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Abstract
We prove that projective spaces of Lorentzian and real stable polynomials are homeomorphic to Euclidean balls.
This solves a conjecture of June Huh and the author. The proof utilises and refines a connection between the
symmetric exclusion process in interacting particle systems and the geometry of polynomials.

Till Danne, min vän

1. Introduction

Over the past two decades there has been a surge of activity in the study of stable, hyperbolic
and Lorentzian polynomials. Spectacular applications in several different areas have been given; see
[1, 2, 7, 14, 18] and the references therein. In this article we are interested in the shapes of spaces of
such polynomials.

The space of Lorentzian polynomials was studied by Huh and the author in [7]; by Gurvits in [12],
who called it the space of strongly log-concave polynomials; and by Anari et al. in [2], who called
it the space of completely log-concave polynomials. This space contains all volume polynomials of
convex bodies and projective varieties, as well as homogeneous stable polynomials with nonnegative
coefficients. The theory of Lorentzian polynomials links discrete and continuous notions of convexity.
Denote by PL𝑑

𝑛 the projective space of all Lorentzian degree d polynomials in the variables 𝑤1, . . . , 𝑤𝑛.
This remarkable space is stratified by the family of all M-convex sets [15] on the discrete simplex. It was
proved in [7] that the space PL𝑑

𝑛 is compact and contractible and conjectured that PL𝑑
𝑛 is homeomorphic

to a closed Euclidean ball. We prove this conjecture here (Theorem 3.4) by utilising and further
developing a powerful connection between the symmetric exclusion process (SEP) and the geometry of
polynomials, which was discovered and studied in [6]. The proof technique also applies to spaces of
real stable polynomials, and we prove that these spaces are homeomorphic to closed Euclidean balls.

It was proved in [6] and [7] that SEP preserves the classes of multiaffine stable and multiaffine
Lorentzian polynomials, respectively. In Sections 2 and 4 we study in more detail how SEP acts on
multiaffine Lorentzian polynomials. We prove that SEP is a contractive flow (Lemma 2.3) that maps
the boundaries of the spaces into their interiors for all positive times (Lemma 2.5). Furthermore, SEP
contracts the spaces to a point in the interior. These results are used in Section 3, in conjunction with
a construction of Galashin, Karp and Lam [9], to prove that various spaces of Lorentzian polynomials
are closed Euclidean balls.
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In Section 4 we prove, by similar methods, that projective spaces of real stable polynomials are
homeomorphic to closed Euclidean balls. This refines a result of Nuij [16], who proved that such spaces
are contractible.

In the final section we identify topics for further studies.

2. Lorentzian polynomials and the symmetric exclusion process

Let H𝑑
𝑛 denote the linear space of all degree d homogeneous polynomials in R[𝑤1, . . . , 𝑤𝑛], adjoining

the identically zero polynomial. A polynomial f in H𝑑
𝑛 , where 𝑑 ≥ 2, is strictly Lorentzian if

1. all coefficients of f are positive and
2. for any 1 ≤ 𝑖1, 𝑖2, . . . , 𝑖𝑑−2 ≤ 𝑛, the quadratic 𝜕𝑖1𝜕𝑖2 · · · 𝜕𝑖𝑑−2 𝑓 , where 𝜕 𝑗 = 𝜕/𝜕𝑤 𝑗 , has the Lorentzian

signature (+,−,−, . . . ,−).

Also, any homogeneous polynomial of degree 0 or 1 with only positive coefficients is defined to be
strictly Lorentzian. Polynomials that are limits in H𝑑

𝑛 , in the standard Euclidean topology on the space
of coefficients of the polynomials, of strictly Lorentzian polynomials are called Lorentzian.

