Type 1 Diabetes and Prediabetic State in a Monozygotic Triplet

M. Krokowski¹, M. Abel¹, A. Teodorczyk¹, A. Szadkowska¹, B. Pyrżak², B. Rymkiewicz-Kluczyńska², J. Bodalski¹

¹Institute of Paediatrics, Medical University of Lodz; ²Department of Paediatric Endocrinology, Medical University of Warsaw, Poland

Abstract. Type 1 diabetes mellitus (IDDM) results from a chronic process of autoimmune destruction of β cells of the Langerhans islets. The presence of autoantibodies (ICA, GADA, anti-IA2, IAA) in serum precedes the clinical onset of the disease. Genetic predisposition for IDDM is connected with HLA, CTLA-4 and insulin gene region.

The aim of the study was the genetic and immunological analysis of a triplet. One of them developed Type 1 diabetes mellitus. We analysed HLA class II, CTLA-4 and insulin gene polymorphisms in the whole family. Besides, we investigated immunological status of three brothers.

All patients present identical genotype for VNTR loci: D1S80, D17S5 and Apo B, as well as for HLA-DRB1, - DQA1, - DQB1, CTLA-4 gene and all studied insulin gene polymorphisms. That proves their monozigosity. The triplet presents strong genetic predisposition for IDDM. The two patients without overt diabetes have increased levels of ICA, GADA, IA2 and IAA.

Key words: Triplet, Type 1 diabetes, Prediabetes, Monozygosity, Genetic predisposition, HLA, CTLA-4, Insulin gene polymorphisms, Autoantibodies

INTRODUCTION

Type 1 (insulin dependent) diabetes mellitus results from a chronic process of autoimmune destruction of β cells of the Langerhans islets. The first sign of β-cell destruction is the appearance of autoantibodies (ICA-islet cell antibodies, GADA-glutamic acid decarboxylase antibodies, anti-IA2 (tyrosine phosphatase) [12], IAA (autoantibodies to insulin) [13, 14]. The presence of these autoantibodies in serum may precede the clinical onset of the disease over several years [4]. Type 1 diabetes has a strong genetic component [2, 18]. Genetic predisposition for the disease is mainly connected with HLA [1], CTLA-4 and insulin gene [11].

Downloaded from https://www.cambridge.org/core, IP address: 54.191.40.80, on 14 Jul 2017 at 16:13:29, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0001566000000064
Family studies show that relative risk of the disease development is related to the affinity with diabetic subject [3]. It rises from 0.2% for general population to 30-50% for monozygotic siblings [10, 15, 17].

Here we present an immunological and genetic analysis of three brothers (a triplet) aged 15 years old. One of them developed Type 1 diabetes mellitus (patient 1) three years ago. Two others present immunological markers of prediabetes stage.

MATERIALS AND METHODS

HLA class II was performed using sequence-specific oligonucleotide (SSO) hybridisation after PCR amplification of the HLA-DRB1, -DQB1 and -DQA1 genes according to the XII International Histocompatibility Workshop protocols.

CTLA-4 exon 1 position 49 A/G dimorphism was analysed using allele-specific dot-blot hybridisation following PCR amplification.

Insulin gene region polymorphisms: -4217 PstI, -2221 Mspl, -23 HphI, +805 Dra III, and +3580 Mspl were analysed using the PCR-RFLP (restriction fragment length polymorphism).

ICA was analysed with an indirect immunofluorescence assay and the results were expressed in Juvenile Diabetes Foundation units (JDF-u) by a standard curve based on the international JDF-u reference sera sample.

Anti-GAD and anti-IA2/ICA512 antibodies were analysed using radioimmunoprecipitation assay with 35S-methionine-labelled recombinant human protein GAD 65 and IA2 respectively. Normal levels of measured antibodies were: < 5.2 AU for GADA and < 8.1 AU for anti-IA2.

IAA antibodies were determined in a competitive binding radioligand assay using moniodinated insulin as antigen and polyethylene glycol (PEG) as precipitating agent. Normal level of IAA was below 6.8%.

RESULTS

The three brothers present identical genotype for VNTR loci: D1S80, D17S5 and Apo B, as well as for HLA-DRB1, -DQA1, -DQB1, CTLA-4 gene and all five studied insulin gene polymorphisms. In our opinion these results definitely prove the monozygosity of our patients.

