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On Stieltjes-Volterra

integral equations

S.G. Pandit

A Stieltjes-Volterra integral equation system

t
z(t) = fl¢) + j k(t, s, x(s))duls)

%o

is firstly considered. Pointwise estimates and boundedness of
its solutions are obtained under various conditions on the
function K . To do this, the well-known Gronwall-Bellman
integral inequality is generalized. For a particular choice of

u , it is shown that the integral equation reduces to a
difference equation. The problem of existence (and non-
existence), uniqueness (and non-uniqueness) of the difference
equation is discussed. Gronwall-Bellman inequality is further
generalized to »n linear terms and is subsequently applied to
obtain sufficient conditions in order that a certain stability of

the unperturbed Volterra system

implies the corresponding local stability of the (discontinuously)

perturbed system

t
alt, 8)als)ds + j b(t, 8)F(s, z(s))duls)

0 o

=() = £(£) +j
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1.

In many problems of physics and engineering (optimal control theory in
particular), one can not expect perturbations to be well-behaved and it is
therefore important to consider the cases when the perturbations are
impulsive [3, 71. Such systems would be described by differential
equations containing measures, which are equivalent to Volterra integral
equations with perturbations involving Lebesgue-Stieltjes integrals. The
purpose of this paper is to obtain pointwise estimates and boundedness of
solutions of Stieltjes-Volterra integral equations and to study a stability
property of Volterra integral equations with discontinuous perturbations.
The tools used for the purpose are the generalized Gronwall-Bellman

inequalities involving Lebesgue-Stieltjes integrals.

Let J = [to, w) R to > 0, and BV(JQ Rn) = BV(J) denote the space
of all functions of bounded variation which are defined on J and taking
values in R° . The norm of x =x(¢) € BV(J) is defined by

el = Vi, J) + |x(t0)| where V(x, J) 1is the total variation of z on

J and || is any norm in R’ . Let u be a scalar function which is
right-continuous and of bounded variation on every compact subinterval of

J . We consider the following Volterra integral equations

t
(1.1) =(¢) = £(¢) +J k(t, s, x(s))duls) ,

%o
t
(1.2) «(¢) = f(£) +J alt, s)als)ds |
t
0
t t
(1.3) =(&) = f(&) + J a(t, s)x(s)ds + I b(t, s)F(s, z(s))du(s) ,
t t
0 0

where x, f € BV(J) , K(¢t, 8,¢) :Jx I xR »RF*, F:JxR'">F",

and a(t, s), b(t, 8) are n xn matrices defined for ty =8 2t <o,

A special case of (1.1) is considered in [2] where the integrals are in the
Riemann-Stieltjes sense. (1.2) and (1.3) have been dealt with in [9]. [6,

10] also treat these equations when af(t, 8) =b(t, 8) and u is
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absolutely continuous on J .

In Section 2, we generalize the Gronwall-Bellman integral inequality
and apply it to obtain pointwise estimates and boundedness of solutions of
(1.1). Section 3 deals with a difference equation arising from (1.1) for a
particular choice of u . The existence (or non-existence) and uniqueness
(or non-uniqueness) of solutions of the difference equation are discussed.
Finally, in Section 4, we further generalize the Gronwall-Bellman
inequality and study a stability property of (1.3) in the light of (1.2).
In the following discussion, it is assumed that (1.1)-(1.3) possess

solutions on J .

2.
Let tl < t2 < ... denote the discontinuities of u on J (note

that u is of bounded variation). We assume that the discontinuities are

isolated. u may be decomposed as u = ul + U, where u1 is an

absolutely continuous function of bounded variation on J and u2 is a

sum of jump functions, the jumps being those of u . It follows that u'
exists [and is equal to ui almost everywhere) on J . Let

A = u(t) - u(ty-) denote the jump of u at t=¢, , k=1,2, ... .

In the following all functions of one variable are assumed to be defined,
real-valued, and measurable on J . ©Such a function w is said to be
locally du-integrable on J 1if, for each t € J , the Lebesgue-Stieltjes

t

integral J w(s)du(s) 1is finite.
t
0

THEOREM 2.1. Suppose that

t

(2.1) z(t) = ft) + g(t) J ne)x(s)du(s) , ted,
o

where

(i) =, f, g » and h are non-negative and locally du-
integrable on J , with f non-decreasing and g = 1,

(i1) u 1is such that ui >0 on J and
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(2.2) Naledh(t) <1, k=1,2, ...,

(i11) the series

(2.3) A gle V(e
kz-:l kg( k) (k]

converges absolutely.