Denote by L𝑑
𝑛 the space of Lorentzian polynomials in H𝑑

𝑛 and by PL𝑑
𝑛 the projectivisation of L𝑑

𝑛 .
Since Lorentzian polynomials have nonnegative coefficients, we may identify PL𝑑

𝑛 with the space of all
polynomials f in L𝑑

𝑛 such that 𝑓 (1) = 1, where 1 = (1, 1, . . . , 1). Let E𝑑
𝑛 be the affine Euclidean space

of all f in H𝑑
𝑛 for which 𝑓 (1) = 1. Let further E𝑑

𝑛 and H𝑑
𝑛 be the spaces of all multiaffine polynomials in

E𝑑
𝑛 and H𝑑

𝑛 , respectively; that is, those polynomials in E𝑑
𝑛 (and H𝑑

𝑛) that have degree at most one in each
variable. Denote by PL𝑑

𝑛 the space of multiaffine polynomials in PL𝑑
𝑛 ; that is, the space of all Lorentzian

polynomials in E𝑑
𝑛 . We equip PL𝑑

𝑛 and PL𝑑
𝑛 with the standard topology on the affine Euclidean spaces

E𝑑
𝑛 and E𝑑

𝑛 .
For 0 ≤ 𝑑 ≤ 𝑛, let [𝑛] = {1, 2, . . . , 𝑛} and

( [𝑛]
𝑑

)
= {𝑆 ⊆ [𝑛] | |𝑆 | = 𝑑}. The dth elementary

symmetric polynomial in the variables 𝑤1, . . . , 𝑤𝑛 is

𝑒𝑑 (w) = 𝑒𝑑 (𝑤1, . . . , 𝑤𝑛) =
∑

𝑆∈( [𝑛]𝑑 )

w𝑆 , where w𝑆 =
∏
𝑖∈𝑆

𝑤𝑖 .

Let S𝑛−1 = {x ∈ R𝑛 | 𝑥2
1 + · · · + 𝑥2

𝑛 = 1} denote the unit sphere in R𝑛, and let S𝑛−2
1 = {x ∈ S𝑛−1 |

𝑥1 + · · · + 𝑥𝑛 = 0}.

Lemma 2.1. Suppose 𝑓 =
∑

𝑆∈( [𝑛]𝑑 )
𝑎(𝑆)w𝑆 is a polynomial in E𝑑

𝑛 with nonnegative coefficients 𝑎(𝑆).

Then f is in the interior of PL𝑑
𝑛 if and only if 𝑎(𝑆) > 0 for all 𝑆 ∈

( [𝑛]
𝑑

)
and one (and then all) of the

following three conditions are satisfied:

1. for each set 𝑆 ⊂ [𝑛] of size 𝑑 − 2, the quadratic 𝜕𝑆 𝑓 =
∏

𝑗∈𝑆 𝜕 𝑗 𝑓 , considered as a polynomial in the
𝑛 − 𝑑 + 2 variables {𝑤 𝑗 | 𝑗 ∈ [𝑛] \ 𝑆}, has signature (+,−,−, . . . ,−);

2. for each set 𝑆 ⊂ [𝑛] of size 𝑑 − 2 and each y ∈ R𝑛−𝑑+2 not parallel to 1, the degree 2 polynomial
𝜕𝑆 𝑓 (𝑡1 − y) has two real and distinct zeros;

3. for each set 𝑆 ⊂ [𝑛] of size 𝑑 − 2 and each y ∈ S𝑛−𝑑1 , the degree 2 polynomial 𝜕𝑆 𝑓 (𝑡1 − y) has two
real and distinct zeros.

Proof. Clearly all coefficients of polynomials in the interior are positive. By, for example, [7, Theorem
2.25, Lemma 2.5], the sufficiency (and equivalence) of (1) and (2) follows. Also, (2) and (3) are
equivalent by homogeneity.

Suppose (2) fails for some f in the interior of PL𝑑
𝑛 , y ∈ S𝑛−𝑑1 and 𝑆 ∈

( [𝑛]
𝑑−2

)
. Let 𝑦𝑘 = min{𝑦𝑖}

and 𝑦ℓ = max{𝑦𝑖}. Since the coefficients of f are positive, it follows that 𝜕𝑆 𝑓 (𝑡1 − y) = (𝑡 − 𝑎)2,
where 𝑦𝑘 < 𝑎 < 𝑦ℓ . Let 𝑓𝜖 = (1 + 𝜖) 𝑓 − 𝜖𝑤𝑘𝑤ℓw𝑆 . The discriminant of 𝜕𝑆 𝑓𝜖 (𝑡1 − y) is equal to
𝜖2 (𝑦ℓ − 𝑦𝑘 )

2 − 4𝜖 (𝑎 − 𝑦𝑘 ) (𝑦ℓ − 𝑎), which is negative for all 𝜖 > 0 sufficiently small. Hence, 𝑓𝜖 (𝑡1− y)
has non-real zeros for such 𝜖 . This contradiction shows that (3) is necessary. �
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Lemma 2.2. Let 0 ≤ 𝑑 ≤ 𝑛 be integers. The normalised elementary symmetric polynomial 𝑒𝑑 (w)/
(𝑛
𝑑

)
lies in the interior of PL𝑑

𝑛 .

