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Abstract. The genetic and environmental determinants of a brief assessment of meta­
bolic rate at rest and under psychological stress were studied in 40 pairs of monozygotic 
and 40 pairs of dizygotic young adult male twins. Height, weight and age were employed 
as covariates. Univariate analyses showed a high heritability for height and weight and 
moderate heritability for metabolic rate. Classical twin analyses and multivariate genetic 
modeling indicated that genetic influences on resting metabolic rate were entirely ex­
plained by body weight: there was no independent genetic contribution to resting meta­
bolic rate. Metabolic rate under psychological stress, on the other hand, showed a sig­
nificant genetic effect. The exponent (3/4) in the power function relating body weight 
to resting metabolic rate was the same as that found in a wide variety of animal species, 
a value that has been proposed as defining a body weight set point. We speculate that 
an adult body weight set point is genetically transmitted. Independent genetic effects on 
resting metabolic rate would be observed only when the normal equilibrium between 
body weight and metabolic rate is unbalanced during development, aging or disease. The 
study illustrates the use of multivariate genetic analyses of twin data which may be readi­
ly applied to widely used metabolic rate assessments. 
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Genetic factors have recently been shown to influence human obesity and body weight 
across the spectrum from thin to fat. Classical twin studies have revealed a high herita­
bility for the body mass index [25], and commingling analysis of twin data has found 
evidence for three distributions of body weight, compatible with genetic transmission 
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[19]. Adoption studies have shown a relationship between the body mass index of bio­
logic parents [25,18] and siblings [24] with that of adoptees and no relationship between 
the body mass index of adoptive parents and adoptees. 

Genetic influences leading to increased body weight in humans may be transmitted 
via reduced metabolic rate. Until recently, such a mechanism would have seemed im­
probable, for, on average, obese persons have elevated metabolic rates [8,17,20]. Lon­
gitudinal studies of individual persons, however, have suggested an alternative. Roberts 
et al [22] have shown that lower energy expenditures in infants at three months predict 
increased body weight and body fat at two years of age; Ravussin et al [21] have shown 
that lower metabolic rates among adult Pima Indians predict increased body weight and 
body fat over a four-year span. Finally, Griffiths et al [6] have found a correlation of 
0.77 between intake (and presumably energy expenditure) at age 4 years and body fat 
in a group of English girls. 

There has been surprisingly little investigation of the role of genetics in the determi­
nation of metabolic rate and the conclusions from the available studies differ. Family 
studies by Bogardus et al [1] and by Bouchard et al [2] found only a small familial aggre­
gation of metabolic rate when lean body mass was taken into account. By contrast, clas­
sic twin studies by Fontaine et al [4] and by Bouchard et al [2] have shown a high herita-
bility of resting metabolic rate, even when corrected for measures of body size. This 
result is somewhat surprising given the extensive evidence that, for individuals at a stable 
body weight, there is a direct relationship between body size and resting metabolic rate. 

The importance of the question and the conflicting results led us to examine the role 
of genetic factors in the determination of metabolic rate in a group of young adult male 
twins. Classic twin analyses of a brief assessment of metabolic rate at rest and under 
stress were supplemented with a path analysis to explore the relationship between body 
mass and metabolic rate. Such analyses are an important extension of the classical twin 
method and will provide a fuller understanding of the relationship between metabolic 
rate and its covariates. 

METHODS AND MATERIALS 

Subjects consisted of 40 pairs of monozygotic (MZ) and 40 pairs of dizygotic (DZ) 
healthy young adult male twins, mean age (± SD)= 19.3 ± 2.5 years (range 16 to 24), 
who were recruited from the population-based Birmingham Family Study Register. Zy­
gosity was determined by questionnaire items of the type validated against blood typing 
by Kasriel and Eaves [10]. Subjects were paid for participation in the study which was 
part of a wider investigation of genetic determinants of blood pressure and heart rate 
at rest and under stress [3,27,28]. Testing was carried out in the late afternoon or even­
ing. Subjects were asked to refrain from physical exercise, smoking, drinking tea, coffee 
or alcoholic beverages for one hour prior to their arrival at the laboratory. Upon arrival, 
they were asked about compliance with this request and in the rare instances of noncom­
pliance testing was delayed by one hour. 