The results of genetic typing of HLA alleles predisposing to Type 1 diabetes are shown in table 1. The analysis of genetic susceptibility linked both to insulin and CTLA-4 gene is presented in table 2.

The two patients without overt diabetes have increased levels of ICA, GADA, IA2 and IAA from the beginning of observation (Fig. 1 and 2).

In case of these two boys without overt diabetes we performed periodically intravenous and oral glucose tolerance test (IVGTT and OGTT). Glycemic curve, FPIR (first phase insulin secretion) and C peptide levels present no abnormalities.
Type 1 Diabetes and Prediabetic State in a Monozygotic Triplet

Table 1 - Analysis of HLA genes of the family

<table>
<thead>
<tr>
<th></th>
<th>DRB 1</th>
<th>DQA 1</th>
<th>DQB 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1 - IDDM</td>
<td>16</td>
<td>0102</td>
<td>0301</td>
</tr>
<tr>
<td>Patient 2</td>
<td>16</td>
<td>0102</td>
<td>0301</td>
</tr>
<tr>
<td>Patient 3</td>
<td>16</td>
<td>0102</td>
<td>0301</td>
</tr>
<tr>
<td>Mother</td>
<td>0401</td>
<td>0301</td>
<td>0301</td>
</tr>
<tr>
<td>Father</td>
<td>16</td>
<td>0102</td>
<td>0301</td>
</tr>
</tbody>
</table>

Table 2 - Analysis of genetic susceptibility linked to insulin gene region and CTLA-4 gene

<table>
<thead>
<tr>
<th></th>
<th>-2221 MspI</th>
<th>-23 HphI</th>
<th>+805 DraIII</th>
<th>CTLA-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1 - IDDM</td>
<td>pp</td>
<td>pa</td>
<td>pa</td>
<td>GG</td>
</tr>
<tr>
<td>Patient 2</td>
<td>pp</td>
<td>pa</td>
<td>pa</td>
<td>GG</td>
</tr>
<tr>
<td>Patient 3</td>
<td>pp</td>
<td>pa</td>
<td>pa</td>
<td>GG</td>
</tr>
<tr>
<td>Mother</td>
<td>pa</td>
<td>pa</td>
<td>pa</td>
<td>GA</td>
</tr>
<tr>
<td>Father</td>
<td>pa</td>
<td>pa</td>
<td>pa</td>
<td>GA</td>
</tr>
</tbody>
</table>

Fig. 1 - Relative levels of autoantibodies in Patient 2. Norm = 1.
DISCUSSION

All three patients shared remarkably similar risk factor profiles for diabetes. The results indicate exactly the same genetic predisposition. The analysis of HLA class II alleles distribution shows DRB1*0401-DQA1*0301-DQB1*0302 haplotype. Our studies revealed that this haplotype is strongly associated with IDDM in Polish population [6]. All three patients present GG polymorphism in CTLA-4 gene [5] – the most frequent genotype among Polish diabetics.

They present pp-pa-pa genotype in -2221 Mspl, -23 HphI and +805 DraIII insulin gene polymorphism respectively. In our studies of polish population pp-pp-aa constellation of these polymorphisms was strongly correlated with IDDM [9]. The similarity of three brothers concerns also immunological markers of Type 1 diabetes. All of them have definitely increased levels of autoantibodies. Interestingly, only one of monozygotic brothers developed overt diabetes. Two others are staying in a silent phase of the disease – prediabetes [19]. However, the increasing levels of autoantibodies prove that the immunological process of β cell destruction is still proceeding [17] Prediabetic brothers present normal levels of C-peptide, FBG (fasting blood glucose) and FPIR, which indicate normal residual and postprandial insulin secretion. These data suggest that two brothers without clinical disease symptoms have smaller degree of β cell destruction.

Our analysis did not reveal a clear difference between one diabetic and two prediabetic brothers. These results support the notion that genetic and immunological factors are not the unique elements playing a role in the pathogenesis of IDDM.
Type 1 Diabetes and Prediabetic State in a Monozygotic Triplet

This is the first report about triplet suffering from Type 1 diabetes in Poland. Further studies of monozygotic siblings will shed light on essential risk factors for Type 1 diabetes.

REFERENCES


Correspondence: Dr. Marcin Krokowski, Institute of Paediatrics, Medical University of Lodz, Sporna 36/50, 91 738 Lodz, Poland, e-mail: m.krokowski@alef.am.lodz.pl.