Proof. We may assume 𝑑 ≥ 2. Let |𝑆 | = 𝑑−2. The Hessian of 𝜕𝑆𝑒𝑑 = 𝑒2, considered as a polynomial in
𝑛−𝑑 +2 variables, is 1𝑇 1− 𝐼, where I is the identity matrix. This matrix has eigenvalues −1,−1, . . . ,−1
and 𝑛 − 𝑑 + 1. �

The symmetric exclusion process (SEP) is one of the main models in interacting particle systems
[13]. It models particles moving on a finite or countable set in a continuous way. Particles can only jump
to vacant sites, and there can be at most one particle per site; see [6, 13]. Here we view SEP as a flow
𝑇𝑠 : H𝑑

𝑛 → H𝑑
𝑛 , 𝑠 ∈ R, a family of linear operators indexed by a real parameter (time) satisfying

𝑇𝑠 ◦ 𝑇𝑡 = 𝑇𝑠+𝑡 , for all 𝑠, 𝑡 ∈ R,

where 𝑇0 = 𝐼 is the identity operator.
The symmetric group 𝔖𝑛 acts linearly on H𝑑

𝑛 by permuting the variables

𝜎( 𝑓 ) (w) = 𝑓 (𝑤𝜎 (1) , . . . , 𝑤𝜎 (𝑛) ), for all 𝜎 ∈ 𝔖𝑛.

The flow 𝑇𝑠 : H𝑑
𝑛 → H𝑑

𝑛 , 𝑠 ∈ R, is defined by 𝑇𝑠 = 𝑒−𝑠𝑒𝑠L, where

L =
∑
𝜏

𝑞𝜏𝜏,

where the sum is over all transposition 𝜏 in 𝔖𝑛. We require that the numbers 𝑞𝜏 are nonnegative and
sum to one and that {𝜏 | 𝑞𝜏 > 0} generates 𝔖𝑛. Clearly, 𝑇𝑠 : E𝑑

𝑛 → E𝑑
𝑛 for all 𝑠 ∈ R, and 𝑒𝑑 (w)/

(𝑛
𝑑

)
is

an eigenvector/polynomial of L.
Notice that the matrix corresponding to a transposition 𝜏, with respect to the basis {w𝑆 | 𝑆 ∈

( [𝑛]
𝑑

)
}

of H𝑑
𝑛 , is symmetric. Hence, so is the matrix corresponding to L. Thus, L has an orthogonal basis of

eigenvectors 𝑓0, 𝑓1, . . . , 𝑓𝑁 in H𝑑
𝑛 , where 𝑁 =

(𝑛
𝑑

)
− 1 and 𝑓0(w) = 𝑒𝑑 (w)/

(𝑛
𝑑

)
. Also, by the assumption

on {𝜏 | 𝑞𝜏 > 0}, there exists a positive number m such that for each 𝜖 > 0, all entries of the matrix
representing (L + 𝜖 𝐼)𝑚 are positive. By Perron–Frobenius theory [3, Chapter 1], the eigenvalues of L
satisfy

1 = 𝜆0 > 𝜆1 ≥ · · · ≥ 𝜆𝑁 ≥ −1.

Hence, if we write an element f in H𝑑
𝑛 as 𝑓 = 𝑥0 𝑓0 +

∑𝑁
𝑗=1 𝑥 𝑗 𝑓 𝑗 , then

𝑇𝑠 ( 𝑓 ) = 𝑥0 𝑓0 +
𝑁∑
𝑗=1

𝑥 𝑗𝑒
−𝑠 (1−𝜆 𝑗 ) 𝑓 𝑗 . (2.1)

Consequently, 𝑇𝑠 ( 𝑓 ) → 𝑥0 𝑓0 as 𝑠 → ∞, and since 𝑇𝑠 ( 𝑓 ) (1) = 𝑓 (1), we have 𝑥0 = 𝑓 (1) and 𝑓 𝑗 (1) = 0
for all 𝑗 > 0.