Subjects visited the laboratory in pairs but were tested individually. Testing took 
place in a modestly lit, temperature-controlled room and the twins were not permitted 
to communicate with one another during the experiment. 
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Upon arrival at the laboratory, subjects were weighed, their height was measured 
and they were allowed to rest while becoming adjusted to the laboratory. Electrodes 
were then attached for recording of heart rate. A valve, mouthpiece and noseclip were 
used in the measurement of the respiratory variables. There followed eight minutes of 
relaxation and habituation, during the second four minutes of which measurements were 
made. Oxygen consumption and carbon dioxide production were measured by indirect 
calorimetry with a Beckman Metabolic Cart. Continuous monitoring of the volume and 
rate of respiration, oxygen and carbon dioxide concentration in the expired air, tempera­
ture and pressure, permitted accurate determination of oxygen consumption (V02) and 
carbon dioxide production (VC02) in ml/min. Energy consumption was estimated by 
use of the equations of Weir relating V02 and VC02 to energy kj/min [29]. 

Results are reported for the four minutes of formal relaxation and for the first four 
minutes of psychological stress. In this study, stress was induced by the active psycho­
logical challenge of playing a video game of the "Space Invaders" genre which our 
previous research had shown to elicit considerable cardiac reactivity in some individuals 
[3,27,28]. Details of this task and of its influence on heart rate have been reported else­
where [3]. 

The first data analyses were descriptive statistics of the samples of MZ and DZ twin 
pairs followed by calculation of the intrapair correlation coefficients. For each variable, 
the heritability (h2) was estimated by two methods. The first is the classic twin method 
of doubling the difference between the intrapair correlation coefficients of the MZ and 
DZ twins. The second was a model-fitting method of path analysis applied to the ob­
served variances and covariances for MZ and DZ twins [7,23]. To explore the relation­
ships between variables, the method of maximum likelihood estimation was used with 
aid of the computer program LISREL-VI [9] to fit a series of multivariate path models 
to the MZ and DZ covariance matrices for log(Height), log(Weight) and log(Energy), 
with age as an additional covariate. These analyses were performed separately for meta­
bolic rate at rest and for metabolic rate under stress. The most parsimonious models 
which fit the data are shown in Figs. 1 and 2. In each case, removing further parameters 
from the models led to a significantly poorer statistical account of the observations. 

RESULTS 

Descriptive statistics for the samples of MZ and DZ twins are shown in Table 1 for both 
observed values and for logarithmically transformed height, weight and body mass in­
dex. As befits a sample of healthy young men, these values are within normal limits. Ta­
ble 1 also shows the intrapair twin correlations for these variables as well as the two esti­
mates of heritability described above. The correlations for MZ twins are approximately 
twice those for DZ twins, as expected from the fact that MZ twins share all of their 
genes, while DZ twins share, on average, only half their genes. Doubling the difference 
between these correlations in the classic twin method yields high estimates. Problems 
with the classic twin method make it desirable to turn to maximum likelihood estimates 
of heritability obtained by the model-fitting procedure which take account of the sam­
pling variability inherent in the observations. This approach also yields high estimates 
of heritability — for height (0.77), weight (0.80) and body mass index (0.87). 
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Table 1 - Univariate descriptive statistics and heritability (h2) estimates for body size variables 

Variable 

Height (cm) 

log10(Height) 

Weight (kg) 

log10(Weight) 

Body Mass Index 
(kg/m2) 

MZ twins (N = -

Mean SD 

174.91 

2.24 

66.14 

1.81 

21.55 

7.34 

0.02 

10.91 

0.08 

2.95 

40 pairs) 

r 

.817* 

.804* 

.949* 

.948* 

.855* 

Mean 

177.67 

2.25 

67.70 

1.82 

21.37 

DZ twins (N = 

SD 

6.98 

0.02 

12.66 

0.08 

3.27 

r 

.412* 

.414* 

.537* 

.528* 

.541* 

40 pairs) 

2(r MZ rDz) 

.81 

.78 

.82 

.84 

.63 

h2 

.77* 

.71* 

.96* 

.89* 

.87* 

p<.01 

Table 2 - Univariate descriptive statistics and heritability (h2) estimates for resting metabolic 
rate 

Variable 

Energy 
(kj/min) 

Energy 
(100xlog10) 

Energy/BMIX 
(kj min ' /kg m 

100 
>"2) 

Energy/Surface Area 
(kj min ' /m2) 

MZ twins (N = 

Mean SD 

5.25 

70.90 

24.51 

2.91 

1.19 

10.37 

5.23 

0.54 

40 pairs) 

r 

.482* 

.478* 

.374* 

.251 

Mean 

5.25 

71.04 

24.80 

2.86 

DZ twins (N = 

SD 

1.08 

9.81 

5.03 

0.54 

t-i 

.129 

.166 

.312 

.229 

= 40 

2(i 

pairs) 

