (FX,D) is a congruence, since A (FX,D) ∼= X (X,UD)

holds.

Thus it suffices to present A (A,D) as a limit of congruences in Pos and then use

Lemma 4.1.

Since εA is assumed to be effective, there is a a coinserter of the form

FUA εA
��









A1

d1
1 ��������

d1
0

�����
��� A

FUA
εA

��������
↑

We claim that the pasting

FUA εA
��









FUA1

εA1 �� A1

d1
1 ��������

d1
0

�����
��� A

FUA
εA

��������
↑
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is a coinserter diagram. That is easy: εA1
is a co-ff-morphism, hence coinserter ‘cocones’

for d1
0, d

1
1 coincide with coinserter ‘cocones’ for d1

0 · εA1
, d1

1 · εA1
.

Therefore, we have an inserter diagram

A (FUA,D)
A (d1

1εA1
,D)

����
���

���
��

A (A,D)

A (εA,D)
�����������

A (εA,D) ����
���

���
� A (FUA1,D)

A (FUA,D)
A (d1

0εA1
,D)

��











↑

in [Δ−
2

op
,Pos]. But both A (FUA1,D) and A (FUA,D) are congruences. By Lemma 4.1,

A (A,D) is a congruence.

3. U preserves limits since it is a right adjoint.

For reflecting limits, consider a diagram D : D −→ A and a weight W : D −→ Pos.

Suppose γ : W −→ A (A,D−) is a cylinder such that the composite

γ ≡ W
γ

�� A (A,D−)
UA,D−

�� X (UA,UD−)

is a limit cylinder in X . This means that the monotone map

ϕX : X (X,UA) −→ [D ,Pos](W,X (X,UD−)), f 
→ X (f,−) · γ

is an isomorphism, natural in X.

We need to prove that the monotone map

ϕA′ : A (A′, A) −→ [D ,Pos](W,A (A′, D−)), f 
→ A (f,−) · γ

is an isomorphism, naturally in A′.

We will use a similar trick to (2) above. For observe that ϕFX is an isomorphism for

every X: this follows from the commutative square

A (FX,A)
ϕFX ��

∼=
��

[D ,Pos](W,A (FX,D−))

∼=
��

X (X,UA)
ϕX

�� [D ,Pos](W,X (X,UD−))

where the vertical maps are given by the adjunction bijections.

Expressing εA′ as a coinserter

FUA′
εA′

��








FUA′
1

d1
1 ��������

d1
0

�����
��� A′

FUA′ εA′

��������
↑
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in the same way as in (2) above, we see that both

A (FUA′, A)
A (d1

1 ,A)

����
���

���
��

A (A′, A)

A (εA′ ,A)
�����������

A (εA′ ,A) ����
���

���
� A (FUA′

1, A)

A (FUA′, A)
A (d1

0 ,A)

��











↑

and

[D ,Pos](W,A (FUA′, D−)

[D ,Pos](W,A (d1
1 ,D−))

����
��

�����
���

[D ,Pos](W,A (A′, D−)

[D ,Pos](W,A (εA′ ,D−))������

��������

[D ,Pos](W,A (εA′ ,D−))
����

��

�����
���

[D ,Pos](W,A (FUA′
1, D−)

[D ,Pos](W,A (FUA′, D−)

[D ,Pos](W,A (d1
0 ,D−))������

��������

↑

are inserters of isomorphic diagrams. Thus ϕA is an isomorphism by the essential

uniqueness of inserters.

4. Since U = UT · K , the functor K is order-reflecting. In particular, K is faithful.

We prove that the functor K is full. To that end, consider f : KA −→ KB. Thus

suppose the square

UFUA
UFf

��

UεA

��

UFUB

UεB

��

UA
f

�� UB

commutes.

Since εA : FUA −→ A is effective, there is a coinserter

FUA εA

�����
���

↑A1

d1
1 ��������

d1
0

�����
��� A

FUA εA

��������

To prove that

FUA εB ·Ff
�����

���
↑A1

d1
1 ��������

d1
0

�����
��� B

FUA εB ·Ff

��������
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consider first the pasting

UFUA

UεA

		�
��

��
��

��
��

UFf
��

↑

UFUB

UεB

���
��

��
��

��
�

UA1

Ud1
1

������������

Ud1
0

���
��

��
��

��
� UA

f
�� UB

UFUA

UεA

�������������

UFf
�� UFUB

UεB

������������

and then use that U is locally order-reflecting.

By the universal property of coinserters there is a unique h : A −→ B such that the

square

FUA
Ff

��

εA

��

FUB

εB

��

A
h

�� B

commutes. Therefore, Uh · UεA = f · UεA holds (both are equal to UεB · UFf). Since

UεA is epi, Uh = f follows. Hence, K is full.

5. To prove the last assertion, suppose e : A −→ B is such that Ue is effective in X .

Then FUe is effective. Thus in the naturality square

FUA
FUe ��

εA

��

FUB

εB

��

A
e

�� B

the passage first-right-then-down is an so-morphism (use that every effective morphism

is an so-morphism in A ). Therefore, e is an so-morphism, hence effective.

The proof is finished.

