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SCATTERING THEORY AND SPECTRAL 
REPRESENTATIONS FOR GENERAL WAVE 

EQUATIONS WITH SHORT RANGE PERTURBATIONS 

KAZUHIRO YAMAMOTO 

1. Introduction. In this paper we shall develop the scattering theory introduced by 
Lax and Phillips [5] for the following general wave equation; 

/i i x ( utt = a(x){ didij(x)djU — q(x)u} in Q x R, 
{ ' ) \ Bu = 0 on dQ x R, 

where Q. is an exterior domain Rn(n > 3) with the smooth boundary dQ and B is either a 
Dirichlet boundary condition or of the form Bu = Vi{x)atj(x)djU+G (x)u with the unit outer 
normal vector i/(x) = O i , . . . , i/n) at x E 3Q. The precise assumptions on a(x), atj(x), 
q(x), a(x) are denoted below. If Q is an inhomogeneous medium with the density p(jc), 
the propagation of waves is described by (1.1) with a(x) = a(x)2p(x), ciyix) = p~l(x)6tj 
and q(x) = 0 with the velocity a(x). 

The scattering theory of (1.1) in L2-theory is studied by many authors (Ikebe [3] and 
[4], Mochizuki [8] and [9] and Reed-Simon Chapter XL 10 of [12], etc). On the other 
hand Lax and Phillips theory of (1.1) is first studied in their book [5] (see also [6] and 
[13]) with a = 1, atj• = 6y and q — 0. In [14] the developed theory is considered in the 
case a = 1, atj• — 6tj9 q > 0 and Q = Rn, and shows a completeness of wave operators 
and an existence of spectral representations. A completeness of wave operators of (1.1) 
is also established by Lax and Phillips [7] and Phillips [11] either in the case a = 1, 
atj = 6(j and suppg is compact or in the case a — 1 and £1 — Rn. In this paper we 
shall show generalizations of their theorems on a completeness of wave operators and 
an existence of spectral representations. We also show an invariant principle of wave 
operators. 

We shall state the assumptions on the coefficients of (1.1). 
(A.l) The function a(x) is in Cl(Ù), real valued, and uniformly positive in Q and sat­

isfies a(x) — 1 = 0( |x | - 1 - 6) for some<5 > 0. 
(A.2) The real symmetric matrix (flyC*)) is uniformly positive in Ù. The functions a,y(jt) 

are in C2(Ù) and satisfy conditions aij(x)—8ij — 0(|JC|_1_<5) = Va,y(jc) for some 
S > 0. 

(A.3) The real valued function q(x) is in £foc(£2) where p = nj 2 for n > 4, p > 2 for 
n — 4 and/? = 2 for n — 3, and satisfies q(x) — 0( |JC| - 2 - < 5) for some 8 > 0, if 
|JC| is sufficiently large. 
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(A.4) The function a(x) is a real valued C2(d£l) function. 
(A.5) The unique continuation property for eigenfunctions associated with nonnegative 

eigenvalues of Lholds, i.e., if u E H2
oc(Ù) satisfies (L — X)u = 0, where A > 0, 

and u(x) = 0 in some open subset of Q, then u = 0 in £1. 

2. Perturbed system. In this section for simplicity we only consider the Neumann 
boundary condition Bu — via^djU + au = 0 on dQ. x R. Let ^ be a Hilbert space which 
is equal to L2(Q) as a set with the inner product (f,g)§ — Jn(fga~])(x)dx, and let L be 
an operator from D(L) C Ï) to Ï) defined by Lf = — a(x){ didij(x)dj — q{x)}, where 

D(L) = {fe H\Q) : Lf e L2(Q) as ^ ( Q ) , 

(Lf, v)$ = f { atjdjfdiv + qfv} dx + f afv dS for all v e t f p } . 

When q — 0, we denote L by Li. Then we have the following 

LEMMA 2.1. 

i) The operator L is self adjoint and D(L) = {/ E H2(Q) : 5 / = i/ (x)atj(x)djf + 
a(x)f = 0ondQ}. 

ii) L has no positive eigenvalues. 
Hi) The number of the non-positive eigenvalues ofL is finite and their eigenspaces 

are finite dimensional spaces. 

The statement i) is proved by the similar argument in the proof of Theorem 3.6 below. 
The statement ii) is Corollary 1.1 in [10] and the proof of iii) is almost the same as one 
of Lemma 3.15 in [11]. 

We introduce data space H = HD(£l) x Ij, where HD(£l) is the completed space of 
CQ°(£2) by the norm ||/||//D(Q). The energy form of (1.1) is defined by 

\ r \ r 
E(f>g)= 2 J^i^jf^iSi +qf\8\ + oc'lf2g2} dx + - JdÇÎ°f\g\ dS 

for any/ = (f\ ,f2) and g — (g\, g2) in H. We define an operator A = from 

D(A) = {/ eH:f2e H\a\Lfx E L2(Q) as ©'(Q) and 

(2.1) (Lfuv\ = ^{ayd/xdiv + qfxvydx^ J^afivdS for veH\Çl)} 

to H. Similarly A\ is defined by changing L in A with L\ = — a(jc)3/a#(;c)3/. The follow­
ing properties of A and Aj are not difficult. 