MZ _ rDZ' 

.71 

.62 

.12 

.04 

h2 

.42* 

.43* 

.06 

.004 

* p<.01; * p<.05 

Table 2 shows the intrapair correlation coefficients of MZ and DZ twins for resting 
metabolic rate, both uncorrected for body size and corrected by two measures designed 
to take body size into account — surface area and body mass index (weight in kg/height 
in meters squared). The correlation coefficients of MZ twins were reduced by these cor­
rections for body size, while those of DZ twins were increased. As a result, heritability 
estimates declined dramatically, from 0.42 to 0.004 and 0.06, respectively. These meas­
ures of body size clearly have a strong effect on the estimation of the heritability of 
metabolic rate. 

The effects on heritability of the relationships between the variables was assessed fur­
ther by the model-fitting procedure described above. The results for the multivariate 
models are clear. There is a common determinant of height and weight which is entirely 
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genetic. This genotypic variation, which translates phenotypically to a measure of body 
size, controls 86% (0.932) of the variation in body weight. The remaining variation is 
attributable to very small increases in weight with age (5%, or 0.232), idiosyncratic en­
vironmental factors (5%, or 0.232) and a small residual component not accounted for 
by the model (3%). Height is less completely determined by the common genetic factor 
(44% of the variance), but there appears to be a specific genetic contribution to height 
independent of weight (37% of the variance) and, also, idiosyncratic environmental var­
iation (19% of the variance). 

Common genetic 
influence on body 
size . 6 6 / \ . 9 3 

Phenotypes Log(height) Log(weight):—^-Log(energy) 

.61 / \.44 .19/ \.23 All \.74 

lght) Log(weignt)—'••LogCenerg] 

\.44 .19/ \.23 .47/ \.7. 

E Age E G I 
Specific influences of 
genes(G), individual G E Age E G E 
environments(E) and age. 

t The standardized path of .50 corresponds to a regression 
coefficient of .73, which is close to that predicted by Kleiber's 
relationship: kcals/unit time <* kg 

* The observed data do not depart significantly from those 
predicted by the model (JcA = 56.1, p=.15). Dropping any 
parameter from the modeTsignificandy worsens the fit to 
the data; adding parameters does not significantiy improve 
the fit to the data. 

Fig. 1. The most parsimonious model for log(height), log(weight) and log(energy consumption at rest). 

Variation in resting metabolic rates, in as much as it is predictable, is entirely ex­
plained by body weight. Once body weight has been taken into account, there is no in­
dependent genetic contribution to metabolic rate. The standardized regression of 
log(Energy) on log(Weight) shown in Fig. 1 is equivalent to an unstandardized regres­
sion of 0.77. This value is not significantly different from the 0.75 predicted by Kleiber's 
rule [5], discussed below. 

In contrast to the results for metabolic rate at rest, those for energy expenditure dur­
ing stress suggest an additional genetic contribution to energy expenditure, over and 
above that predicted by body weight. Although a model omitting this additional contri­
bution does not fail (x47 = 61.2, p = 0.08) allowing for this specific genetic contribution 
significantly improves the fit to the data (x2 = 5.18, p< 0.025). Fig. 2 shows that this 
specific genetic contribution to metabolic rate may account for 22% (472) of the vari­
ance in energy expenditure during the task. Note that there is still a sizeable, though 
somewhat reduced, component of metabolic rate which is predicted from body weight 
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and, as with resting metabolic rate, the standardized regression coefficient of log(Ener-
gy) on log(Weight) corresponds to an unstandardized coefficient of 0.73, again very 
close to the 0.75 predicted by Kleiber's rule. 

Common genetic 
influence on body 
size 

Phenotypes 

Specific influences of 
genes(G), individual 
environments(E) and age. 

Log(height) Log(weight)^-VLog(energy) lent; i_x>g(weignt 

\.44 .23/ V: 

E Age 

.23 

E 

84 

t The standardized path of .57 corresponds to a regression 
coefficient of .77, which is close to that predicted by Kleiber's 
relationship: keals/unit time « kg 

' The observed data do not depart significantly from those 
predicted by the model OcAjf5 51.4, p=.3). Dropping any 
parameter from the model significantly worsens the fit to 
the data; adding parameters does not significantly improve 
the fit to the data. 