4.3. Regularity of X T

If an ordinary monad T on an ordinary category X preserves regular epis, then the

category X T of algebras for the monad T is regular, see Barr et al. (1971). This result

extends to the ordered setting. The proof, following the same lines as Barr et al. (1971), is

presented below.

Example 4.8 (Bloom and Wright (1983), Section 8, Example 5). Consider the adjunction

− • 2 � [2,−] : Pos −→ Pos. The resulting monad T = (T , η, μ) on Pos does not preserve

the so-morphism e : 2 −→ 2.

We will need the following technical notion.
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Definition 4.9 (Kurz and Velebil 2013). Suppose U : A −→ X is any functor. We say

that f : A −→ B is U-final if the following commutative diagram

A (B,B′)
A (f,B′)

��

UB,B′

��

A (A,B′)

UA,B′

��

X (UB,UB′)
X (Uf,UB′)

�� X (UA,UB′)

is a pullback, for every B′.

Remark 4.10. Thus, as expected, U-finality has two aspects:

1. For every g : UB −→ UB′, if g · Uf is of the form Uh, then there is a unique

g′ : B −→ B′ such that Ug′ = g.

2. If g1 � g2 : UB −→ UB′ and if g1 · Uf � g2 · Uf has the form Uh1 � Uh2, then

g′
1 � g′

2.

Lemma 4.11. Suppose X has finite limits and T is a monad on X that preserves so-

morphisms. If UTe : A −→ B is an so-morphism in X , then e : (A, a) −→ (B, b) is

UT-final.

Proof. Consider f : B −→ UT(C, c), such that the diagram

TA
Te ��

a

��

TB
Tf

��

b

��

TC

c

��

A
e

�� B
f

�� C

commutes. The morphism Te : TA −→ TB is so, hence epi by Lemma 4.6. Thus

f : (B, b) −→ (C, c) is a T-algebra morphism.

The 2-dimensional aspect of finality follows analogously, using the fact that Te is a

co-ff-morphism by Lemma 4.6.

Proposition 4.12. Suppose X has finite limits and let T be a monad that preserves so-

morphisms. Then UT : X T −→ X reflects so-morphisms. If X has (so,ff)-factorisations,

UT preserves so-morphisms.

Proof. Suppose e : (A, a) −→ (B, b) is a T-algebra morphism such that UTe = e : A −→
B is an so-morphism. Consider a commutative square

(A, a)
e ��

u

��

(B, b)

v

��

(X, x)
m

�� (Y , y)
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with m an ff-morphism in X T . Since UT preserves and reflects ff-morphisms by Lemma 4.3,

the square

A
e ��

u

��

B

v

��

X
m

�� Y

has a unique diagonal fill-in d : B −→ X that is a T-algebra morphism by UT-finality.

This proves that UT reflects so-morphisms.

The preservation: consider an so-morphism e : (A, a) −→ (B, b). Form the (so,ff)-

factorisation m · e′ of UTe. Then the diagram

TA
Te′

��

a

��

TA′
Tm

��

a′

��

TB

b

��

������
Te

A
e′

�� A′ m �� B�����	
e

commutes and there is a diagonal fill-in a′ : TA′ −→ A′ as indicated, since Te′ is an

so-morphism. The pair (A′, a′) is a T-algebra, since m is a monomorphism. Thus we have

e = m · e′ in X T . But e is so and m is ff (by Lemma 4.3). Therefore, m is an isomorphism

and we have proved that e = e′. Thus UT reflects so-morphisms.

Corollary 4.13. Suppose that X has finite limits and (so,ff)-factorisations. Suppose further

that T is any monad on X . Then the following are equivalent:

1. T preserves so-morphisms.

2. UT preserves so-morphisms.

Proof. By Proposition 4.12 it suffices to prove that (2) implies (1). Suppose that e :

A −→ B is an so-morphism. We prove that Te : (TA, μA) −→ (TB, μB) is an so-morphism

in X T . To that end, consider the square

(TA, μA)
Te ��

u

��

(TB, μB)

v

��

(X, x)
m

�� (Y , y)

with m an ff-morphism in X T .
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Then the square

A
e ��

ηA

��

B

ηB

��

d

��

TA

u

��

TB

v

��

X
m

�� Y

commutes in X and the transpose d� : (TB, μB) −→ (X, x) under FT � UT of the

unique diagonal d proves the 1-dimensional aspect of Te being an so-morphism. The

2-dimensional aspect is proved analogously.

Since Te : (TA, μB) −→ (TB, μB) is an so-morphism in X T , so is UTTe = Te :

TA −→ TB.

Corollary 4.14. Suppose X is regular and T is a monad preserving so-morphisms. Then

X T is regular.

Proof. X T has finite limits since X has them and UT creates limits. Proposition 4.12

and Lemma 4.3 prove that (so,ff)-factorisations exist in X T . Moreover, so-morphisms

in X T are pullback stable, since UT preserves pullbacks, and preserves and reflects

so-morphisms.

It remains to be proved that so-morphisms of X T are exactly the quotients of

congruences in X T . By Lemma 3.17 it suffices to prove that every so-morphism in

X T is effective.

Consider an so-morphism e : (A, a) −→ (B, b) and form its kernel congruence ker(e). By

Proposition 4.7 UT ker(e) is a congruence and it is easy to see that UT ker(e) = ker(UTe).