LEMMA 2.2. A am/ A\ are densely defined and closed operators, and E(Af,g) = 
—E(f,Ag) for any f,g E D(A). A similar relation holds for the energy form E\ and A\ 
corresponding to L\. 

Let { — A? : j = 1,... ,ra} denote the negative eigenvalues of L, and let {pj E 
f) : y = 1,... ,m} be the corresponding linearly independent eigenfunctions which 
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span the eigenspace corresponding to all negative eigenvalues. We can choose the data 
ff1 = (pj, ±pj) which are eigenvectors of A with respect to ±Ay-, and satisfy the following 
relations (see pages 48-49 of [7]); for all j , k 

(2.2) E(f;,ft) = 0= E(fr,f~), E(f+,fr) = -\fèjk. 

We denote by T the span of the {fj*1} • Then it is clear from (2.2) that every/ in H has 
a unique decomposition of the form/ = g +/?, where p G (P and g lies in the following 
space 

H' = {/ G H : E(f,p) = 0 for all/7 G 2>} . 

We denote by / the degenerate space of the energy form E\ 

J = {/ G #"' : E(f,g) = 0 for all g G / / } . 

By the proof of Lemma 3.15 in [11] we can show the following 

LEMMA 2.3. / is equal to Ker A and is a finite dimensional space. 

From this lemma and (A.5) the form 

K(f,g)= [ figidx, 
v 6 Jon{\x\<R}J 6 

where R is chosen large enough, defines an equivalent norm on / to the one of H. We 
decompose any element/ in 94' into the form/ = / ' +/", where/' G / and/" belongs 
to the following space 

X" = {fe?f: K(f,g) = Ofor all g G / } . 

Then we have the following proposition (see Lemma 3.19, Corollary 3.29) and 3.21 in 

[11]). 

PROPOSITION 2.4. i) The form E(f) = K(f') + E(f") on tf\ where K(f!) = K(f\f) 
and E(f") — E(f",f"), defines an equivalent norm on 9~C' to ||/||//. ii) The quotient space 
9i — 9{' 11 is complete in the E-norm. Hi) Iff belongs to Oi1 H D(A), then for | | / | | | = 
Eif) 

\\Af\\H<C{\\f\\E+\\Af\\E). 

Making use of the above proposition we shall show the following. 

PROPOSITION 2.5. If \ X \ is sufficiently large, X belongs to the resolvent set ofA\. 

PROOF. Let fPl9 9{{, I\ and 9f\ denote the corresponding spaces to fP, tt', I and 
H, respectively, which are similarly defined by changing L in A with L\. Since &\ and 
I\ are invariant subspaces of A\ from Lemma 2.3, we can define an operator A\ from 
D(Aj) = (D(Ai) n Off) J h C Ai to H\. We shall prove that Ax is skew self-adjoint 
in 9f\. It is easy to show that D(A\) is a dense set of 9{\. First we shall show that A\ 
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is a closed operator. We assume that {/„} C D(Â\) and {A\fn} converge to / and g 
in the energy norm, respectively. Then from Proposition 2.4 the projections {/"} and 
{ [A\fn\"} of {/„} and {A\fn} to 9(", respectively, converge to projections/" and g" of 
/ and g, respectively in the //-norm. Let { gj — (gj\ ,0 :j = 1 , . . . , £ } denote a base of / 
such that K(gj,gk) = fyk- Then 

(2.3) ^^=iA^ = hf^^)e{on{M<R})^ 

where/" = (fnX,ft2\ and [A\fn]' and [Ai/f]' are projections of Afn and Aft to / , re­
spectively. It follows from (2.3) that { [Ai/W]'} is a bounded set of H. Since I\ is finite 
dimensional, we can take a subsequence {w*} of {n} such that [A\fnk]

f converges to 
h G I\ in the //-norm. From the closedness of Ai we see that A\f" — A\f = g" + /i, 
which means that Ai/ = g, that is, A\ is closed. 

Since A\ is skew-symmetric from Lemma 2.2, we only show that the range of A ± 
A\ contains a dense subset of H\, where À is real. Let g = (gi,g2) be an element of 
W D (H\Q))2. Then (A ± A{)f = g is equivalent to (A2 + Li) / = Agi T gi and 
/2 = ±(gi—A/i). The norm induced by the form l\(u) = Jc1{aijdjudiu'+\2\u\2a~y} dx+ 
ho.a I u\2 dS is equivalent to the Hx (Q) norm, if | A | is sufficiently large. Thus there exists 
/i G Hl(Q) such that (Agi T #2, v)$ = tx(fuv) for all v G H\Q). This means that 
/ = (/b/2) £ ^(Ai) and (A ± A\)f — g. Let / = / ' + /? be the decomposition of/ in 
^ ® Î7 of //. Then we have (A ± Ax)f - g = (A ± Ai)p. By the uniqueness of the 
decomposition it follows that (A ± A\)f = g, that is, (A ± Ai)/7 = g. The proof of the 
skew self-adjointness of A\ is completed. 