Then
1 t
(2.4) z(t) = P f(t)g(t)exp J g(s)h(s)ui(s)ds , tEd,
tO
where

P = l‘l {1-Akg(tk)h(tk)} .

Proof. Since f is non-decreasing and g=1 on J , (2.1) may be

written as

¢

(2.5) ?EB < g(t)l:l + J h(s) ‘;’.gg du(s)i, , tE€dJ.
¢
0

Denote the bracket on the right side of (2.5) by r(t) . Firstly suppose
tO < £ < tl . Since u 1is differentiable on [ﬁo, tl] , by the classical

‘Gronwall-Bellman inequality [7, p. 58], we obtain

t
(2.6) r(t) = eprj g(s)h(s)ui(s)ds]
t
~ 0
At ¢t = tl we have
t
1 x(s)
r(t,) = r(t,-€) + Jt . h(s) o) duls) ,
1

where € > 0 . Taking the limit as € > 0, and using (2.6), we get

1

%o

r(tl) = explj

dsmwhdwhk}+yﬂ&ﬂhﬁﬂr&ﬂ,
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which, in view of (2.2), yields
r(t) = P70 ex jt g(o)ls)ul(s)ds|

where

k
sz-]—r

{12 g(t )n(t)} . k=1, 2, .
n=1

By mathematical induction, it follows that

t

m
(2.7) r(tm) < g;l exp j g(e)n(slu (slds| , m =1, 2,
%o
Since P, = P.+1 for each 2 > 1 and 1lim P, = P (which exists in view
s i Too %
of hypothesis (7ii)), we may write (2.7) as
t
-1 m
r(tm) <= P~ exp J g(s)h(s)ui(s)ds , m=1, 2,
t
0

Now, given any ¢t € J , there is a unique integer m > 0 such that

teft,t

m+l) Therefore

r(¢) = (¢ ) + j(t p h(s) J‘%(%;—du(s)
m

IA

t
r(tm)exp[jt g(e)n(s)u, (s)ds

m
Hence we conclude that
2(t) = flt)g(t)r(t)
-1 t
<p f(t)g(t)expj gleln(slul(a)ds| . t €.
t
0

This completes the proof.

As an illustration of Theorem 2.1, consider the inequality
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t
x(t) < PREI 4 J 22_8[32-s+ﬂ Le(s)du(s) , t € [1,®),
1

where

k-1
u(t) = 2_l(t2-t) +1 Y (4+1) 74| x
=) [

k-1,(8) > k=203

Here X‘4 , the characteristic function of the set A4 , is defined as
XA(t) =1 if ¢t € A and equal to zero otherwise. It is easily seen that

W (t) = 27X

2t-1) almost everywhere on [1, @) ; tk =k, Ak = (k+l)-l
for k=2,3, ... ; Aglt)n(e) =2(kPn) <1 forall kz2; the
series

Y 2(k3+1) 1w

k=2

by comparison test and

0
p=T] {1-2{k3+1) i % .
k=2
Following the estimate in (2.L), we obtain
x(t) < % (th-t3+t2)et , for all t = 1 .

We apply Theorem 2.1, in the natural way, to Volterra integral
equations of the form (1.1). To this end, we assume that there exist non-
negative functions g and % which are defined and locally du-integrable

on J and are such that
(2.8) k{2, s, 0)-k(t, &, 0| = g()h(s)]o)-0,]
for all ¢, ¢, € B .

THEOREM 2.2. Suppose that
(i) (1.1) has a bounded solution x defined on J ,

(1) g = 1 <is bounded on J and
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(2.9) Jm g(s)h(s)ui(s)ds < o

%

where v = v, *+ v, is the decomposition of

o(t) = V{u(t), Ito, t|) , the total variation function of

u(t) onm [to, t| ,
(iii) v] 20 on J and ukg(tk)h[tk] <1, where
w = olt) - ofe-) . k=12, .0

the series ) ukg(tk)h(tk) conmverges absolutely.
k=1

If f* ¢ BV(J) is locally du-integrable on J and ||f(t)-f*(¢)|| is
non-decreasing and bounded on J , then any solution of the equation

(2.10) y(t) = FH) + f K(t, s, y(s))duls) , ted,

18 bounded.