Hence, UTe is a quotient of UT ker(e), since X is regular. Now use UT-finality of

e : (A, a) −→ (B, b) to conclude that e is a quotient of ker(e).

5. Quasivarieties and varieties

In this section, we prove our main results (Theorems 5.9 and 5.13 below) that characterise

varieties and quasivarieties of ordered algebras for signatures in the sense of Bloom and

Wright (1983).

We start with precise definitions of signatures and their algebras.

Definition 5.1. Let λ be a regular cardinal. Denote by |Setλ| the discrete category having

sets of cardinality less than λ as objects. A λ-ary signature Σ is a functor Σ : |Setλ| −→ Pos.

Thus, a signature is a collection (Σn)n of posets, indexed by sets of cardinalities smaller

than λ. The elements of the poset Σn are called n-ary operations .

Definition 5.2. Given a λ-ary signature Σ, we denote by HΣ : Pos −→ Pos the corres-

ponding polynomial functor , defined by

HΣX =
∐
n

Xn • Σn
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where the coproduct ranges over sets of cardinality less than λ. A category Alg(HΣ) of

Σ-algebras and their homomorphisms is the category of algebras for the functor HΣ and

algebra homomorphisms.

In more detail, a Σ-algebra is a morphism a : HΣX −→ X in Pos. Due to the definition

of HΣ, to give a amounts to giving a collection an : Xn • Σn −→ X of monotone maps,

indexed by sets n of cardinality less than λ. Each an yields, due to the definition of a

coproduct, a monotone mapping [[−]]Xn : Σn −→ Pos(Xn,X). Thus it is convenient to

think of a Σ-algebra as of a pair (X, [[−]]Xn ) consisting of a poset X and monotone maps

[[σ]]Xn : Xn −→ X for every σ in Σn. If σ � τ in Σn, then there is an inequality [[σ]]n � [[τ]]n
in the poset Pos(Xn,X). When there is no confusion likely, we will omit the indices n and

X in [[−]]Xn .

A homomorphism of algebras is a monotone map h making the square

HΣX
HΣh ��

a

��

HΣY

b

��

X
h

�� Y

commutative. By reasoning similar to the above, a monotone map h : X −→ Y is a

homomorphism iff the equality

h([[σ]]Xn (xi)) = [[σ]]Yn (hxi)

holds for all n and all n-tuples (xi) of elements of X.

Definition 5.3. Suppose that Σ is a λ-ary signature. We say that

1. A is a λ-ary quasivariety if A is equivalent to a full subcategory of Alg(HΣ), defined

by implications of the form∧
i∈I

(s′
i(xij) � si(xij)) ⇒ t′(xk) � t(xk)

where the cardinality of I is smaller than λ.

2. A is a λ-ary variety if A is equivalent to a full subcategory of Alg(HΣ), defined by

inequalities of the form

t′(xk) � t(xk)

Remark 5.4. Since we are dealing with λ-ary signatures, one expects that λ-filtered colimits

will play a prominent rôle. This is indeed the case: we only stress that all the notions

concerning λ-filtered colimits are those that are appropriate for category theory enriched

in posets.

We briefly recall the basic notions of the theory of λ-filtered colimits (and specialise

them for the enrichment in posets). For details, see Max Kelly’s paper (Kelly 1982). Notice
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that the phrasing and results are the same as in the case of ordinary categories, see Gabriel

and Ulmer (1971) or Adámek and Rosický (1994).

1. By a λ-filtered colimit in X we mean a conical colimit of an ordinary functor

D : D −→ Xo, where D is a λ-filtered ordinary category and Xo denotes the

underlying ordinary category of X .

Here, by a conical colimit of D : D −→ Xo we understand a colimit weighted by the

functor that is constantly the one-element poset.

2. A functor F : A −→ B is called λ-accessible if A has λ-filtered colimits and F

preserves them.

3. An object X is called λ-presentable if the hom-functor X (X,−) : X −→ Pos is

λ-accessible.

4. A category X is called locally λ-presentable if X is cocomplete and there is a small

full dense subcategory E : Xλ −→ X representing all λ-presentable objects of X .

As examples of locally λ-presentable categories serve: the category Pos, every category

of the form [A ,Pos] where A is small, every category of the form X T where X is

locally λ-presentable and T is a λ-accessible monad (i.e. one, whose underlying functor T

is λ-accessible). See Kelly (1982) and Bird (1984).

Every (quasi)variety A is equipped by a functor U : A −→ Pos that arises as the

composite of the fully faithful functor K : A −→ PosHΣ and the λ-accessible monadic

functor UΣ : PosHΣ −→ Pos.

Lemma 5.5. Let A be a λ-ary quasivariety. Then A has λ-filtered colimits and the full

inclusion K : A −→ PosHΣ preserves them.

Proof. It suffices to prove that if (C, [[−]]) is a conical λ-filtered colimit of Σ-algebras

(Dd, [[−]]d) satisfying an implication∧
i∈I

(s′
i(xij) � si(xij)) ⇒ t′(xk) � t(xk),

then (C, [[−]]) satisfies this implication. Suppose therefore that [[(s′
i(xij)]] � [[si(xij)]] holds

in (C, [[−]]), for all i. Since the diagram of (Dd, [[−]]d)’s is λ-filtered and since Σ is

a λ-ary signature, there is d0 such that [[(s′
i(xij)]]

d0 � [[si(xij)]]
d0 holds in (Dd0, [[−]]d0 ).