In order to prove the statement of Proposition 2.5 we may show that the range of the 
restricted operator to 9i[ of A +A\ is 9i[, because ker(A -\-A\ ) = { 0} , if | A | is sufficiently 
large. For any g G Ji{ there exists/ G J(\ such that (A +Ai )/ = g. This means that there 
exists h G !H{ suchthat(A +A\)f = /zand^ = g — h G I. Thus (A +Ai)(/ + ̂ / A ) = g. 
The proof is completed. 

Next we shall prove a similar property on A. 

THEOREM 2.6. /) 7/ié? sétf D(A) is equal to the set {/ G / / : /> G Z/1 (Q), 3£/i G L2(Q) 
/or I a I = 2, 5/i = 0 on d£l}. For any/ G D(A) 

(2.4) £ l|d?/i||tf(Q)+ E ||a?/2||L2(Q)<C(||A/||//+ | |/|U). 
| a | = l,2 |a |=0, l 

//j Z/71A I /s sufficiently large, A belongs to the resolvent set of A. 

PROOF. Let <p(*) be in C°°(Rn) such that <̂ (JC) = 1 for |JC| > /?+ 1 and ip(x) = 0 for 
J JC| < R, where R is sufficiently large. Then for any/ G £>(Z>i) £1 (<£/i) a nd L\ ((1 — v?)/i) 
belong to L2(Q). Thus it is well known that (1 - (/?)/i G Z/2(£2) and 5(1 - (/?)/ = 0 on 3Q 
(see Section 9, 10 of [1] and Chapter X of [2]). We shall show that 3?(<£/i) G L2(Q) for 
I a I = 2. In order to show this we need the following regularity theorem in the weighted 
space //2(£I), where H™(£1) is a Hilbert space with the norm ||/||^m(Q) = E|a |<m ||(1 + 
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W ) ^ ? / I I ; W I f u e Ll<&> n ^oc(«). w h e r e Ll^) = ^ ( " ) . Uu G L2(0) and 
Bu — 0 on 3£2, then w belongs to H2^(£l). This is derived by the same way of proving a 
similar regularity theorem in H2(Rn). From this theorem and the inequality ||/||z2(Q) < 
C/x ||/||//D(Q), where \i < — 1 (see the proof of Lemma 1.1 in Chapter IV of [5]), it follows 
that (ff\ belongs to H^(Rn). Therefore, 

(2.5) A(ipfl) = (l-a)A(iffO + a[di(èij-au)dj](^fl)^L^fù 

belongs to L2(Rn) from the assumptions (A.l) and (A.2). By the Fourier transform we 
see that 3£(<£/i) (| a | = 2) belongs to L2(Rn). This means that D(L\) is equal to {/ G H : 
f2 G Hl(Çl), d?fi G L2(£l) for | a | = 2,Bf = 0 on 3Q}. 

Next we shall show (2.4) when g = 0. From the elliptic estimate for a coercive elliptic 
boundary value problem (see Chapter X in [2]) it follows that 

(2.6) £ |K(1 - ptfilUo) < C{ IMU^Q) + ||/ilk(0)}. 
| a | = 2 

On the other hand from (2.5) it follows that 

|or|=2 

(2-7) < C s u p { | l - a ( x ) | + | % - ^ | } £ ||3?(^,)||z.2(0) 
|JC|>/? |«|=2 

+ CR(\\L]fl\\L2(n) + \\f H^Q)), 

where C does not depend on <̂ . From (A.l), (A.2), (2.6) and (2.7) we get (2.4) for A\. 
We shall show that if |A| is sufficiently large, ||(A + Ai)_1 | | < C|A|_1. Let us in­

troduce an equivalent norm N(f) on H such that [N(f)]2 — JQ{ aijdjf\df\ + a - 1 \fi\ } dx. 
Then from (2.1) 

[Â ((A -hAx)^)]2 > C71{(|A|2/2-C2 |A|)| |V^1 | |^2(^ ) + (|A|2 - C73| A|)|U2 | |^2(0)}, 

which implies that || (A +A\ ) ~ l \\ < C\ A | - 1 , if | A | is sufficiently large. Thus making use 
of Proposition 2.5, (2.4) and the argument in the proof of Corollary 3.10 in [11], we can 
show D(L) = D(L\). The inequality (2.4) for general q(x) is derived from (2.4) for q — 0 
and the inequality \\qf\\2

LHa) < e£ H =2l |3? / l l£ ( Q ) + Ce\\fUMa) for'(f,0) e D(A), 
where e is an arbitrary positive number (see the proof of Lemma 3.9 in [11]). The proof 
is completed. 