Define a ball of radius r, centred at 𝑓0, by

𝐵𝑟 =
⎧⎪⎨⎪⎩ 𝑓0 +

𝑁∑
𝑗=1

𝑥 𝑗 𝑓 𝑗 | x ∈ R𝑁 and
𝑁∑
𝑗=1

𝑥2
𝑗 ≤ 𝑟2

⎫⎪⎬⎪⎭ .
Thus, 𝐵𝑟 is a closed Euclidean ball in the affine space E𝑑

𝑛 .
Using (2.1), we may read off how 𝑇𝑠 deforms the ball 𝐵𝑟 .
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Lemma 2.3. If r and s are positive numbers, then

𝐵𝑟𝑁 (𝑠) ⊆ 𝑇𝑠 (𝐵𝑟 ) ⊆ 𝐵𝑟1 (𝑠) and 𝐵𝑟1 (−𝑠) ⊆ 𝑇−𝑠 (𝐵𝑟 ) ⊆ 𝐵𝑟𝑁 (−𝑠) ,

where 𝑟𝑁 (𝑠) = 𝑟 exp(−𝑠(1 − 𝜆𝑁 )) and 𝑟1 (𝑠) = 𝑟 exp(−𝑠(1 − 𝜆1)).

The next proposition was essentially proved in [7]. For completeness, we provide the remaining
details here.

Proposition 2.4. If 𝑠 ≥ 0, then 𝑇𝑠 : L𝑑
𝑛 → L𝑑

𝑛 .

Proof. Assume first that L = 𝜏 is a transposition. It was proved in [7, Corollary 3.9] that any operator
of the form (1 − 𝜃)𝐼 + 𝜃𝜏, where 0 ≤ 𝜃 ≤ 1, preserves the Lorentzian property. Since

𝑒𝑠L =
𝑒𝑠 + 𝑒−𝑠

2
𝐼 +

𝑒𝑠 − 𝑒−𝑠

2
𝜏,

we deduce 𝑒𝑠L : L𝑑
𝑛 → L𝑑

𝑛 for all 𝑠 ≥ 0.
Suppose L𝑖 : H𝑑

𝑛 → H𝑑
𝑛 are linear operators such that 𝑒𝑠L𝑖 : L𝑑

𝑛 → L𝑑
𝑛 for 𝑖 = 1, 2 and all 𝑠 ≥ 0. By

the Trotter product formula [8, page 33],

𝑒𝑠 (L1+L2) = lim
𝑘→∞

(
𝑒 (𝑠/𝑘)L1 ◦ 𝑒 (𝑠/𝑘)L2

) 𝑘
.

Hence, 𝑒𝑠 (L1+L2) : L𝑑
𝑛 → L𝑑

𝑛 , for all 𝑠 ≥ 0, since L𝑑
𝑛 is closed. Iterating this proves the proposition. �

Lemma 2.5. If 𝑓 ∈ PL𝑑
𝑛 and 𝑠 > 0, then 𝑇𝑠 ( 𝑓 ) lies in the interior of PL𝑑

𝑛 .

Proof. By the open mapping theorem and Proposition 2.4, 𝑇𝑠 maps the interior of L𝑑
𝑛 to itself for each

𝑠 ≥ 0. Hence, it suffices to prove that if f is in PL𝑑
𝑛 , then 𝑇𝑠 ( 𝑓 ) lies in the interior of PL𝑑

𝑛 for all 𝑠 > 0
sufficiently small.