Therefore, t′(xk) � t(xk) holds in (Dd0, [[−]]d0 ). Using monotonicity of the colimit injections,

t′(xk) � t(xk) holds in (C, [[−]]).

Thus, we can work with λ-ary (quasi)varieties as categories equipped with a λ-accessible

functor into Pos. Using this observation, we can reformulate the main result of Bloom

and Wright (1983) as follows:

Theorem 5.6 (The main theorem of Bloom and Wright (1983)). Suppose U : A −→ Pos

is a λ-accessible functor. Then U exhibits A as a λ-ary quasivariety iff the following

conditions:

(Q1) A has coinserters.

(Q2) The action of U on hom-posets is order reflecting.

(Q3) U has a left adjoint F .
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(Q4) U preserves and reflects effective morphisms.

(Q5) U reflects isomorphisms.

are satisfied.

The functor U exhibits A as a variety for a bounded signature iff, in addition, the

condition

(V) U reflects effective congruences.

holds.

Definition 5.7. An object P of a cocomplete category A is called a λ-algebraic generator ,

if it satisfies the following three properties:

1. Tensors X • P exist for every poset X.

2. P is a λ-presentable object in A .

3. P is projective w.r.t. so-morphisms.

4. P is an so-generator, i.e. the canonical εA : A (P , A) • P −→ A is an so-morphism.

Example 5.8. In any λ-ary quasivariety the free algebra on one generator is a λ-algebraic

generator. For example, the one-element set 1 is a free algebra on one generator in the

finitary quasivariety Set. Thus 1 is a finitary algebraic generator in Set. For a poset X,

the tensor X • 1 is the discrete poset of the connected components of X.

Our first intrinsic characterisation concerns varieties of ordered algebras. Compare the

phrasing with Corollary 5.13 of Duskin (1969) and Proposition 3.2 of Vitale (1994).

Theorem 5.9 (Intrinsic characterisation of λ-ary varieties). For A , the following are

equivalent:

1. There is a λ-accessible functor U : A −→ Pos, exhibiting (A , U) as a λ-ary variety.

2. A is exact and there is an equivalence A � PosT , for a λ-accessible monad T on Pos.

3. A is exact, has coinserters, and possesses a λ-algebraic generator.

Proof.

1. implies 2. By Bloom and Wright (1983, Section 6, Lemma 4), U : A −→ Pos is a

λ-accessible monadic functor. Hence, A � PosT for the λ-accessible monad T given

by U. Since U preserves so-morphisms, the category A is regular by Corollary 4.14.

Since U reflects effective congruences, A is exact.

2. implies 3. Assume A = PosT . Then A is a locally λ-presentable category by Bird

(1984, Theorem 6.9). Thus A has coinserters.

To conclude the proof, put P to be the free algebra F1 on the one-element poset. We

prove that P is a λ-algebraic generator.

a. The tensor X • P is isomorphic to FX.

b. The functor UT ∼= A (P ,−) is λ-accessible, hence P is λ-presentable.

c. Since UT ∼= A (P ,−) holds, A (P ,−) preserves so-morphisms by Corollary 4.13.

This means precisely that P is so-projective.

d. We only need to show that the counit εA of F � U is an so-morphism. But this is

trivial: UεA is a split epimorphism, hence an so-morphism in Pos. The monadic
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functor UT : PosT −→ Pos reflects so-morphisms, since T preserves so-morphisms

by Proposition 4.12.

3. implies 1. Let P denote the λ-algebraic generator. Define U = A (P ,−). Then U is

λ-accessible, since P is λ-presentable. We verify conditions (Q1)–(Q5) and (V) for the

pair (A , U).

(Q1) A has coinserters.

Trivial.

(Q3) U has a left adjoint.

Easy: F ∼= − • P .

(Q2) U is locally order-reflecting.

Since P is an so-generator, the counit εA of F � U is an so-morphism. Since A has

finite limits (being exact), every so-morphism is a co-ff-morphism, see Lemma 4.6.

Thus every A (εA′ , A) ∼= UA′ ,A is order-reflecting.

(Q4) U preserves and reflects effective morphisms.

Every effective morphism in A is an so-morphism. But U preserves so-morphisms,

since P is so-projective. And every so-morphism in Pos is effective.

U reflects effective morphisms by Proposition 4.7.

(Q5) U reflects isomorphisms.

Suppose f : A −→ B is such that Uf is an isomorphism. Since εA : FUA −→ A and

εB : FUB −→ B are so-morphisms, the naturality square

FUA
FUf

��

εA

��

FUB

εB

��

A
f

�� B

tells us that f is an so-morphism.

We prove that f is an ff-morphism. To that end, consider an inequality f · u � f · u.
Since Uf is an isomorphism, Uu � Uv holds. And u � v holds by (Q2).

(V) U reflects effective congruences.

Use Proposition 4.7 and the fact that A is exact.