Now we have proved all properties which are used to show the following theorem 
(see the proof of Theorem 3.22 of [11 ]). 

THEOREM 2.7. A generates a group of linear operators U(t) on H which is unitary 
with respect to the energy form E. 

Letj(jc) be in C°°(Rn) such that y W = 1 for |JC| > p + 1 andy'(jc) = 0 for |JC| < p, 

where Rn\Q, C {x : \x\ < p }. Put7 to be and denote by Ç? the projection 

from H to Of'. Then the wave operators from HQ to H are defined as follows: 

(2. 8) W±f = s- lim [Q'U(-t)JU0(t)]
A, 

/—>±oo 
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where H0 = {/ = (fufi) : / i G HD(Rn\f2 G L2 (/?")} and {I/0(0} is the unitary 

group on Ho with the infinitesimal generator A0 = _ A 0 . The following theorem 

is proved by the same ways of proving Theorem 4.1 and Lemma 4.3 of [11]. 

THEOREM 2.8. The wave operators W± exist and are isometric from Ho to 9f$ where 
9fo is the E-orthogonal subspace oflo/I in 9f with Io = KerA2. 

In Corollary 3.10 we shall show that W± is a unitary operator on !HQ. 

3. Spectral representations. First we state several facts which are derived from the 
principle of limit absorption for L which is a self adjoint operator appeared in Section 2. 
Let [i and [i' be fixed numbers such that 1/ 2 < / i ' < / x < £ + l / 2 and \i + fif < 1 + 6, 
where 6 is appeared in (A.l), and let n be the set { K G C ; Im« > 0, Re n ^ 0} . First 
we shall state some properties of the generalized resolvent operator of L. 

THEOREM 3.1. (see Theorem 3.2 in [8] and Proposition 13.7 in [9]). For any K G n 
there exists a bounded operator R(ti)from L2 (Q) to H2_ ,(Q), that is, R(K) G $(L2 (Q), 
H2_^,(Q.)) such that R(K) G C(IT, 0(LJ;(Q),#£,(Q)),rt(/c) = (L - K2)'X if lmn > 0, 
and (L - K2)R(n)f = / , £/?(«)/ = 0 on 3Q/or a/// G L2 (Q). Moreover u = /?(«)/" 
satisifies the following radiation condition; u G L?_ (Q), (Aie, V — mx)u G L2_j(£2), 
where A = («(/(JC)) ara/ JC = JC/ | JC| . 

In order to define spectral representations for A we need the following operators. 

DEFINITION 3.2. i) The operators V G iB(Hl(Rn), L2
u+l+s (Q)) and its dual operator 

V* G #(//2(Q), Ll+lJ^(Rn)) are defined as L/ -yL 0 and /L - LQ/*, respectively, where 
Lo = - A with a domain //2(fl") in L2(Rn)J G rB(L2(Rn), H) is a multiplication operator 
by a function 7'(x) used in (2.8), a n d / G <B(!H,L2(Rn)) is the dual operator of/, 
ii) For any a G R\ { 0} denoted by J7(cr) and J/* (a) the operator %(\a\ ){j* - V*R(a)} G 
#(L2 (Q), L 2 ^ 1 ) ) and its dual operator {j-R(-a)V} J/0*(| a | ) G «(L2^""1), L^(Q)), 
respectively, where [J/o(|tr|)/](^) = |0-|(«-n/2y:(|0.|a;) G # ( L 2 (/?"), L 2 ^ 1 ) ) with the 
inverse Fourier transform /(£ ) of/(JC), and J/Q (| a | ) is the dual operator of %(\a\ ). 

The spectral representations of L are given as follows: 

THEOREM 3.3. (see Theorem 2.5 in [4] and Theorem 14.6 in [9]). For any (a,u) G 
R+ x Sn~l we put 

U*f](a,LJ) = U(±a)f](L0) forf G L2(Q). 

Then J± is able to be uniquely extended from fj to l? (R+; L2(Sn~1)) as a partially iso­
metric operator with KerJ7± = 2s(0)ï), where {E(X)} is the spectral resolution of L. 
Moreover J± satisfies the following ; 

i) For any bounded Borel function (p(x) 

(3.1) U±<p(L)f](a,u) = <p(a2)Uàf]((T,u>)forf G Ï); 
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ii) The dual operator 3± G ®(L2(R+\L2(Sn-{))^] of J± is denoted by the follow­

ing formula 

(3.2) U±h](x) = s - lim fN U*(±a)h(a, -)](x)da m | . 
N—>OQJ\/N 

Making use of J7±, we define the spectral representations F± of A as follows; for any 

/ = (fufi) e L\Q) x L2(&) 

where A±(a) = B±(a) = (-/sgn<7) ( , |-1 ) /2 , if « is odd, andA±(a) - - 1 and B±(a) = 

{-\yi2-\ if « is even. We can show that these definitions of spectral representations 

are essentially equal to those in [5], [6], [13] and [14]. 