All coefficients of 𝑇𝑠 ( 𝑓 ) are positive for all 𝑠 > 0 and 𝑓 ∈ PL𝑑
𝑛 . Let 𝑓 ∈ PL𝑑

𝑛 and suppose 𝑆 ⊂ [𝑛]
has size 𝑑 − 2 and that y ∈ S𝑛−𝑑1 . Denote by Δ𝑆 (y; 𝑠) the discriminant of the degree 2 polynomial

𝑡 ↦→ 𝜕𝑆𝑇𝑠 ( 𝑓 ) (𝑡1 − y). (2.2)

From (2.1) it follows that Δ𝑆 (y; 𝑠) defines an entire function in the (complex) variable s. Hence, either
there is a positive number 𝛿(y) for which Δ𝑆 (y; 𝑠) ≠ 0 whenever 0 < |𝑠 | < 𝛿(y) or Δ 𝑓 (y; 𝑠) is
identically zero. The latter cannot happen since then, by letting 𝑠 → ∞, it follows that the discriminant
of the polynomial 𝑡 ↦→ 𝑒2(𝑡1− y) is equal to zero, which contradicts the fact that 𝑒2(w) is in the interior
of PL2

𝑛. By compactness (of S𝑛−𝑑1 ) and Hurwitz’s theorem on the continuity of zeros, it follows that
there is a uniform 𝛿 > 0 such that Δ𝑆 (y; 𝑠) ≠ 0 whenever 0 < |𝑠 | < 𝛿 and y ∈ S𝑛−𝑑1 and 𝑆 ⊂ [𝑛] has
size 𝑑 − 2. Hence, 𝑇𝑠 ( 𝑓 ) is in the interior of PL𝑑

𝑛 for all 0 < 𝑠 < 𝛿. �

3. Balls of Lorentzian polynomials

Let A = {𝐴 𝑗 }
𝑚
𝑗=1 be a partition of the set of variables {𝑤1, . . . , 𝑤𝑛}; that is, a collection of pairwise

disjoint and nonempty sets such that

𝐴1 ∪ 𝐴2 ∪ · · · ∪ 𝐴𝑚 = {𝑤1, . . . , 𝑤𝑛}.

Let further E𝑑
A be the space of all polynomials in E𝑑

𝑛 that are symmetric in the variables in 𝐴 𝑗 for each
𝑗 ∈ [𝑚].

Consider the symmetric exclusion process, 𝑇𝑠 , with rates 𝑞𝜏 = 1/
(𝑛
2
)

for all transpositions 𝜏 in 𝔖𝑛.
Then 𝜏L𝜏 = L for all transpositions 𝜏, so that 𝑇𝑠 : E𝑑

A → E𝑑
A for all 𝑠 ∈ R. Let PL𝑑

A = PL𝑑
𝑛 ∩ E𝑑

A.
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We are now in a position to prove our main results for Lorentzian polynomials. The final tool needed
is a general construction in [9]. Explicit homeomorphisms may be extracted from the proof of [9,
Lemma 2.3].

Theorem 3.1. Let A be a partition of {𝑤1, . . . , 𝑤𝑛}. The space PL𝑑
A is homeomorphic to a closed

Euclidean ball.

Proof. Notice that E𝑑
A is the intersection of E𝑑

𝑛 with an affine space, 𝑓0 +𝑈, where U is a linear subspace
of span{ 𝑓1, . . . , 𝑓𝑁 }. We identify the affine linear space E𝑑

A with R𝑀 , where 𝑀 = dim(𝑈), equipped
with the Euclidean norm, inherited by span{ 𝑓1, . . . , 𝑓𝑁 },

‖ 𝑓 ‖ =

√√√ 𝑁∑
𝑖=1

𝑥2
𝑖 , if 𝑓 =

𝑁∑
𝑖=1

𝑥𝑖 𝑓𝑖 .

Consider the map 𝐹 : R × R𝑀 → R𝑀 defined by

𝐹 (𝑠, 𝑓 ) = 𝑇𝑠 ( 𝑓 ).

Then

1. the map F is continuous, by, for example, the explicit form (2.1),
2. 𝐹 (0, 𝑓 ) = 𝑓 and 𝐹 (𝑠1 + 𝑠2, 𝑓 ) = 𝐹 (𝑠1, 𝐹 (𝑠2, 𝑓 )), for all 𝑓 ∈ R𝑀 and 𝑠1, 𝑠2 ∈ R,
3. ‖𝐹 (𝑠, 𝑓 )‖ < ‖ 𝑓 ‖, for all 𝑓 ≠ 0 and 𝑠 > 0, by Lemma 2.3.

