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SUBMANIFOLDS WITH FINITE TYPE GAUSS MAP

BANG-YEN CHEN AND PAOLO PICCINNI

In this paper we study the following problem: To what extent

does the type of the Gauss map of a submanifold of W1 determine

the submanifold? Several results in this respect are obtained.

In particular, submanifolds with 2-type Gauss map are characterized.

Surfaces with ,2-type Gauss map and minimal surfaces of S with

2-type Gauss map are completely classified. Some applications are

also given.

1. Introduction.

A compact submanifold M of a Euclidean m-space ET is said to

be of finite type if the immersion x of M in E"1 can be expressed

as a finite sum of ^-valued eigenfuctions of the Laplacian A of M ,

acting on E -valued functions. Minimal submanifolds of a hypersphere
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162 Bang-yen Chen and Paolo Piccinni

and equivariant immersions of a compact homogeneous space are the simplest

and best known examples of finite type submanifolds (see [5,7]).

Similarly, a smooth map <j> of a compact Riemannian manifold M

into E is said to be of finite type if <(> is a finite sum of E -

valued eigenfunctions of A . Some fundamental results on finite type

maps are given in [9].

For an isometric immersion x : M -*• E of a compact oriented n-

dimensional Riemannian manifold M into E , the Gauss map v ; M-*-G(n,m)

of x is a smooth map which carries a point p in M into the oriented

M-plane in a which is obtained from the parallel translation of the

tangent space of M at p in E (where G(n,m) is the Grassmannian

consisting of all oriented w-planes through the origin of a ). Since

G(n,m) is canonically imbedded in hu=K,N=(), the notion of

finite-type Gauss map is naturally defined.

The main purpose of this paper is to study the following problem:

To what extent does the type of the Gauss map of a submanifold of

ET determine the submanifold?

For closed curves in E , the type of a curve in E coincides

with that of its Gauss map (Proposition 3.1). In contrast, for sub-

manifolds of dimension £ 2 , the two notions are different.

A well-known result of Takahashi says that a compact submanifold of

E is of 2-type if and only if it is a minimal submanifold of a hyper-

sphere. In Section 4 we study the following problem: Which submanifolds

of E have i-type Gauss map? In this respect, we obtain a chacter-

ization theorem for submanifolds with i-type Gauss map. This result is

then applied to obtain some classification theorems of such submanifolds.

In Section 5, we show that a standard isometric immersion of an ordinary

2-sphere has 2-type Gauss map if and only if it is not the first standard

imbedding. The complete classification of flat minimal tori in

with 2-type Gauss map is given in Section 6. In the last section, we

give the complete classification of minimal surfaces of S
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with 2-type Gauss map (Theorem 7.1).

2. Preliminaries.

Let M be a compact Riemannian manifold and A the Laplacian of

M acting on the space C (M) of smooth functions. Then A has an

infinite discrete sequence of eigenvalues:

For each k = 0,1,2,..., The eigenspace V, = {f e C°(M) | A / = X,/} is

finite-dimensional. With respect to the inner product (f,g) = f fg dV

on C (M) , the decomposition Z, V, is orthogonal and dense in C (M) .

Therefore, for any f e C (M) , we have / = /Q + ̂ +>1 ?t ' w h e r e ?o

is a constant and / is the projection of / into V .

For any smooth map <\> : M -*• E of a Riemannian manifold M into

the Euclidean m-space a , we can apply the above decomposition to the

E -valued function <j> :

oo

(2.1) « = +0 + I *t ,
"C==l

where 4>0 is a constant vector which is called the centre of gravity of

(f> . The map <(> is said to be of finite type if there exist only finitely

many nonzero terms in the decomposition (2.1). More precisely, $ is

said to be of fe-type if there exist exactly k nonzero <)>, 's (t £ 1)

in the decomposition.

If the map <j> is an isometric immersion, then M is called a

submanifold of finite type (or of fc-type) if $ does.

The following result is known (see [5,7]).