In order to extend (3.3) on Of' we need three lemmas. 

LEMMA 3.4. Let p(x) G L2(Q) be an eigenvector associated with a negative eigen­

value —A2. Thenpix) belongs to H^Q) for all p, G R. 

PROOF. Let <p(x) be in C°°(Rn) such that <p(x) = 0 for \x\ < R and y(x) = 1 for 

|JC| > R + 1 , where {x : \x\ < R} CRn\Qand\q\ <Cfor\x\ > R. Since/? G H2(Q), 

Lp = — A2/?, we see that from (A.l) to (A.3) 

(3.4) - A ( W ) + A 2 ( W ) = (-A-L)(ipp) + (L + \2)(ipp) 

belongs to L\+6 (Rn). By the Fourier transform of (3.4) it follows that (| £ \2+X2)((pp)A (£ ) 

belongs to Hl+ê(Rn^). This implies that ((fp)A(0 G Hl(Rn^ which is equivalent to 

(pp(x) G L2(Rn). From a regularity theorem in the weighted space H2{Rn) mentioned 

in the proof of Theorem 2.6 we see that (pp G H2(Rn) and the righthand side of (3.4) 

belongs to L2^ (Rn). By taking the Fourier transform of (3.4) we inductively get (| £ | 2 + 

A )((fp)A (Ç ) G H"** (R\ ), and (ipp)A (£ ) G H" - 1 ( ^ ). Thus we can conclude (ipp)A (£ ) G 

#*(/?? ) for all n, which implies the desired property on p(x). The proof is completed. 

LEMMA 3.5. Let Y = D(L) n L2. (Q)2 fl f ( l - E(0_))l)) , w/iere /i w an arbitrary 

positive number. Then the set Y x Y is dense in Of'. 

PROOF. From the definition of D(L) for any g G 9f' the exists a sequence {gn} C 

D(L) H (C2(Q))2 such that gn converges to g in H. Put g '̂ = -HJLi{E(gnJpf; + 

EignJ/yff/ A/ and g'n = g „ - ^ . Since g belongs to # \ E(gnJp) converges to 0 as n —> 

oo. From these facts and Lemma 3.4 it follows that the sequence { g'n} in D(L)H (L2 (Q,)) 

converges to g as n —> oo. Put gn — (gn\,gni)\ then we have 

2E(gn,jf) = -\J(gnUPj)ï ±Xj(gn2,Pj)ji' 

Therefore g'n is equal to (gn] - Y!jLx(gn\,Pj\Pj,gn2 - Y!jL\(gn2,Pj)wj)which belongs to 

( l — £(0_)rj ) . The proof is completed. 
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LEMMA 3.6. For anyf G Y x Y put h2 = (E(0) - £(0_))/2. Then 

(3.5) \\F±f\\lHRxSn^ = E(f)-(h2,h2)^ 

PROOF. From (3.3) we have 

4II/WILW-') = rj{\°Wi\2 + kA/il2 + Mhfi\2 +1A/2I2} ^ ^ 

+ 2 Re ^°° | { iohfxhh - ioUfxWi) do du. 

Since/ belongs to F x F, by Theorem 3.3 the last term of the above equality is equal to 

2Re{ i(LlJ2fuf2) - i(LlJ 2fuf2)}, where LlJ2 = J0°° A xl2dE{\). It follows that 

4 | |^ i / l l ;W"-<) = 2(Lg1,g1H +2(s2,£2)* = 4£(g), 

where &• = (l - £(0))/. If we put ht = (E(0) - £(0_))/, then 

E(g) = E(f - (0, ft2)) = E(f) - (fc2, fc2)ij, 

where we use that (/ii, 0) G / and £( / , (0, /i2)) = (/z2, /z2)ç. The proof of Lemma 3.6 is 
completed. 

Making use of these lemmas, we can prove the following: 

THEOREM 3.7. F± can be uniquely extended as an isometric operator from 0~{\ to 
L2(R x Sn~l). 

PROOF. From Lemma 3.6 and (3.5) F± can be extended as a bounded operator from 
9i' to L2(R x Sn~v). Then F±f = 0, if/ G J. Thus we can define an operator F± on A, 
which satisfies (3.5) for al l / G A. We assume that E(f,g) = 0 for all g G J/0 = KerA2. 
Let {/„} be a sequence i n F x F such that/n converges t o / G H. Put /J = (fn\,gn2), 
where g„2 - ( l -£(0))/„2 andput/in2 - (£(0)-£(0_))/„2. From(0,^2) G ^ it follows 
that | |/ - / „ | | 2 = | |/ - /„ ' | | 2 + \\hn2\\

2 and I I M I ^ * - - . ) = E(f'n). This means that/J 
converges t o / and ||7±/,||^2(/?X5«-i) = £(/")• The proof is completed. 

