ON SOME BANACH SPACE SEQUENCES

Roshdi Khalil

We introduce the Banach space of vector valued sequences
\(\ell^p_q(E) \), \(1 \leq p, q \leq \infty \), where \(E \) is a Banach space. Then we
study the relation between \(\ell^p_q(E) \) and the Schur multipliers of
\(\ell^p \hat{\otimes} E \), where \(E \) is taken to be some \(\ell^r \).

0. Introduction

Let \(E \) be a Banach space. Cohen [3], used the spaces \(\ell^p(E), \ell^p(E) \)
together with the space he introduced \(\ell^p(E) \), to study \(p \)-summing
operators, and their dual ideal (see [11]). Apiola [1], studied the
duality relationships between the spaces \(\ell^p(E), \ell^p(E) \) and \(\ell^p(E) \).

In this paper we introduce the space \(\ell^p_q(E) \), and find its dual.
Further, we investigate the relationship between such spaces and the Schur
multipliers [2], on discrete spaces.

Throughout the paper, if \(E \) and \(F \) are Banach spaces, then \(E \hat{\otimes} F \)
and \(E \tilde{\otimes} F \) will denote the completion of the projective tensor product of
\(E \) with \(F \), and the injective tensor product, respectively [4]. Let
\(\phi \in E \hat{\otimes} F \); then \(\| \phi \|_\pi \) designates the projective norm and \(\| \phi \|_\epsilon \) that of
the injective norm. The dual of \(E \) will be denoted by \(E^* \) for any Banach
space \(E \). The set of natural numbers is denoted by \(\mathbb{N} \), and the complex
numbers by \(\mathbb{C} \). Let \(\ell^p \) be the space of \(p \)-summable sequences,
\(1 \leq p \leq \infty \).

Received 7 October 1981.

231
1. The space $l^{p'_q}(E)$ and its dual

Let E be a Banach space. Then $l^p(E)$ will denote the space of all functions $f : N \to E$, such that $\sum_{n=1}^{\infty} |\langle f(n), x^* \rangle|^p < \infty$, $x^* \in E^*$. The space $l^p(E)$ becomes a Banach space when one introduces the norm

$$\|f\|_{l^p(E)} = \sup_{x^*} \left\{ \left(\sum_{i=1}^{\infty} |\langle f(i), x^* \rangle|^p \right)^{1/p}, \|x^*\| \leq 1, x^* \in E^* \right\},$$

for all $f \in l^p(E)$, [3]. Grothendieck, [5], showed that $l^p(E)$ is isometrically isomorphic to $(l^{p'}(F)^*)^*$, where $F^* = E$, and $1/p + 1/p' = 1$.

Cohen, [3], introduced the space $l^{p'}(E)$ to be the space of all functions $f : N \to E$ such that $\sum_{i=1}^{\infty} |\langle f(i), g(i) \rangle|^p < \infty$, for all $g \in l^{p'}(E^*)$. The norm of f is given by

$$\|f\|_{l^{p'}(E^*)} = \sup_{g} \left\{ \sum_{i=1}^{\infty} |\langle f(i), g(i) \rangle|, g \in l^{p'}(E^*) \text{ and } \|g\|_{l^{p'}(E^*)} \leq 1 \right\}.$$

The space $l^p(E)$ was shown to induce the injective norm on $l^p(\otimes E)$, [3], and Cohen showed that $l^p(E)$ induces the projective norm on $l^p(\otimes E)$.

Further, Apioia, [J], showed that $(l^p(E))^* \equiv l^{p'}(E^*)$ and $(l^{p'}(E))^* \equiv l^{p}(E^*)$.

Now we introduce the space $l^{p', q}(E)$ to be the space of all functions $f : N \to E$ such that $\sum_{i=1}^{\infty} |\langle f(i), g(i) \rangle|^p < \infty$ for all $g \in l^{q'}(E^*)$. If $f \in l^{p', q}(E)$, then we define

$$\|f\|_{l^{p', q}(E)} = \sup_{g} \left\{ \sum_{i=1}^{\infty} |\langle f(i), g(i) \rangle|^p \right\}^{1/p},$$

where $g \in l^{q'}(E^*)$ and $\|g\|_{l^{q'}(E^*)} \leq 1$.
Lemma 1.1. The function \(\| \cdot \|_{\sigma(p,q)} \) is a norm on \(l^{p,q}(E) \).