Thus, F is a contractive flow, as defined in [9]. By Lemma 2.5,

𝐹 (𝑠, PL𝑑
A) ⊂ int(PL𝑑

A) for all𝑠 > 0,

where int denotes the interior. The theorem now follows from [9, Lemma 2.3] and its proof. �

The case of Theorem 3.1 whenA is the partition {𝑤1}, {𝑤2}, . . . , {𝑤𝑛}, yields the following theorem.

Theorem 3.2. The space PL𝑑
𝑛 is homeomorphic to a closed Euclidean ball.

Let 𝜅 = (𝜅1, . . . , 𝜅𝑛) be a vector of positive integers. Define E𝑑
𝜅 to be the space of all polynomials f in

E𝑑
𝑛 for which the degree of f in the variable𝑤𝑖 is at most 𝜅𝑖 , for each 1 ≤ 𝑖 ≤ 𝑛. Also, let PL𝑑

𝜅 = E𝑑
𝜅 ∩PL𝑑

𝑛 .

Theorem 3.3. The space PL𝑑
𝜅 is homeomorphic to a closed Euclidean ball.

Proof. Consider the variables 𝑤𝑖 𝑗 , 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝜅 𝑗 , and let A = {𝐴1, . . . , 𝐴𝑛} be the partition
of {𝑤𝑖 𝑗 } given by 𝐴𝑖 = {𝑤𝑖 𝑗 | 1 ≤ 𝑗 ≤ 𝜅𝑖} for 1 ≤ 𝑖 ≤ 𝑛.

The polarisation operator Π↑ : E𝑑
𝜅 → E𝑑

A is defined as follows. Let 𝑓 ∈ E𝑑
𝜅 . For all 𝑖 ∈ [𝑛] and each

monomial 𝑤𝛼1
1 · · ·𝑤𝛼𝑛

𝑛 in the expansion of f, replace 𝑤𝛼𝑖

𝑖 with

𝑒𝛼𝑖 (𝑤𝑖1, . . . , 𝑤𝑖𝜅𝑖 )/

(
𝜅𝑖
𝛼𝑖

)
.

The polarisation operator is a linear isomorphism with inverse Π↓ defined by the change of variables
𝑤𝑖 𝑗 → 𝑤𝑖 . Also Π↑ and Π↓ preserve the Lorentzian property [7, Proposition 3.1]. Hence, Π↑ defines a
homeomorphism between PL𝑑

𝜅 and PL𝑑
A. The theorem now follows from Theorem 3.1. �

By choosing 𝜅 = (𝑑, 𝑑, . . . , 𝑑) in Theorem 3.3, we have arrived at a proof of [7, Conjecture 2.29].

Theorem 3.4. The space PL𝑑
𝑛 is homeomorphic to a closed Euclidean ball.
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4. Balls of real stable polynomials

A polynomial f in R[𝑤1, . . . , 𝑤𝑛] is real stable if 𝑓 (w) ≠ 0 whenever Im(𝑤 𝑗 ) > 0 for all 𝑗 ∈ [𝑛];
see [4, 5, 18]. Homogeneous real stable polynomials with nonnegative coefficients are Lorentzian;
see [7, Proposition 2.2]. Let S𝑑

𝑛 be the space of degree d homogeneous and real stable polynomials f
in R[𝑤1, . . . , 𝑤𝑛] with nonnegative coefficients. Let further PS𝑑

𝑛 be the set of all 𝑓 ∈ S𝑑
𝑛 for which

𝑓 (1) = 1. It follows from [6, Theorem 4.5] that a polynomial 𝑓 ∈ H𝑑
𝑛 with nonnegative coefficients is

real stable if and only if for each y ∈ R𝑛, the polynomial

𝑡 ↦→ 𝑓 (𝑡1 − y)

has only real zeros. Notice that by homogeneity this condition is equivalent to the condition: for each
y ∈ S𝑛−2

1 , the polynomial 𝑡 ↦→ 𝑓 (𝑡1 − y) has only real zeros. By compactness it follows that 𝑓 ∈ H𝑑
𝑛 is

in the interior of S𝑑
𝑛 if and only if all coefficients of f are positive, and for each y ∈ S𝑛−2

1 , the polynomial
𝑡 ↦→ 𝑓 (𝑡1 − y) has only real and distinct zeros.