Proof. From (1.1), (2.8), and (2.10), we obtain

t
le(E)=y ()] = IF(L)-F*(E) ]| + g(¢) J nis)le(s)y(s)lldv(s) , t €J .
tO
Since v 1is a right-continuous function of bounded variation and has

discontinuities where u has, a suitable application oF Theorem 2.1 gives

(2.11)  Jle(E)=y(2) ||

t )

< p‘luf(t)-f*(t)Ilg(t)epr g(s)h(s)vi(s)ds , t€J .

%o

As x, g , and ||f-F*|| are all bounded on < , the conclusion follows from
(2.9), (2.11), and the fact that [y(£)|| = [ly(t)-x(&)] + |l=(&)] .

REMARK 2.1. A result similar to Theorem 2.2 is proved in [5,
Theorem 3] where the integrals are in the Riemamn-Stieltjes sense. Hence
it is necessary that the integrand and the integrator should not have the

same discontinuities. In our case, & and u have the same
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discontinuities and therefore the methods of [5] are not applicable.

3.
In this section, we consider a special case of (1.1), namely

t
(3.1) 2() = £(8) +j alt, s)z(s)duls) , b€,

%o

where A(t, s) is an 7n X n matrix defined for tpSsSt<e . Ve

show, under certain conditions, that (3.1) reduces to a difference

equation. Choose u to be a step function (that is ul =0 ) of the form
k-1
ult) = { Y a,|X (t) , k=1,2, ...,
D= W LR

where the ai's are constants. let J, = {tk} , k=0,1, ... . Denote
0

by B, the matrix I - akA{tk, tk) , kK=1,2, ..., where I is the

k

identity 7 X n matrix.

THEOREM 3.1. On Iy o (3.1) reduces to the difference equation
0

(3.2) ve(t,) = Vf(t) + qAle, t)=(t) o =(z) = 7(g) »
where V <is the operator such that Vx(tk) = x(tk) - x(tk_l) . Further-
more, if By, 18 non-singular for each k =1, 2, ... then the unique

solution of (3.2) ie given by the recurrence formula

(3.3) z{t,) = B;l{x(tk_l)Wf(tk)} , k=1, 2,
Proof. It is clear that x(to] = f(to) . For tl € Jt0 , we have

from (3.1),

tl

w(e) = £(t,) + ft At )els)duls)
0
= £(¢)) * aA(tys t))e(e))

Similarly
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t t
1
z(t,) = £{t,) +J A(tl, g)x(s)duls) + J A(t,, s)x(s)du(s)
t
0 1
=z(t)) + Vr(t) +anlt, t)=(t,)

In general, by induction,

(3.4) =(t,) ==(¢,_,) + Vf(2) + a4a(, tdelt) . k=1,2, ...,

which is the same as (3.2). If B, is invertible, it follows from (3.4)

k
that x(tk) exists uniquely and is given by (3.3).

REMARK 3.1. If, for some k , @ is zero, then Bk (=71) is
clearly invertible. If A{(t, s) =A 1is a constant matrix and if a #£0 ,
then a sufficient condition for Bk to be invertible is that a;l is not
an eigenvalue of 4

REMARK 3.2. Suppose Bk is not invertible for some k . Then it

follows from (3.4) that, in general, x(t does not exist. On the other

)
hand, if x[tk_l) + Vf(tk] =0 , then x(tk] is arbitrarily determined,
which means that there are infinitely many solutions at tk . It is to be

noted that if f =0 , then =z(t,) =0 for each k =0, 1,

EXAMPLE 3.1. Let f(¢) =¢ and A(%, g) = (et+t) sin %f-.be scalar

scalar functions on {0, ©) . Choose

k-1 2
u(t) = .z=:o 1 X[k"l,k)<t) H) k = 1, 2’

Then u is discontinuous at isolated points tk =k and a = k for
k=1,2, ... . The difference equation corresponding to (3.1) is
x(0) =0,
-1 .
x(k) = z(k-1) + 1 + & (ek+k) sin %;-x(k) , k=1,2, ...

Since (ek+k) sin %;-# k for any k = 1 , the condition of Theorem 3.1 is

satisfied. x(k) can now be determined from (3.3).
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EXAMPLE 3.2. Let A(t, s) =4 be the constant matrix

2 -1/3
-6 1
and
2 kL o
u(t) =3 X 1)(E) + i=21$ X)) s k=2,3, ...

Here a_ll =3 1is an eigenvalue of A , the corresponding eigenvector being

[;13:1 . If f(1) # [:8:[ , «x(1) does not exist. Moreover, c[_lgl is

also an eigenvector where ¢ is any constant. Therefore, if f(1) = [8]

then x(1) = cl:_ls] , meaning thereby that there are infinitely many

solutions.

4.