Proof. It is enough to show that \(\| f \|_{\sigma(p,q)} < \infty \) for all \(f \in l^{p,q}(E) \). The rest of the properties of the norm are easy to verify.

Let \(f \in l^{p,q}(E) \). Define the bilinear form
\[
\hat{f} : l^{p'} \times l^{q'}(E^*) \to \mathbb{C},
\]
\[
f(a, g) = \sum_{i=1}^{\infty} a(i) \langle f(i), g(i) \rangle.
\]
It is not hard to check that \(\hat{f} \) is separately continuous on \(l^{p'} \times l^{q'}(E^*) \). Hence, [2, p. 172], \(\hat{f} \) is jointly continuous, and consequently \(\| \hat{f} \|_{\sigma(p,q)} < \infty \) for all \(f \in l^{p,q}(E) \).

Theorem 1.2. The space \(l^{p,q}(E) \) with the \(\sigma(p,q) \) norm is a Banach space.

Proof. Let \(f_n \in l^{p,q}(E) \) such that \(\sum_{n=1}^{\infty} \| f_n \|_{\sigma(p,q)} < \infty \). It is enough to show that \(\| \sum_{n=1}^{\infty} f_n \| < \infty \), [12]. We first prove this for the case \(p = 1 \). Since \(E \) is a Banach space, then every absolutely summable sequence in \(E \) is summable. It follows that for each natural number \(i \), the series \(\sum_{n=1}^{\infty} f_n(i) \) is convergent in \(E \). Define \(F : N \to E \) by
\[
F(i) = \sum_{n=1}^{\infty} f_n(i).
\]
Let \(g \in l^{q'}(E^*) \) and \(\| g \|_{\varepsilon(q')} \leq 1 \). We have to prove that
\[
\sum_{i=1}^{\infty} \langle F(i), g(i) \rangle < \infty .
\]
\[
\sum_{i=1}^{\infty} |\langle F(i), g(i) \rangle| \\
= \sum_{i=1}^{\infty} \left| \left(\sum_{n=1}^{\infty} f_n(i), g(i) \right) \right| \\
= \sum_{i=1}^{\infty} \left| \sum_{n=1}^{\infty} \langle f_n(i), g(i) \rangle \right| \quad \text{(since } \sum_{n=1}^{\infty} \|f_n(i)\| < \infty \text{)} \\
\leq \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} |\langle f_n(i), g(i) \rangle| \quad \text{(since } \sum_{n=1}^{\infty} \langle f_n(i), g(i) \rangle < \infty \text{)}.
\]

If \(\nu \) is the counting measure on the set of natural numbers \(N \), then

\[
\sum_{i=1}^{\infty} \sum_{n=1}^{\infty} |\langle f_n(i), g(i) \rangle|
\]

can be considered as

\[
\int_{N} \sum_{n=1}^{\infty} |\langle f_n(i), g(i) \rangle| d\nu(i).
\]

As a consequence of the monotone convergence theorem we get

\[
\int_{N} \sum_{n=1}^{\infty} |\langle f_n(i), g(i) \rangle| d\nu(i) = \sum_{n=1}^{\infty} \int_{N} |\langle f_n(i), g(i) \rangle| d\nu(i).
\]

It follows that

\[
\sum_{i=1}^{\infty} |\langle F(i), g(i) \rangle| \\
\leq \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} |\langle f_n(i), g(i) \rangle| < \infty \quad \text{(since } \sum_{n=1}^{\infty} \|f_n\|_q < \infty \text{)}.
\]

Hence \(\sum_{i=1}^{\infty} |\langle F(i), g(i) \rangle| < \infty \) for all \(g \in l^q(E^*) \) with \(\|g\|_{E(q')} < \infty \).

Consequently \(F \in l^1,q(E) \), and so \(\sum_{n=1}^{\infty} f_n \in l^1,q(E) \).