Next we give a fundamental example of a category which is a quasivariety but not a

variety.

Example 5.10 (The category Set is not a variety of ordered algebras). Recall that from

Example 1 the finitary monadic discrete-poset functor U : Set −→ Pos. Hence, Set � PosT

for a finitary monad T. By Example 3.21, the category Set is not exact (in the enriched

sense). Hence, Set is not equivalent to any variety of ordered algebras by Theorem 5.9.

Of course, Set is a quasivariety of ordered algebras, see Example 1.

Remark 5.11. The equivalence of conditions of Theorem 5.9 can be easily extended to

the ‘many-sorted’ case. More in detail: for a category A , the following conditions are

equivalent:
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1. A is an S-sorted variety of ordered Σ-algebras for some set S and some λ-ary signature

Σ of S-sorted operations.

2. A is exact and there is an equivalence A � [S,Pos]T , for a λ-accessible monad T on

[S,Pos], where S is a set, considered as a discrete category.

3. A is exact, has coinserters, and there is a set S and a functor P : Sop −→ A such

that:

a. Colimits X ∗P exist for every functor X : S −→ Pos.

b. P is a λ-presentable object in [S,Pos].

c. P is projective w.r.t. so-morphisms in [S,Pos].

d. P is an so-generator, i.e. the canonical εA : A (P−, A) ∗P −→ A is an so-morphism.

Above, by a many-sorted variety we mean the following: given a fixed set S of sorts, we

define an S-sorted λ-ary signature Σ to consist of operation symbols σ : (si | i < λ) −→ s.

An S-sorted algebra for Σ consists of an object X = (Xs | s ∈ S) of [S,Pos] together with

a monotone map [[σ]]X :
∏

i<λ Xsi −→ Xs for every operation symbol σ : (si | i < λ) −→ s

in Σ. Homomorphisms between Σ-algebras are defined in the expected way: they are

the morphisms (fs | s ∈ S) : (Xs | s ∈ S) −→ (Ys | s ∈ S) in [S,Pos] that preserve the

operations specified by Σ. The description of the resulting category Alg(HΣ) of algebras

and homomorphisms by means of the corresponding polynomial functor HΣ : [S,Pos] −→
[S,Pos] in the manner of Definition 5.2 can be made. We refer to Kelly and Power (1993)

for details.

Given an S-sorted signature Σ, an S-sorted variety consists of algebras satisfying

inequalities of the form

t′(xk) � t(xk)

where t′ and t are S-sorted terms of the same sort.

Example 5.10 exhibited a finitary monad T on the category Pos such that PosT is not

a variety of ordered algebras. Next example shows that a category of the form PosT , T a

finitary monad, need not even be a quasivariety of ordered algebras (on the other hand

there are also quasivarieties that are not monadic).

Example 5.12 (Category of the form PosT that is not a quasivariety). Let T be the monad

of the adjunction F � U : Pos −→ Pos with UX = [2, X] and FX = X • 2. The

adjunction F � U is not monadic, since 2 is not projective w.r.t. so-morphisms. This result

is in contrast with the case of ordinary categories. See, e.g. Métayer (2004) for discussion

of monadicity of functors of the form [S,−] : C −→ C in regular ordinary cartesian

closed categories C .

Moreover, the monad T of F � U does not preserve so-morphisms, see Example 4.8.

Therefore, the category PosT is not a quasivariety by Bloom and Wright (1983, Section 7,

Proposition 2).

The difference between quasivarieties and varieties of ordered algebras is essentially the

difference between regularity and exactness, as the next result shows.

https://doi.org/10.1017/S096012951500050X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500050X


Quasivarieties and varieties of ordered algebras 1187

Theorem 5.13 (Intrinsic characterisation of quasivarieties). For A , the following are

equivalent:

1. There is a λ-accessible functor U : A −→ Pos such that (A , U) is a λ-ary quasivariety.

2. A is regular, has coinserters, and possesses a λ-algebraic generator.

Proof. (1) implies (2). By assumption, there is an adjunction F � U. Define P as F1.

Then U is necessarily isomorphic to A (P ,−) and F is isomorphic to − • P .

We need to prove that A is regular. Observe first that the counit εA of F � U is

effective. This follows from the fact that UεA is effective in Pos (being a split epi) and

U is assumed to reflect effective morphisms. Hence, Proposition 4.7(4) can be applied:

the comparison functor K : A −→ PosT is fully faithful. Moreover, PosT is a regular

category by Corollary 4.14 and it is a quasivariety by Bloom and Wright (1983, Section 7,

Proposition 2).

(R1)A has finite limits.

This follows from (Bloom and Wright 1983, Section 4, Corollary 1).

(R2)A has (so,ff)-factorisations.

First of all, U preserves and reflects ff-morphisms by Lemma 4.3. Moreover, A clearly

has (effective,ff)-factorisations. Furthermore, K preserves effective morphisms, since

U preserves them and UT reflects them (since PosT is a quasivariety).

Therefore, K preserves (effective, ff)-factorisations, these being (so,ff)-factorisations

in the quasivariety PosT . Since K is fully faithful, K reflects so-morphisms and

therefore A has (so,ff)-factorisations.

(R3)so-morphisms are stable under pullbacks.