Fig. 2. The most parsimonious model for log(height), log(weight) and log(energy consumption under 
stress). 

DISCUSSION 

The results reported here provide a link between recent studies of the heritability of hu­
man obesity [18,19,24-26] and those of its pathogenesis [21,22]. It is now clear that 
obesity is highly heritable. Among the possible intervening mechanisms, metabolic rate 
is a prime candidate. Studies of English infants by Roberts et al [22], of English girls 
by Griffiths et al [6], and of adult Pima Indians by Ravussin et al [21], have demonstrat­
ed that a low metabolic rate is a risk factor for human obesity. And, as Griffiths and 
Payne [5] showed several years ago and Bogardus et al [1] more recently, metabolic rate 
is a familial characteristic. Is it also genetically transmitted? 

The evidence bearing on genetic transmission of metabolic rate has been surprisingly 
limited and, furthermore, inconsistent. It has been confined to two family studies [1,2] 
and two twin studies [2,4]. In the family studies of both Bogardus et al [1] and Bouchard 
et al [2], correcting the metabolic rate by a measure of body size left only a very small 
familial contribution to metabolic rate; the genetic contribution would be, if anything, 
smaller still. The twin studies by Bouchard et al [2] and by Fontaine et al [4], on the 
other hand, estimated a substantial heritability for the resting metabolic rate as indicated 
by the large difference in the intrapair correlation coefficients between MZ and DZ 
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twins. Furthermore, in contrast to the family studies, correction of metabolic rate by 
a measure of body size (weight, for example) left a large remaining estimate of heritabili-
ty — 0.40 in Fontaine's study and 0.80 in Bouchard's. 

The results of the present twin study differ from those of the earlier twin studies; 
they are more compatible with the results of the earlier family studies. They make it clear 
that once body size was taken into account, there was no independent genetic contribu­
tion to the resting metabolic rate. This conclusion was reached by two different methods 
of analysis. The first, the classic twin method, showed that estimates of heritability 
shrank to insignificance when metabolic rate was corrected by two measures of body 
size. The second, path-analytic, method showed that weight accounted for all of the var­
iance in resting metabolic rate shared by family members. 

The very close relationship found in this study between body weight and metabolic 
rate of a group of healthy young men appears to be an example of a general phenome­
non. Kleiber [12] has shown that, when corrected for body size, the metabolic rates of 
animals ranging in size from mice to elephants are strikingly similar. In these very differ­
ent species, metabolic rate expressed as kilocalories per day is proportional to body 
weight in kg raised to the power 0.75. 

Keesey [11] has proposed using this powerful between-species relationship as a means 
of defining a within-species relationship — the body weight "set point". He has shown 
that in a static, unstressed, state the body weight of rats is related to their metabolic rate 
according to Kleiber's law, with an exponent of 0.75. Furthermore, when the stability 
of their body weight is threatened, either by caloric deficit or caloric surplus, the rela­
tionship changes in such a way as to defend their usual body weight. Thus caloric deficit 
leads to a fall in metabolic rate and caloric surplus to a rise. According to Keesey's view, 
deviations from Kleiber's law indicate a disequilibrium between body weight and meta­
bolic rate. From this point of view, such a disequilibrium existed among those of 
Roberts' infants [22] and Ravussin's Indians [21] in whom low metabolic rate predicted 
subsequent weight gain. 

Thus, the low metabolic rate of these subjects can be interpreted from two points 
of view. The traditional viewpoint is that of mechanism. In terms of mechanism, the low 
metabolic rate can be viewed as the source of the caloric surplus that gave rise to the 
increase in body weight. However, the significance of the low metabolic rate can also 
be interpreted from the point of view of regulation. 

In terms of regulation, as Keesey [11] has proposed, the low metabolic rate can be 
viewed as an index of the extent to which body weight is below its "set point", or that 
level at which it is regulated under ordinary circumstances. The low metabolic rate thus 
reflects an instability in the equilibrium between body weight and energy expenditure. 
From this perspective, the increase in body weight can be viewed as a means of reaching 
a more stable equilibrium. But here is an apparent paradox: the system is not in 
equilibrium because the body weight is too high for the associated metabolic rate. Why 
should weight gain bring it into equilibrium? The answer is that, when weight is gained, 
metabolic rate increases more rapidly than does body weight. Thus, from the regulatory 
point of view, weight is gained in order to establish a new and more stable equilibrium 
with a body weight and resting metabolic rate related by Kleiber's law. 