For general \(p \), the result follows from the fact that

\[
\|f\|_{g(p,q)} = \sup_{\theta,g} \left| \sum_{i=1}^{\infty} \theta(i) \langle f(i), g(i) \rangle \right|,
\]
where \(\theta \in \ell^p \), \(g \in \ell^q(E^*) \) and \(\|\theta\|_p, \|g\|_{(q')} \leq 1 \). Hence the proof of the theorem is complete.

Let \(\ell^p \otimes \ell^q(E^*) \) be the set of all elements of the form \(a \cdot f \) such that \(a \in \ell^p \), \(f \in \ell^q(E^*) \) and \((a \cdot f)(i) = a(i) \cdot f(i) \).

Theorem 1.3. A linear functional \(F \) on \(\ell^p \otimes \ell^q(E) \) is bounded if and only if \(F \) is of the form \(a \cdot f \), for some \(a \in \ell^p \) and \(f \in \ell^q(E^*) \).

Remark. The space \(\ell^1 \otimes \ell^q(E) \) is just \(\ell^q(E) \) in Cohen [3]. Apiola, [1], proved that \((\ell^1, \ell^q(E))^* \) is isometrically isomorphic to \(\ell^q(E^*) \) which is in turn isomorphic to \(\ell^\infty \otimes \ell^q(E^*) \).

Proof of Theorem 1.3. Let \(a \in \ell^p \) and \(f \in \ell^q(E^*) \). Consider the linear functional \(F : \ell^p \otimes \ell^q(E) \to \mathbb{C} \) defined by

\[
F(g) = \sum_{i=1}^{\infty} a(i) \langle f(i), g(i) \rangle .
\]

Then

\[
|F(g)| \leq \|a\|_p \cdot \|f\|_{\ell^q(E^*)} \cdot \|g\|_{\sigma(p,q)} .
\]

Hence \(F \) is bounded and \(\|F\| \leq \|a\|_p \cdot \|f\|_{\ell^q(E^*)} \).

Conversely, let \(F \in (\ell^p \otimes \ell^q(E))^* \). Hence \(|F(f)| \leq \lambda \cdot \|f\|_{\sigma(p,q)} \) for some constant \(\lambda \). Let \(e_i \) be the natural embedding of \(E \) in \(\ell^p \otimes \ell^q(E) \), so

\[
e_i(x)(j) = \begin{cases} x, & i = j, \\ 0, & i \neq j. \end{cases}
\]

Put \(x_i^* = F \circ e_i \). Clearly \(x_i^* \in E^* \), and if \(f \in \ell^p \otimes \ell^q(E) \), then

\[
F(f) = \sum_{i=1}^{\infty} \langle f(i), x_i^* \rangle .
\]

Assume \(F \) to be of norm one; then there is an \(a \in \ell^p \) such that
Now let D be the unit disc and πD be the countable product of D with itself. Since D is compact, then πD is compact. Let B_1 be the unit ball of $l^{q'}(E^*)$. As a dual of $l^{1,q}(E)$, $[1]$, B_1 is compact with respect to the ω^*-topology, and so is the product space $\pi D \times B_1$. Let $C(\pi D \times B_1)$ be the space of continuous functions on $\pi D \times B_1$. Consider the map

$$\psi : l^{p,q}(E) \rightarrow C(\pi D \times B_1) ,$$

$$\psi(f) = G ,$$

where

$$G(\theta, u) = \sum_{i=1}^{\infty} a(i) \theta(i) f(i), u(i) ,$$

for all $f \in l^{p,q}(E)$ and $\theta \in \pi D$, and $u \in B_1$. It follows that

$$\|G\|_\infty = \sup_{\theta,u} |G(\theta, u)| = \sup_{\theta,u} \left| \sum_{i=1}^{\infty} a(i) \theta(i) f(i), u(i) \right| = \sup_{u} \sum_{i=1}^{\infty} |a(i) f(i), u(i)| .$$

Hence $|F(f)| \leq \|\psi(f)\|$. This implies that $\ker \psi \subseteq \ker F$.