Later in Corollary 3.10 we shall show that F± of Theorem 3.7 is unitary from 9{\ to 
L2(R x Sn~l). 

THEOREM 3.8. For all t eR and all} G A\ 

(3.6) F±Û(t)f=eiUrF±f. 

PROOF. Let L+ be J0°° A 112 dE(X ) and put 

/ r l / 2 - 1 / 2 . r l / 2 x 

/ cos tL+ L+ sm tL+ ] 
n 0 - r i / 2 . -1/2 , , 1 / 2 

V —L+ sin JL+ cos tLJ J 
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Then d(V(t)f)/dt = AV(t)f for/ G Y x Y. Thus/(0 = [(U(t) - V(t))f]A satisfies that 
d(emÀ)f(t)) I dt = 0 and/(0) = 0. It follows that/(f) belongs to KerA, which implies 
that dfl dt=0 and/(0) = 0. We see that U(t)f = V(t)f for all Y x Y. Therefore from 
(3.1) and (3.3) for a > 0 and/ eYxY 

(F±U(tV)(a9u) = Af(a){(iacosta-asmta)a±flX(T9cj) 

+ (i sinter* cos ta)V±f2)((T,u)}/2 = eita(F±f)(s9uj). 

Similarly for a < 0 and/ G F x F(F±£/(0/)(tf,a;) = ^(F^ia.u). The proof is 
completed. 

The following theorem implies that W± and F± are unitary. 

THEOREM 3.9. Le£ (f(X) be a real valued function such that there exists a partition, 
• • • < Af2 < A*, < A^ < A,* < A2

± < • • • o/(0, ±00) with the properties; \± —» 0 
as db& —• —00, A^ —> +00 as ±k —• 00, and for k — 0, ±1 , ±2 , . . . <p(\) is smooth and 
(f'(\) > 0 in A G (A*_i, A*). F/zerc we /z#ve 
(3.7) s - lim ^ ( ^ [ g ^ - M ^ A = FfMfforf e H0. 

t—>±oo 

w/^re (ff}/)( o",o;) w similarly defined to (3.3) by changing (J±f)(<Jyuj) with 
[%(\a\)f](oo). 

COROLLARY 3.10. The operators W± and F± are unitary operators from Ho to 9f\ 
and from fH\ to L2(R x Sn~l), respectively. 

PROOF. We assume that there exists g G H\ such that (W±f, g)^ = 0 for all/ G //0. 

Then from (3.7) (F*±f 9F±g)Li(RxSn-\) = 0. Since F*± is unitary (see Theorem 2.1 in 
p. 100 of [5] and Theorem 5.1 in [6], we see that F±g = 0. From Theorem 3.7 it follows 
that g = 0. The proof is completed. 

4. The proof of Theorem 3.9. In order to prove Theorem 3.9 we need several lem­
mas. 

LEMMA 4.1. Let £(a,u) be an element ofL2(R x Sn~l ). Then we have the following 
two assertions; 

i) Ifcrt(a9u) G L2(R x Sn~]), then F*±t G D(A) andÂF*±£ = F*±(ia£). 
ii) If supp £ C {((7,u) : 0 < a < \a\ < b}, then a Bochner vector-valued integral 

in L^(ft) J[T(±cr)£(a, -)](x)da belongs to^J^l G D(L), and 

(4.1) (Lf±£){x) = J[T(±(r)a2£(a9-)](x)da. 

PROOF. We only show the statement ii). We assume that the support of £ G L2(R x 
Sn~l) satisfies the assumption of the statement ii). Then for any/ G L^iQ) we have 

(fJ*±t\=U±fJ)mRxs^) 
(4.2) 

= j(f,[n±cj)£(cj,-)}%d(j. 
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Since \\J*(±CT)1((T, -)\\L2_ (Q) < C|| £(cr, OH^s"-1)» w n e r e Conly depends on the support 

of I, from Theorem 1 in page 133 of [16] J±(±a)£(a,-) is Bochner integrable with 

respect to a measure da on R in L2_^(£l). The linear functional T{h) = (/", h)^ is bounded 

on L ^ ( Q ) f o r / G L* (Q). Thus by Corollary 2 on page 134 of [16] it follows that 

j / , / r ( ± ^ K ( ( T , - ) ^ ) = j{f,n±o)t(a,-)\d(7, 

which implies that from (4.2) J J/* ( ± a ) £ (a , -) ^ = J/^£ G f). J / ^ G D(L) and (4.1) 

are easily proved. The proof is completed. 