Lemma 4.1. Let 0 ≤ 𝑑 ≤ 𝑛 be integers, and let y ∈ R𝑛 be such that at most 𝑛 − 𝑑 + 1 of the coordinates
agree. Then the zeros of 𝑒𝑑 (𝑡1 − y) are real and distinct.

Proof. For y ∈ R𝑛, let 𝑝(𝑡) =
∏𝑛

𝑖=1(𝑡 − 𝑦𝑖). Notice that

(𝑛 − 𝑑)!𝑒𝑑 (𝑡1 − y) = 𝑝 (𝑛−𝑑) (𝑡),

the (𝑛 − 𝑑)th derivative of 𝑝(𝑡). Hence, all zeros of 𝑒𝑑 (𝑡1 − y) are real. Moreover, if 𝛼 is a zero of
𝑒𝑑 (𝑡1−y) of multiplicity 𝑘 ≥ 2, then 𝛼 is a zero of p of multiplicity 𝑘 + (𝑛− 𝑑). The lemma follows. �

For 1 ≤ 𝑑 ≤ 𝑛, let 𝑓 𝑑𝑛 (𝑤1, . . . , 𝑤𝑛) be the polynomial obtained from 𝑒𝑑 (𝑤11, 𝑤12, . . . , 𝑤𝑛𝑑)/
(𝑛𝑑
𝑑

)
by

the change of variables 𝑤𝑖 𝑗 → 𝑤𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑑.

Lemma 4.2. The polynomial 𝑓 𝑑𝑛 (w) lies in the interior of PS𝑑
𝑛 .

Proof. All coefficients of 𝑓 𝑑𝑛 (w) are positive. We need to prove that the zeros of 𝑓 𝑑𝑛 (𝑡1− y) are real and
distinct whenever y ∈ R𝑛 is not parallel to 1. This follows from Lemma 4.1, since

𝑓 𝑑𝑛 (𝑡1 − y) = 𝑒𝑑 (𝑡1 − ỹ)/
(
𝑛𝑑

𝑑

)
, where ỹ = (𝑦1, . . . , 𝑦1, . . . , 𝑦𝑛, . . . , 𝑦𝑛). �

Theorem 4.3. The space PS𝑑
𝑛 is homeomorphic to a closed Euclidean ball.

Proof. The proof is a modification of the proof of Theorem 3.1.
It was proved in [6, Proposition 5.1] that SEP preserves stability on multiaffine polynomials. Also,

in [4, Proposition 3.4] it was proved that the polarisation operator Π↑ preserves stability. For 𝑠 ∈ R,
define 𝑇𝑠 : E𝑑

𝑛 → E𝑑
𝑛 by 𝑇𝑠 = Π↓ ◦ 𝑇𝑠 ◦ Π↑, where 𝑇𝑠 is the SEP on E𝑑

𝑛𝑑 , with rates 𝑞𝜏 = 1/
(𝑛𝑑

2
)

for all
transpositions 𝜏. By the discussion in Section 3, it follows that 𝑇𝑠 is a contractive flow, which contracts
the space to the point 𝑓 𝑑𝑛 (w) in its interior (Lemma 4.2). To finish the proof, it remains to prove that for
each fixed 𝑓 ∈ PS𝑑

𝑛 , there is a 𝛿 > 0 such that 𝑇𝑠 ( 𝑓 ) is in the interior of PS𝑑
𝑛 for all 0 < 𝑠 < 𝛿.

Let 𝑓 ∈ PS𝑑
𝑛 and y ∈ S𝑛−2

1 . Denote by Δ 𝑓 (y; 𝑠) the discriminant of the polynomial 𝑡 ↦→ 𝑇𝑠 ( 𝑓 ) (𝑡1−y).
From (2.1) it follows that Δ 𝑓 (y; 𝑠) defines an entire function in the (complex) variable s. Hence, either
there is a positive number 𝛿(y) for which Δ 𝑓 (y; 𝑠) ≠ 0 whenever 0 < |𝑠 | < 𝛿(y) or Δ 𝑓 (y; 𝑠) is
identically zero. The latter cannot happen since then, by letting 𝑠 → ∞, it follows that the discriminant
of the polynomial 𝑡 ↦→ 𝑓 𝑑𝑛 (𝑡1 − y) is equal to zero, which contradicts the fact that 𝑓 𝑑𝑛 (w) is in the
interior of PS𝑑