This implies that there exists an $\tilde{F} : C(\pi D \times B_1) \rightarrow \mathbb{C}$ such that

$$\tilde{F} \circ \psi = F .$$

The Riesz representation theorem implies that there exists a regular Borel measure μ on $\pi D \times B_1$ such that
Let f_n denote the function $f_n : N \to E$

$$f_n(i) = \begin{cases} f(i), & i = n, \\ 0, & i \neq n. \end{cases}$$

Then

$$F(f) = \mu\{\psi(f)\} = \int_{\pi D \times B_1} \sum_{i=1}^{\infty} a(i) \theta(i)(f(i), u(i)) d\nu(\theta, u).$$

But $F(f) = \langle f(1), x^*_1 \rangle$. It follows that

$$x^*_1 = a(1) \cdot \int_{\pi D \times B_1} \theta(1) \cdot u(1) d\nu(\theta, u),$$

where the integral here is the Pettis integral, [4]. Set

$$Z^*_1 = \int_{\pi D \times B_1} \theta(1) u(1) d\nu(\theta, u).$$

Hence $x^*_1 = a(1) \cdot Z^*_1$. Similarly $x^*_i = a(i) \cdot Z^*_i$, $i = 2, 3, \ldots$. It remains to show that the function $g : N \to E^*$, defined by $g(i) = Z^*_i$, is an element of $l^q'(E^*)$. To see that, consider

$$\langle g(i), x \rangle \leq \int_{\pi D \times B_1} |\theta(i)\langle u(i), x \rangle| d\mu(\theta, u) \quad (x \in E, \|x\| \leq 1)$$

$$= \int_{\pi D \times B_1} |\langle u(i), x \rangle| d\mu(\theta, u)$$

$$= \left(\int_{\pi D \times B_1} |\langle u(i), x \rangle|^{q'} d\mu(\theta, u) \right)^{1/q'}.$$

Hence

$$\sum_{i=1}^{\infty} |\langle g(i), x \rangle|^{q'} \leq \sum_{i=1}^{\infty} \int_{\pi D \times B_1} |\langle u(i), x \rangle|^{q'} d\mu(\theta, u).$$

The monotone convergence theorem implies that
\[\sum_{i=1}^{\infty} |\langle g(i), x \rangle|^{q'} \leq \int_0^1 \sum_{i=1}^{\infty} |\langle u(i), x \rangle|^{q'} d\mu(\theta, u) \]
\[\leq \sup_{\mu \in B_1} \sum_{i=1}^{\infty} |\langle u(i), x \rangle|^{q'} \cdot |\mu| , \]

where $|\mu|$ is the total variation of μ. Thus $g \in l^{q'}(E^*)$. So $F = a \cdot g$, $a \in \ell^{p'}$, $g \in l^{q'}(E^*)$. This completes the proof of the theorem.

2. Schur multipliers

Let $p, q \geq 1$. A bounded function ϕ on $\mathbb{N} \times \mathbb{N}$ is called a Schur multiplier of $l^p \hat{\otimes} l^q$ if $\phi \cdot \psi \in l^p \hat{\otimes} l^q$ for all $\psi \in l^p \hat{\otimes} l^q$, where $\phi \cdot \psi$ denotes pointwise multiplication.

If X and Y are Banach spaces, then a bounded linear map $A : X \to Y$ is called p-summing operator if

\[\sum_{i=1}^{n} \|Ax_i\|^{p} \leq \zeta \cdot \sup_{x^*} \sum_{i=1}^{n} |\langle x^*, x_i \rangle|^{p} , \]

for all x_1, \ldots, x_n in X and some constant ζ independent of n. The supremum is taken over all elements x^* in the unit ball of X^*, [10]. Bennett [2] proved that a bounded function ϕ is a multiplier of $l^p \hat{\otimes} l^q$ if and only if $\phi \cdot u \otimes v : l^p \to l^\infty$ is q^* summing operator for all $u \otimes v \in l^\infty \hat{\otimes} l^p$. For more about multipliers we refer to [2], [6], [7] and [3].

Lemma 2.1. Let $A : l^p \to l^\infty$ be a bounded operator. If A is q-summing, then $A \in l^{q'}(l^p)$.