This follows from the fact that K is fully faithful, preserves limits, and PosT is

regular.

(R4)so-morphisms coincide with the effective morphisms.

This follows from the above.

We proved that A is regular. We prove now that P is a λ-algebraic generator.

a. Tensors X • P exist for every poset X.

This is clear: X • P ∼= FX.

b. P is a λ-presentable object.

Clear: U = A (P ,−) is λ-accessible.

c. P is projective w.r.t. so-morphisms.

Clear: U = A (P ,−) is assumed to preserve so-morphisms.

d. P is an so-generator, i.e. the canonical εA : A (P , A) • P −→ A is an so-morphism.

This was proved already.

(2) implies (1). Let P denote the λ-algebraic generator of A . Define U = A (P ,−). Then

U is λ-accessible and Conditions (Q1)–(Q5) for (A , U) are verified in the same way as in

the proof of Theorem 5.9.

Remark 5.14. Theorems 5.9 and 5.13 above were stated for an abstract category A .

Similar results can be stated for a pair (A , U) consisting of a category A and a functor

U : A −→ Pos, since the properties of the algebraic generator P from the above
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statements reflect the properties of U. More precisely, the algebraic generator P is the

representing object of U.

6. Finitary varieties and strongly finitary monads

In case when the signature Σ is finitary , i.e. when Σ : |Setfp| −→ Pos, one can give yet

other characterisations of varieties of Σ-algebras.

1. The first characterisation involves the notion of strongly finitary functors introduced

by Max Kelly and Steve Lack in Kelly and Lack (1993).

We prove in Theorem 6.9 below that finitary varieties over Pos are precisely the

strongly finitary monadic categories over Pos.

2. The notion of strongly finitary functors is closely related to a certain class of weighted

colimits, called sifted , see e.g. Bourke (2010).

We prove in Theorem 6.12 that finitary varieties are precisely free cocompletions of

their theories under sifted colimits.

Definition 6.1 (Kelly and Lack 1993). A functor H : Pos −→ Pos is strongly finitary if it

is a left Kan extension of its restriction along the discrete-poset functor D : Setfp −→ Pos,

where Setfp is the category of finite sets with discrete order on hom-sets.

A monad T on Pos is strongly finitary if its functor is strongly finitary.

Remark 6.2. By definition, a functor H : Pos −→ Pos is strongly finitary iff it has a coend

expansion

HX =

∫ n:Setfp

Pos(Dn,X) • Hn

for every poset X.

Since every Dn is a finitely presentable object in Pos, every strongly finitary functor H

is a fortiori finitary.

Lemma 6.3. Every strongly finitary functor H : Pos −→ Pos preserves so-morphisms.

Proof. Consider an so-morphism e : A −→ B. Then He : HA −→ HB has a coend

expansion∫ n:Setfp

Pos(Dn, e) • Hn :

∫ n:Setfp

Pos(Dn, A) • Hn −→
∫ n:Setfp

Pos(Dn, B) • Hn

Since every Pos(Dn, e) : Pos(Dn, A) −→ Pos(Dn, B) is surjective, so is every

Pos(Dn, e) • Hm : Pos(Dn, A) • Hm −→ Pos(Dn, B) • Hm

Thus He is surjective as a colimit of surjections.

Example 6.4. None of the implications strongly finitary ⇒ finitary and so-preserving ⇒
finitary can be reversed.

1. The functor T : X 
→ [2, X • 2] is finitary but it does not preserve so-morphisms. This

follows from Example 4.8.
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2. Consider the connected-component functor π0 : Pos −→ Pos. It preserves so-

morphisms and it is finitary. The functor π0 is, however, not strongly finitary. Suppose

it were, then

π0(X) =

∫ n:Setfp

Pos(Dn,X) • π0n =

∫ n:Setfp

Pos(Dn,X) • n = X

would hold for every poset X: use that π0n = n for every discrete poset and, for the

last equality, use that the inclusion D : Setfp −→ Pos is dense. But π0(2) = 1 �∼= 2.

Incidentally, both T and π0 have the structure of a monad: for T , consider the adjunction

− • 2 � [2,−], and for π0, consider the (monadic) adjunction C � U : Set −→ Pos, where

U is the discrete-poset functor and C assigns the set of components to a poset.

It can be proved that D : Setfp −→ Pos exhibits Pos as a free cocompletion of Setfp
w.r.t. a certain class of colimits that include filtered colimits and an enriched analogue

of reflexive coequalizers, namely quotients of reflexive coherence data (see below). This

follows by a modification of arguments given in Bourke (2010, Section 8.4).

Definition 6.5 (Bourke 2010). Denote by Δ2 the full simplicial category truncated at stage

two. That is, Δ2 is given by the graph

Δ2 ≡ 1

δ1
1 ��

δ1
0

��
2

δ2
0 ��

δ2
1

��

δ2
2

��

ι00
�� 3

ι10
��

ι11
��

subject to simplicial equalities. See, e.g. Mac Lane (1971).

A reflexive coherence datum in X is a diagram R : Δ2
op −→ X . A quotient of a reflexive

coherence datum R : Δ2
op −→ X is a colimit J ∗R, where J : Δ2 −→ Pos denotes the full

inclusion.