The operator F*± satisifies the following 

LEMMA 4.2. Let l(a,u)) be in L2(R x Sn~l) with supp£ C {(a,u) : 0 < a < 

| a | < b} and let g(x) be in J-(' such that g = F*±£ G A\. Put 

(4.3) hk = -ik /o°° ^ - 2 [ A n
± ( a ) r ( T ^ ) n ^ , 0 - ( - l ) ^ n

± ( a ) r ( ± a ) £ V , - ) ] ^ , 

where k = 1,2, lf(a,cj) = 1(—CT,—UJ) and the integrations of (4.3) are Bochner's 

integrals. Then g — (h\, hi) belongs to I = KerA. 

PROOF. From (3.1) and (3.3) we see that fo r / G 7.x y 

£ ( A * ) = J r A j ( a ) ( / a ^ ( T ^ ) / i + J / ( T a ) / 2 ^ ( a , - ) ) L 2 ( ^ ) ^ 
(4.4) 2J0 

+ - j [ ^ ( - a K - Z a ^ i a y ^ ^ i a ^ ^ V , - ) ) ^ - ) ^ . 

P u t / = 0 or / 2 = 0 in (4.4); then from Lemma 4.1 it follows that (/i, Lg\ )^ = (/i, L/ij )f, 

and (/2, g2)f) — (̂ 2» ^2)t), which implies that g — (h\, hj) belongs to / from the properties 

of J± stated in Theorem 3.3. The proof is completed. 

By the following lemma we can neglect the projection Q' in (2.8). 

LEMMA 4.3. Let g±(t) be F*±Ffe~itip(iAo)f. Then E(F*±Ffe-it(f(iAo)f--

[ffJe-W^f]) - E(g± - Je~it(p(iAo)f) converges to 0 as t ^ ±oo, where ip(\) sat­

isfies the assumption of Theorem 3.9. 

PROOF. Let p(t) = E?=, W ^ ^ / P / ; + EiJe-^'^fJ^]/\2
k. Then 

Q>je-itp(iAo)f = Je-itV(iA0)f + p^y S j n c e g±(ty b e l o n g s t 0 <tf't w e m a y s h o w t h a t 

|£(7e'^< ; A o )/ ,p(/)) | + | E ( / ? ( 0 ) | converges to 0 as t —> ±00 . It follows that 

| £ ( / ^ ° > / , p ( 0 ) | + \E(p(t))\ < C{ \\f\\HMt)h + \\p(t)\\2
H} • 

Thus from the definition of p(t) we may show that E(je"v('Ao)f,f^) converges to 0 as 

t —> ±00 . From the spectral family of iAo we have 

(4.5) 

2 [ ^ ( M 0 ) / ] A ( O = e - ' V < m ) X - ( 0 ' ( f i ( a / 2 ( 0 ) + e - ^ H î | ) X + ( 0 ' ( f i ( 0 . / 2 ( 0 ) 
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where X + (0 = i ( . ^ ^ " ' j , X_«) = l ( _ ^ ^ " ' j . Since 

\E(Je-it(p{iAQ)f^)\ < C\\f\\Ho, where C does not depend on t and/, we may show that 
E(je-W

iA^fJ±) -* 0 as 11\ -+ oo for/ G H0 with supp/ c { 4 G / ? w : 0 < ^ < | ^ | < 
&}. Making use of (4.5) and 

(4.6) 
EiJe-^^Uh = >i{le-^^nt(JPkt)L2Qr LHRp 

±\k([e-itip{lAo)f]^(JPk)A) 
mmi 

we can write (4.6) by the sum of the forms J™ e~it(f(±a)q(a) da, where q{a) e Ll(R+) 
and supp g C {a : 0 < a < a < b}. Since ^'(a) is not zero in each interval, by the 
Riemann-Lebesgue theorem it follows that (4.6) converges to 0 as 11\ —» oo. The proof 
of Lemma 4.3 is completed. 

The last lemma to prove Theorem 3.9 is as follows: 

LEMMA 4.4. We assume that the inverse Fourier transforms of components off are 
smooth and their supports are contained in { £ : 0 < a < | £ | < b}. Then there exists 
a positive constant 7 > 1 such that for the operator V defined in i) of Definition 3.2. 

|| V jb
e-{^-'^)fo{a)ak[^f](a, .)da\\, 

Ja 

(4.7) + || V f\-(±°ls-'*{-°))%{v)vk[^f]{o,-)do\U < C(l +s+ M r • 
Ja 

where k is an integer, s > 0, t G R± and C depends on/ , k and 7. 