Proof. Let $f : \mathbb{N} \to l^{p'}$ be the function defined by $f(i) = A_i$, where $A_i(j) = A(i, j)$ (considering A as an infinite matrix). If $g \in l^q(l^p)$, then
\[
\sum_{i=1}^{\infty} |\langle f(i), g(i) \rangle|^q = \sum_{i=1}^{\infty} |\langle A_i, g(i) \rangle|^q \\
= \sum_{i=1}^{\infty} \left| \sum_{j=1}^{\infty} A(i, j)g(i)(j) \right|^q \\
\leq \sum_{i=1}^{\infty} \sup_k \left| \sum_{j=1}^{\infty} A(k, j)g(i)(j) \right|^q \\
= \sum_{i=1}^{\infty} \|A(g(i))\|^q \\
\leq \xi \sup_h \sum_{i=1}^{\infty} |\langle g(i), h \rangle|^q \quad \text{(by assumption)},
\]
where \(h \) is the unit ball of \(\ell^p' \). Hence \(f \in \ell^q \ast \ell^q' \). Let \(\mathcal{M}(\ell^p \hat{\otimes} \ell^q) \) denote the space of all multipliers of \(\ell^p \hat{\otimes} \ell^q \). Then:

THEOREM 2.2. Let \(\phi \) be a bounded function on \(N \times N \). Then \(\phi \in \mathcal{M}(\ell^p \hat{\otimes} \ell^q) \) if and only if \(\phi \ast u \in \ell^q \ast \ell^q' \), for all \(u \in \ell^p \).

Proof. Let \(\phi \in \mathcal{M}(\ell^p \hat{\otimes} \ell^q) \). Then by Bennett's result [2], \(\phi \ast u : \ell^p' \to \ell^\infty \) is \(q' \)-summing for all \(u \in \ell^p \). Lemma 2.1 then implies that \(\phi \ast u \in \ell^q \ast \ell^q' \).

Conversely, let \(\phi \ast u \in \ell^q \ast \ell^p' \) for all \(u \in \ell^p \). It is enough to show that \(\phi \in \mathcal{M}(\ell^q \hat{\otimes} \ell^p) \). So let \(u \otimes v \in \ell^q \hat{\otimes} \ell^p \), and \(\psi \in \ell^q' \hat{\otimes} \ell^p' \). Then

\[
|\langle \phi \ast u \otimes v, \psi \rangle| = \left| \sum_{i,j=1}^{\infty} \phi(i, j)u(i)v(j)\psi(i, j) \right| \\
= \left| \sum_{i=1}^{\infty} u(i)\langle \phi_i \ast v, \psi_i \rangle \right|,
\]
where \(\phi_i(j) = \phi(i, j) \) and \(\psi_i(j) = \psi(i, j) \). Since \(\psi \in \ell^q' \hat{\otimes} \ell^p' \) it follows that \(g : \ell^2 \to \ell^p' \) defined by \(g(i) = \psi_i \) is an element of \(\ell^q' \hat{\otimes} \ell^p' \), [3]. Hence
This completes the proof of the theorem.

Lemma 2.3. If $A : l^p \to l^\infty$ is q'-summing, then $A \in \mathcal{M}(l^p \hat{\otimes} l^q)$.

Proof. It is enough to show that $A \cdot \hat{\otimes} v : l^p \to l^\infty$ is q'-summing operator for all $v \in l^p$, [2]. But

$$
\sum_{i=1}^\infty \| (A \cdot \hat{\otimes} v) f_i \|_{l^q}' = \sum_{i=1}^\infty \| A (v \cdot f_i) \|_{l^q}'
\leq \zeta \sup_h \sum_{i=1}^\infty |(v \cdot f_i, h)|^{q'}
\leq \zeta \sup_h \sum_{i=1}^\infty |(f_i, v \cdot h)|^{q'}
\leq \zeta \sup_k \sum_{i=1}^\infty |(f_i, k)|^{q'}
$$

where h and k are in the unit ball of l^p, and the lemma follows.

It follows from Lemmas 2.3 and 2.1 that the set of all q'-summing maps from l^p into l^∞ is contained in $\mathcal{M}(l^p \hat{\otimes} l^q) \cap l^{q',p}(l^p)$, where \cap denotes the intersection of the two sets.

References

Department of Mathematics, University of Kuwait, PO Box 5969, Kuwait.