Remark 6.6. The category Δ−
2 introduced in Notation 3.10 is a subcategory of Δ2. Hence,

every reflexive coherence datum is a coherence datum (Definition 3.11).

Filtered colimits and quotients of reflexive coherence data form a density presentation

in the sense of Kelly (2005) of the fully faithful dense functor D : Setfp −→ Pos.

The saturation (the closure, in the terminology of Albert and Kelly (1988)) of the class

of filtered colimits and quotients of reflexive coherence data is the class of weights, called

sifted . This is in analogy to the case of ordinary sifted colimits introduced by Lair (1996).

More in detail: a weight W : Dop −→ Pos is called sifted , if the n-fold product functor

Πn : [n,Pos] −→ Pos preserves W -colimits, for every finite discrete poset n.

Example 6.7. Every filtered colimit and every quotient of a reflexive coherence datum is

an example of a sifted colimit. Every reflexive coequaliser is a sifted colimit.

Using various types of sifted colimits, we can give a characterisation of functors

preserving sifted colimits. We formulate the result for functors preserving finite limits

between exact categories, since this is how we will need it.
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Proposition 6.8. Suppose H : K −→ L preserves finite limits and suppose K and L

are cocomplete exact categories. Then the following are equivalent:

1. H preserves sifted colimits.

2. H preserves filtered colimits and quotients of reflexive coherence data.

3. H preserves filtered colimits and quotients of congruences.

Proof. Clearly, (1) is equivalent to (2). That (2) implies (3) follows from the fact that

every congruence is a reflexive coherence datum. For (3) implies (2) it suffices to prove

that H preserves quotients of reflexive coherence data. Consider a reflexive coherence

datum

D ≡ X2

d2
2 ��

d2
1

��

d2
0

��

X1

d1
1 ��

d1
0

��i11
��

i10
��

X0i00
��

and observe that, for the quotient q : X0 −→ X of D, the congruence ker(q) has the same

cocones as D.

We can now formulate the first characterisation of finitary varieties.

Theorem 6.9. For a category A , the following conditions are equivalent:

1. A is equivalent to a variety of algebras for a finitary signature.

2. A is equivalent to PosT for a strongly finitary monad T on Pos.

Proof. (1) implies (2). By Theorem 5.9 we know that A is an exact category and that

A is equivalent to PosT for a finitary monad T on Pos. Moreover, the monad T is given

by the adjunction − • P � A (P ,−), where P is a free algebra on 1.

To prove that the monad T is strongly finitary, by Proposition 6.8 it therefore suffices

to prove that its functor X 
→ A (P ,X • P ) preserves quotients of congruences in Pos.

The left adjoint X 
→ X • P preserves all colimits. And A (P ,−) does preserve quotients

of congruences, since A is a variety.

(2) implies (1). We only need to prove that PosT is an exact category. Since T preserves

so-morphisms by Lemma 6.3, the category PosT is regular by Corollary 4.14. Thus it

remains to be proved that congruences are effective in PosT . To that end, consider a

congruence

∼ ≡ (X2, a2)

d2
2 ��

d2
1

��

d2
0

��
(X1, a1)

d1
1 ��

d1
0

��
(X0, a0)i00

��

in PosT . Then there is f : X0 −→ X in Pos such that UT(∼) = ker(f). Since T preserves

quotients of congruences, we can form

TUT(∼) ≡ TX2

Td2
2 ��

Td2
1
��

Td2
0

��
TX1

Td1
1 ��

Td1
0

��
TX0Ti00

��
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having Tf : TX0 −→ TX as its quotient. Define a : TX −→ X as the unique mediating

map:

TX2

Td2
2 ��

Td2
1
��

Td2
0

��

a2

��

TX1

Td1
1 ��

Td1
0

��

a1

��

TX0Ti00
��

Tf
��

a0

��

TX

a

��

X2

d2
2 ��

d2
1

��

d2
0

��
X1

d1
1 ��

d1
0

��
X0i00

��
f

�� X

It is then easy to see that (X, a) is a T-algebra and f is a T-algebra homomorphism.

Moreover, ∼ = ker(f) in PosT .

We prove now that finitary varieties of ordered algebras are free cocompletions of

certain small categories under sifted colimits.

Definition 6.10. Suppose T = (T , η, μ) is a strongly finitary monad on Pos. By Th(T) we

denote the full subcategory of PosT spanned by free T-algebras on objects of Setfp. The

category Th(T) is called the theory of T.

Remark 6.11. The duals of categories of the form Th(T) are discrete (finitary) Lawvere

theories in the sense of Hyland and Power (2006).

The following result states that the category of algebras for T is the free cocompletion

of Th(T) under sifted colimits. This is the enriched analogue of the classical result. See,

e.g. Theorem 4.13 of Adámek et al. (2011).

Theorem 6.12. Let T = (T , η, μ) be a strongly finitary monad on Pos. Then the embedding

E : Th(T) −→ PosT exhibits PosT as a free cocompletion of Th(T) under sifted colimits.

Proof. We will use Proposition 4.2 of Kelly and Schmitt (2005). Since E is fully faithful

and PosT cocomplete, we only need to prove that PosT is the closure of Th(T) under sifted

colimits and that every functor PosT((Tn, μn),−) : PosT −→ Pos, where n is discrete and

finite poset, preserves sifted colimits.