In the present study of healthy young men of normal weight, body weight and meta­
bolic rate should be in equilibrium. Our path analysis provides quantitative description 
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of the way in which genetic influences on resting metabolic rate are mediated by body 
weight when the system is in equilibrium. As we have noted, the relationship between 
body weight and metabolic rate found by Roberts [22] and by Ravussin [21] among 
those subjects who gained weight appears to reflect a (temporary) disequilibrium in the 
system. 

In contrast to the lack of genetic influence on resting metabolic rate when body size 
is taken into account, we found evidence of a specific genetic effect upon metabolic rate 
during stress, and, once again, an exponent (0.73) very close to the 0.75 proposed by 
Kleiber as that relating body weight to metabolic rate. The emergence of a genetic contri­
bution to metabolic rate under stress, independent of body weight, is consistent with 
other evidence of genetically controlled differences in reactivity to psychological stres­
sors [3]. 

The model-fitting approach to the estimation of heritabilities and the multivariate 
genetic analysis provides a powerful and flexible method of analysis. It is based on the 
method of path coefficients [14] in which variation in observed phenotypes is expressed 
as a consequence of variation in unobserved, or latent, genotypes and environments 
[13,15]. Since a genetic model predicts different patterns for MZ and DZ twin resem­
blance, the maximum likelihood method can estimate path coefficients from the ob­
served phenotypic variances and covariances for the MZ and DZ twins. This method 
provides not only estimates of the parameters, but also tests of their significance and 
tests of the overall adequacy of the model. Heritability is a derived summary parameter 
calculated as the square of the standardized path from genotype to phenotype. 

Univariate models can be readily extended to multivariate ones that include common 
influences on several variables (such as height and weight) and direct paths between 
phenotypes (such as weight and energy consumption). The multivariate models thus al­
low the opportunity to account simultaneously for a complex set of observations in 
terms of a parsimonious model with few parameters. The present study illustrates how 
a path model yields a clearer understanding of the interrelationships between the ob­
served variables and their genetic determinants than would a series of classical twin 
studies carried out one by one. 

We readily acknowledge that the metabolic rate at rest that we have measured may 
differ from resting metabolic rate measured after overnight fasting. However, the con­
formity of our results to theoretical expectations for the control of our measured meta­
bolic rate at rest, and the apparent change in that control under stress, suggest that our 
conclusions would hold for a more rigorously defined resting metabolic rate. We are 
satisfied that the multivariate twin study methodology and techniques of analysis pro­
vide important insights in the study of these variables. On the basis of our analyses, we 
conclude that our results are consistent with the hypothesis that body weight set point 
is genetically determined and that genetic influences on resting metabolic rate are entire­
ly explained as a consequence of the predicted equilibrium between body weight and 
resting metabolic rate in healthy young adults. We do not expect to observe independent 
genetic effects on resting metabolic rate, except when this equilibrium is disrupted dur­
ing periods of developmental change or disease, or when departures from the set point 
are induced by caloric deficit or surplus. Metabolic rate during activity or stress, 
however, may well have independent genetic determinants which could account for 
differential weight gain or loss if these conditions were sustained. 
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Appendix 

A Description of the Model Fitting Procedure 

The procedure used to estimate genetic and environmental parameters is a form of linear 
structural equation modeling. With this procedure, we may account for observed covari­
ation and variation in terms of linear models relating measured, or observed, variables 
to unmeasured, or latent, genetic and environmental variables [7]. The estimated coeffi­
cients, or paths, of the model are equivalent to factor loadings or estimated partial 
regressions of the observed variables on the latent variables. In our analyses of single 
variables we consider three independent kinds of latent variation: additive genetic varia­
tion, environmental variation which is shared by members of a family, and unique en­
vironmental variation not shared by members of a family. To embody our assumptions 
about the genetic and environmental variables, we specify structural correlations be­
tween these latent variables for different members of a family. Thus, the additive genetic 
variable correlates 1.0 for MZ and 0.5 for DZ twins. The shared family environment 
correlates 1.0 for both MZ and DZ twins, while the unique environmental effects are 
assumed to be uncorrelated. We further assume that the paths, or coefficients, of the 
linear model that relate the latent variables to the measured variables are the same ir­
respective of birth order or zygosity. Thus, for a particular variable, we estimate three 
coefficients for the full model: a path from the individual's genotype to the measured 
variable, h; a path from the shared family environment to the measured variable, c; and 
a path from the individual's unique environment to the measured variable, e. If the la­
tent variables are assumed to have unit variance, then the squared values of the paths 
give the estimated contribution of the latent variable to the measured variation. These 
path coefficients may be standardized so that their squared value gives the proportion 
of measured variance accounted for by independent latent variables. For example, h2 

will be the estimated heritability of a measured variable; these heritability estimates are 
reported in Tables 1 and 2. 