In this section, we obtain sufficient conditions in order that a
certain stability of the system (1.2) implies the corresponding local
stability of the system (1.3). The sclutions y(¢) and x(t) of (1.2)

and (1.3) are respectively given by (the variation of constants formula)

t
(4.1) y8) = 7(0) + | R(, )ftelds L b=t
tO
and
t
(4.2) xz(t) = y(¢) +J R*(t, s)F(s, x(s))du(s) , t= to
%o
where R(t, s) and R*(¢t, s) satisfy
t
(1.3) B(t, 8) = a(t, o) +j R(t, T, 8)dt
s

and
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t
(4.4) R*(¢, &) = b(%, &) +j RH(t, T)b(T, &)dr
S

The main result (Theorem 4.1) of this section depends on the following

lemma, which is interesting in itself.
LEMMA 4.1. Assume
(t) =z, £, and u are as in Theorem 2,1,

(i) g, k.

; are non-negative functions, locally du~integrable

on J , and g;z1 for 1=1,2, ..., n,
(ii1) Mg (t)n,(t) <1 for k=1 and the n series
k;ﬁ Akgi(tk)hi(tk)

converge absolutely for © =1, 2, ..., n.

Then the inequality

n t
(h5)  aB=fD+ Y g0 [ mloeteas) , ted,
=1 to
implies
(4.6) z(t) = PiEy
where
Er=7,
1 ¢ 1
(4.7) Erf = fIEr_ g )exp f hr[ - gr)ui(s)ds , r=1,2, . M,
tO

and

The proof can be obtained by applying Theorem 2.1 and the method of
Theorem 1 in [4]. We omit the details. ’
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Now consider equations (1.2) and (1.3) whose zolutions are given by

(4.1) and (4.2) respectively. Assume that
Hy. There exists r > 0 such that

|[F(t, )| = f(t)||z|| for ¢ = t, and llll <2,

where f(t) 1is non-negative and du-integrable on J .

Hy. R* satisfies

[B*(¢t, 8)| = g, () (s) for t <sst<w,

1 0

L

where, for € =1, 2, ..., n , gi, hi are non-negative functions,
du~-integrable on J , and 9; = 1 ukf(tk)gi(tk)hi(tk) <1 for k=1,
and the n series
[>]
gg ukf(tklgi(tk)hi(tk)
=1
converge absolutely where uk is as defined in Theorem 2.2.

THEOREM 4.1. Under the hypotheses Hi1 and Hz, any solution x of
(1.3) satisfies

le() Il = P8yl

where y 1is any solution of (1.2); E' 4is as defined in Lemma L.1
except that ui is replaced by v! ;

P, = E {1t )e; (e )h, (e) . ¢ =1, 2, ..., m and P=PP, ... P .
Proof. We have

n t
()]l < lly(edll + ¥ fFlE)g.(¢) j hi(s)llx(s)lldv(s) , tE€d .
i=1 v tg

Since |ly(t)|l is non-decreasing on J , an application of Lemma 4.1 gives

the desired conclusion.

REMARK 4.l|. Theorem 4.1 may be regarded as a result on local
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stability of the system (1.3) with respect to the system (1.2) in the
following sense: given § > O and sufficiently small, the solution x
of (1.3) satisfies |x(z)|| <e§ , e >0, t= t, » whenever fly (£)] < 8

As an illustration of Lemma 4.1, consider the inequality

t t
(4.8)  z(¢)s el +t J s %(s)duls) + 2 J (48%) "Le(s)duls)
1 1
vhere
k-1
u(t) =t + 2 Z X[k—l,k)( ), k=2,3,
=1
Here tk =k, Ak = k-l for k =2, 3, 3
P =TT (k%) =172
k=2
= 1 8
p=TT [1 i _,) -8
2 k=2 w3

In view of (L.6), we obtain

2
x(t) = P—lE?f = %? th exp[z—:gézlﬂ , for all ¢= 1 .

REMARK 4.!. Lemma 4.1 has a distinct advantage over Theorem 2.1. To
see this, consider the inequality (4.8). Since ¢t = s 2 1, we may write
it as

t

x(t) < o+ 2t J s-Qx(s)du(s) , t=z1,

1
which is of the form (2.1). In the notation of Theorem 2.1, we see that
Akg(tk)h[tk) = 2k_l , k=2,3, ... . However, Theorem 2.1 is not

applicable here for two reasons; firstly because Agg(tz)h(te] * 1,and

o0
secondly because the series Z 2k_l diverges.
k=2
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