PROOF. We only consider the term in (4.7) involving the function 

f±(x,s,t) = t e ^ 2 ' - ^ ) %{o)ok[^f]{a,-)do. 
Ja 

From Holder's inequality it follows that for/? > 1 

\\Vf±{-,sJ)\U<C{\\Vf±{.,sJ)\\L^JP~{)'P 

x(| |v/± ( . . , ,oiLV l K W ) ( a ))
, / p 

^c.di/^^.oii^^-'^diÀcs^on^^^))1^-
First from the definitions of [jQ(cr)h](x) and F^f, and the assumption of/ we see that 
H/iO'̂ Oll/^c/?») is bounded by some constant depending o n / and not depending on s 
and t. We take a positive integer j such that/?(l +6 ) > \i +j and 7 > p, where \i > 1/2. 
Making use of the equality 

{±i(2as±t^\a)ylda}
me-i(a2s-tif(a)) = eA"2'-'"™), 
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and the integration by parts, we can obtain that 

m 

\\f±(;sj)\\H2 .m<C{s+\t\ym sup £ l l#C( - . " ) l l t f <*.), 

where £(jt,a) = [^(a^F^fia, •)](*) and C does not depend on t and s. Thus (4.7) 
holds for 7 = (m — p) /p . The proof is completed. 

PROOF OF THEOREM 3.9. First we remark that from Theorem 2.1 on page 100 of [5] 
and Theorem 5.1. of [6] F*± is a unitary operator from Ho to L2(R x Sn~]) such that 

Let / be an element in Ho such that the Fourier transform of the 
components are smooth and supp/ C { £ : 0 < a < | £ | < £} . We note that from (5.7) 
f±et*pm = e-i*°F±t From the equality 

Jtip(iA) { Fle^^Fff - [Q7/̂  V ^ / ^ / f }, 

Lemma 4.2 and Lemma 4.3, we may prove that E(h±(tj} —> 0 as t —• dboo, where 

fc±(f) = (/if (0,/if (0) is defined by 

^ ( o = -/* f°{Â±(<7)(7*-2Lr (Ta) - x ^ o V ) ] ^ , •) 
(4.8) •/0 

+ ( - l ) ^ ( - a ) a ^ " 2 [ r ( ± ( 7 ) -j(x)X((T)]l't((T9 •)} Ax, 

* + 

with et(a,u) = ^t(p{o\F^f)(a,u) and £/(tr,a;) = £,(-<7,-o;). Since from the state 

ment ii) of Lemma 4.1 hf(t) belongs to D(L), we see that 2£(/rt(f)) = (Lhf(t),hf(t)) 

(hf(t), hf(tj) . Then from (3.2) and (4.1) it follows that 

L/if (0 = -fc±(r) + (Lj -jLo)[e-lt^A^f]u 

where /i^ is defined by (4.8) as k = 3. We have 

||(L/ -yLo)[e-"**o)/].|U < C{ l k ~ W ) / l k + ll<V^<Mo)/lk} 
= C{||/ |k+||AQ/-||Wo}. 

Therefore in order to prove that £(/z±(r)) converges to 0 as t —> ±oo we have to show 

(4.9) lim || Af(0|U = 0 fori = 1,2,3. 
f—>±oo 

Since /if (f) (i = 1,2,3) have essentially the same form, we only show (4.9) for / = 1. 
By the definition of J*(±a) we see that 

hf(t) = / r{Â^(t7)a-1 /?(±a)V^(t7y^ ( f f )(f^ ) / )(a , •) 
(4.10) J0 

+ B^(-a)a-lR(Tcr)Vro(cT)eit^-a\Fff)(-a^-')}da 
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Forr > 0 we define hf(t,±r) by changing R(±a) with R((O2 ±ir)xl2) in (4.10). Then 

from R((a2 ± ir)ll2) = ±i J™ e^-*2**)* ds it follows that 

hf(t, ± r ) = T [°° e^KL*iT)s[V f°° ^ X T ^ - V ^ V ) 

XÂ±(G)G-XrQ{G)(^f)(G,.)do\ds 

± i l°° e±l(L±ir)s[V [°° e-{
±(j2s-^-a)t) 

From Lemma 4.4 it follows that 

(4.11) \\ht(t,±T)\\r> <C(ty1+\ 

where C does not depend on r. On the other hand for any g G L2^ (Q) 

(4.12) llim(*f(r,±r),*)4 = (Af(0,*)4. 

(4.11) and (4.12) imply that hf (t, ± r ) converges weakly to hf (t). Thus 

l | /«f(0| | i i<!iml|/«fa±r)ll*<c|r|-7 + 1 . 

Since the set consisting of considered/ is a dense set of H0, the proof of Theorem 3.9 is 
completed. 

APPENDIX. We shall state a generalization of Theorem 2.1 in [11]. Put D± = {/ e 
HQ : [Uo(t)f](x) = 0 for |*| < ±t} and denote W±D± by (D±. Then we can prove the 
following: 

THEOREM A. 1. The spaces (D± satisfy the following properties: 
i) U(t)<D+ C <D+ fort> 0, U(t)<D- C <D-fort< 0; 
a) nteRû(t)ô+ = {0} = r\«*#(02>-; 

///) Ut<ERU(t)'I)+ and [Jt^RlJ{t)(D- are dense subsets of 9f§. 

This theorem is proved by a similar argument in Section 4 and 5 of [11]. 
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