𝑛 . By compactness (of S𝑛−2
1 ) and Hurwitz’s theorem on the continuity of zeros, it follows

that there is a uniform 𝛿 > 0 such that Δ 𝑓 (y; 𝑠) ≠ 0 whenever 0 < |𝑠 | < 𝛿 and y ∈ S𝑛−2
1 . Hence, 𝑇𝑠 ( 𝑓 )

is in the interior of PS𝑑
𝑛 for all 0 < 𝑠 < 𝛿. �
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5. Discussion

The support of a polynomial
∑

𝛼∈N𝑛 𝑎𝛼𝑤
𝛼1
1 · · ·𝑤𝛼𝑛

𝑛 is J = {𝛼 | 𝑎𝛼 ≠ 0}. There is a one-to-one
correspondence between the supports of polynomials in PL𝑑

𝑛 and M-convex sets in Δ𝑑
𝑛 = {𝛼 ∈ N𝑛 |

𝛼1 + · · · + 𝛼𝑛 = 𝑑}; see [7, Theorem 3.10]. Let PLJ be the space of polynomials in PL𝑑
𝑛 with support J.

Hence,

PL𝑑
𝑛 =

⊔
J
PLJ,

where the disjoint union is over all M-convex sets in Δ𝑑
𝑛 . The space PLJ is nonempty and contractible

for each J [7, Theorem 3.10 and Proposition 3.25].
Similarly, there is a one-to-one correspondence between the supports of polynomials in PL𝑑

𝑛 and rank
d matroids on [𝑛]. Let PLM be the space of polynomials in PL𝑑

𝑛 whose support is the set of bases of M.
Then

PL𝑑
𝑛 =

⊔
M
PLM,

where the union is over all matroids of rank d on [𝑛]. The space PLM is nonempty and contractible for
each M [7, Theorem 3.10 and Proposition 3.25].

Postnikov [17] proved that there is a similar stratification of the totally nonnegative Grassmannian
into closed cells corresponding to matroids that are realisable by real matrices whose maximal minors
are all nonnegative. He conjectured that these cells are homeomorphic to closed Euclidean balls. The
conjecture was recently proved by Galashin, Karp and Lam [11] in a more general setting. The next
questions are Lorentzian analogs of Postnikov’s conjecture.

Question 5.1. Let J inΔ𝑑
𝑛 be an M-convex set. Is the closure of PLJ homeomorphic to a closed Euclidean

ball?

In this article we settled the case of Question 5.1 when J = Δ𝑑
𝑛 . Since the polynomial

𝑛−𝑑 (𝑤1 + · · · + 𝑤𝑛)
𝑑 has full support and lies on the boundary of PL𝑑

𝑛 , it follows that the interiors
of PLJ do not form a cell decomposition of PLJ. This suggests the following question.

Question 5.2. Is there a refinement of the decomposition given by the interiors of PLJ, that to form a
cell decomposition, and ideally a regular CW complex?

These questions have multiaffine analogs.

Question 5.3. Let M be a matroid on [𝑛]. Is the closure of PLM homeomorphic to a closed Euclidean
ball?

In this article we settled the case of Question 5.3 when M is uniform.

Question 5.4. Is there a refinement of the decomposition given by the interiors of PLM, that to form a
cell decomposition, and ideally a regular CW complex?

We also have a stratification

PS𝑑
𝑛 =

⊔
J
PSJ,

where the union is over all M-convex sets in Δ𝑑
𝑛 that occur as supports of polynomials in PS𝑑

𝑛 . Is the
space PSJ homeomorphic to a closed Euclidean ball? Is it contractible? Similar questions could be asked
for the analogous spaces of multiaffine homogeneous and real stable polynomials. Let PS𝑑

𝑛 be the space
of all multiaffine polynomials in PS𝑑

𝑛 . In particular, we have the following.
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Conjecture 5.5. The space PS𝑑
𝑛 is homeomorphic to a closed Euclidean ball.

Equivalently, in the terminology of [6], Conjecture 5.5 says that the space of strongly Rayleigh
measures on {1, . . . , 𝑛}, with constant sum d, is homeomorphic to a closed Euclidean ball.
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