The coefficients are estimated by maximum likelihood by numerical search for the 
parameter values which minimize the function: 

F ^ n i H E i l - l n l S i l + t r C E i ' S i H O 

summed over the two zygosity groups, where n; is the sample size of each group (40 in 
our case), S; is the ith observed covariance matrix, E( is the ith expected covariance 
matrix under the model, and k is the number of observed variables (7 in our case) [9]. 
This function is twice the difference between the likelihood of the data under our model 
and the likelihood constant calculated for a perfectly fitting model. Under appropriate 
distribution assumptions for the original data, this function is distributed as a chi-square 
with degrees of freedom equal to the number of observed statistics minus the number 
of estimated parameters [9,16]. 

For any particular variable, we have six observed statistics: for each zygosity, the 
variances of twin 1 and twin 2 and the covariance between twin 1 and 2. Estimating three 
parameters leaves three degrees of freedom to test the adequacy of the model. The fit 
of the overall model to the data can be assessed by the likelihood ratio chi-square test. 
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Failure of the assumptions implicit in the structural equation model will lead to a signifi­
cant chi-square within the resolving power of the data. Furthermore, if parameters are 
dropped from the model, the resulting more parsimonious model can be tested to estab­
lish its adequacy, and a difference chi-square provides a test of the significance of the 
deleted parameters [16]. Thus, this model fitting procedure can provide maximum likeli­
hood estimates of heritability, the influence of shared family environments and the in­
fluence of environments unique to the individual, a test of the assumptions of the genetic 
and environmental model, and tests of the significance of particular parameters. 

Common 
factor latent 
variables 

G 
additive genetic 

variation 

c 
shared family 
environment 

E 
individual 

environment 

.00 

latent common factor "size" 

Measured 
variable 

Specific 
latent 
variable 

Age 

Goodness of fit,X = 44.59, p =.2 
'(39(10 

Fig. 3. The factor model for log(height), log(weight) and log(energy consumption at rest). 
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The procedure readily generalizes to the multivariate case [7], where we can test 
hypotheses about the genetic or environmental independence of variables. Here we em­
ploy the same basic ingredients: additive genetic variation, shared family environmental 
variation, and individual environmental variation. Now, however, we can define a 
model which postulates, for example, a common factor which influences height, weight 
and resting metabolic rate, as well as specific influences on each variable separately. 
Fig. 3 shows the standardized coefficients for such a model fitted to the variance-
covariance matrices for log(Ht), log(Wt), log(Resting metabolic rate), and age. For each 
zygosity, we observed the variances for twin 1 and twin 2 for each of the three measured 
variables and age, and we observed the covariances between these seven variables. The 
observed data are given in Tables 3 and 4. 

Thus, for each zygosity we had 28 observed statistics, yielding 56 in all. If we esti­
mate 18 parameters, we have 38 degrees of freedom to test the fit of the model; in fact, 
for the model to be " identified " [9,16], one of our parameters must be arbitrarily fixed, 
thereby increasing the degrees of freedom by one [7]. The likelihood ratio chi-square in­
dicates that this model is quite adequate. Clearly, a number of the parameters are small 
or nonsignificant and may be dropped from the model without significantly reducing the 
likelihood of the observations. For example, there is no shared family environmental in­
fluence on the factor common to the three variables or on height specifically, no genetic 
effects specific to resting metabolic rate, and very little influence of age on height or 
metabolic rate. 

We can examine alternative, more parsimonious models. Data on MZ and DZ twins 
make it possible to examine causal relationships between variables. Consider an example 
in which variable A is highly genetic while variable B is strongly influenced by the shared 
family environment. If variation in A causes variation in B, then the cross-twin cross-
trait correlation of twin 1 variable A with twin 2 variable B will show a pattern of genetic 
determination. If variation in B causes variation in A, then the cross-twin cross-trait 
correlation will show a pattern of shared environmental determination. This simple 
method can be used to examine causality wherever variables show different patterns of 
genetic and environmental determination. The final model for height, weight and resting 
metabolic rate (Fig. 1) gives the most parsimonious account of these variables after drop­
ping nonsignificant parameters and exploring the possible alternative causal models. 
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