1. We prove that every T-algebra is an iterated sifted colimit of T-algebras free on discrete

posets. This is done in three steps:

a. Using quotients of truncated nerves that are reflexive coherence data, one can

exhibit every algebra free on a finite poset.

More in detail: given a finite poset P , exhibit it as a quotient q : P0 −→ P of its

truncated nerve

nerve(P ) ≡ P2

d2
2 ��

d2
1

��

d2
0

��
P1

d1
1 ��

d1
0

��
P0i00

��

https://doi.org/10.1017/S096012951500050X Published online by Cambridge University Press

https://doi.org/10.1017/S096012951500050X


A. Kurz and J. Velebil 1192

in an analogous way as it was done for 2 in Example 3.21. Since nerve(P ) can

clearly be augmented to form a reflexive coherence datum, we proved that FTP

arises as a sifted colimit of free algebras on finite discrete posets.

b. Further, using filtered colimits, one can exhibit every algebra free on a poset.

More in detail: suppose X is any poset. Then X can be written as a filtered colimit

of finite posets. Hence, FTX is a filtered (hence, sifted) colimit of algebras of the

form FTP , where P is a finite poset.

c. Finally, using canonical presentations that are reflexive coequalizers, one can exhibit

every T-algebra.

More in detail, given a T-algebra (X, a), consider the diagram

(TTX, μTX)
Ta ��

μX
�� (TX, μX)

a �� (X, a)

that is a reflexive coequaliser in PosT . Hence, (TX, a) is a sifted colimit of free

algebras.

2. The functor PosT((Tn, μn),−) ∼= Pos(n,UT−) = Pos(n,−)·UT , preserves sifted colimits,

since every Pos(n,−) does and UT preserves filtered colimits and quotients of

congruences. Hence, by Proposition 6.8, UT preserves sifted colimits.

This concludes the proof.

7. Conclusions and future work

We gave intrinsic characterisations of categories equivalent to (quasi)varieties of ordered

algebras in the sense of Stephen Bloom and Jesse Wright. Namely, we showed that, for the

notion of an ordered algebra as a poset equipped with monotone operations of discrete

arities, such characterisation theorems are very similar to the classical case of unordered

algebras (Adámek et al. 2011). The only difference to the classical case is the ubiquitous

need for the use of 2-dimensional notions. Hence, one can say that ordered universal

algebra in the sense of Stephen Bloom and Jesse Wright is the ‘poset-version’ of the

classical set-based universal algebra.

We believe that our work is only an opening study in the direction of understanding

ordered universal algebra using categorical methods. In fact, much of the results surveyed

in Adámek et al. (2011) need to be investigated. Let us mention just a few:

1. The rôle of sifted colimits in the enriched sense in the study of generalised varieties,

see Adámek and Rosický (2001) for the classical case. Also, it is not clear how the

non-existence of λ-sifted colimits, λ-uncountable, in the set-based case (see Adámek

et al. (2000)) transfers to the enriched setting.

2. The connection of (quasi)varieties and regular and exact completions of categories

enriched over posets. See, e.g. the paper (Vitale 1994) for the ordinary case.

3. The Morita-type theorems concerning Morita equivalence of ordered theories.

Furthermore, is there a categorical universal algebra of algebras with a basis of monotone

and antitone operations? This could lead to applications of categorical algebra to order-

algebraizable logics in the sense of Raftery (2013).
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Adámek, J. and Rosický, J. (1994). Locally Presentable and Accessible Categories, Cambridge

University Press.
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Adámek, J., Rosický, J. and Vitale, E. (2011). Algebraic Theories , Cambridge Tracts in Mathematics

volume 184, Cambridge University Press, Cambridge.

Albert, M. H. and Kelly, G. M. (1988). The closure of a class of colimits. Journal of Pure and

Applied Algebra 51 1–17.

Barr, M., Grillet, P. A. and van Osdol, D. H. (1971). Exact Categories and Categories of Sheaves ,

LNM volume 236, Springer.

Bird, G. J. (1984). Limits in 2-Categories of Locally-Presented Categories , Ph.D. thesis, The University

of Sydney.

Bloom, S. L. (1976). Varieties of ordered algebras. Journal of Computer and System Sciences 13(2)

200–212.

Bloom, S. L. and Wright, J. B. (1983). P-varieties — A signature independent characterization of

varieties of ordered algebras. Journal of Pure and Applied Algebra 29 13–58.

Bourke, J. (August 2010). Codescent Objects in 2-Dimensional Universal Algebra , Ph.D. thesis,

University of Sydney.

Bourke, J. and Garner, R. (2014). Two-dimensional regularity and exactness. Journal of Pure and

Applied Algebra 218(7) 1346–1371.

Cohn, P. (1981). Universal Algebra , Springer.

Duskin, J. (1969). Variations on Beck’s Tripleability Criterion, LNM volume 106, Springer-Verlag

74–129.

El Bashir, R. and Velebil, J. (2002). Simultaneously reflective and coreflective subcategories of

presheaves. Theory Applications of Categories 10 410–423.
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