THEOREM 2.1. Let x : M •*• E"1 be an isometric immersion of a compact

Riemannian manifold M into it and let H be the mean curvature vector

of M in a . Then we have

(i) M is of finite type if and only if there is a nontrivial

polynomial Q(t) such that Q(b)H = 0 .
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(ii) If M is of finite type, there is a unique monic polynomial

P(t) of least degree with P(A)H = 0 .

(iii) If M is of finite type, then M is of k-type if and only

if deg P = k .

The same results hold if H is replaced by x - xQ .

For smooth maps, we have the following result analogous to Theorem

2.1, whose proof is the same as that of Theorem 2.1.

THEOREM 2.2. Let <f> : M -*• a be a smooth map from a compact

Riemannian manifold M into E and let T = div(dty) be the tension

field of <f> . Then we have

(i) <(> is of finite type if and only if there is a nontrivial

polynomial Q(t) such that Q(h)i = 0 .

(ii) If $ is of finite type, there is a unique monic polynomial

P(t) of least degree with PCAJT = 0 .

(iii) If <f> is of finite type, then <(> is of k-type if and only

if deg P = k .

The same results hold if T is replaced by $ - $0 .

The unique monic polynomial P mentioned in Theorem 2.1 (respective-

ly, in Theorem 2.2) is called the minimal polynomial of the finite type

submanifold M (respectively, of the finite type map <(i ) .

3. Gauss Map.

Let V be an oriented w-plane in E"1 . Denote by e ,...3e an

oriented orthonormal basis of V . Then e A . .. A e is a decomposable

n-vector of norm 1 and e j A ... A e gives the orientation on V .

Conversely, for any decomposable w-vector of norm 1 , it determines a

unique oriented n-plane in E . Consequently, if we denote by G(n,m)

the Grassmannian of the oriented M-planes in a , then G(n,m) can be

identified naturally with the decomposable w-vectors of norm 1 in the

(%)-dimensional Euclidean space A V = E" . Let / " ^ K ^ J . b e

the unit hypersphere in A E = a centred at 0 . Then G(n,m) is an
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n(m - n)-dimensional submanifold of £> . Thus, we have

G(n,m) cZ-'c/.-A?.

Let X : M -*• E be an isometric immersion of a compact, oriented,

n-dimensional Riemannian manifold M into E . For each vector X

tangent to M , we identify X with its image under dx . Let e^,...,e

be an oriented orthbnormal frame on M . Then the Gauss map

v : M -• G(n,m) c s"'1 c £^ = A"/3

is given by v(p) = (e. A . . . A e j ("pj .

LEMMA 3.1. For a compact oriented submanifold M in E™ 3 the

Gauss map v : M + lr is mass-symmetric, that is, the centre of gravity v^

coincides with the centre of the hypersphere S: (that is, the origin)

in / .

Proof. Let x : M -*• a be the isometric immersion and e ,...,e

an oriented orthonormal local frame on M . Denote by u ,...,« , the

dual frame of e ,.. . ,e . Then we have dx = e u + e u + ... + e to .

By direct computation, we have

n copies

dx A ... * dx = n! (e. A ... A g j j A ... A u = n! v dV

Thus, we obtain

rc-1 copies

« / v dV = da; A . . . A dx = d(x A

>M 'M >M
A . . . A ,2a;,)

= 0 .

This shows that the centre of gravity v = / v dV/ f dV = 0 . D

If M i s a closed curve in ET , we have

PROPOSITION 3 . 1 . 27ie &zwss map v of a closed curve C in E"1

is of k-type if and only if C is of k-type in E"1 .
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Proof. Let x ; C -*• a be the isometric immersion, s the arc

length and e± = dx/ds the unit tangent vector. Then the Gauss map v

is given by v = e± e £> = G(l,m) c A fi = IT . Assume C is of k-type

and P is the minimal polynomial of C . Then we have P(&) (x - xQ) = 0 .

Thus

-£ (x - XQ) = -^ P(b)(x - Xo) = 0 .

Thus, by Theorem 2.2 and Lemma 3.1 we see that v is of fc-type with

h < k .

Now, if v is of ?2-type with minimal polynomial P , then we have

P(b)v = 0 . Since d/ds commutes with P(h) and A = -d /ds , we

get P(t)H = 0 , where ff = de x/ds . Therefore, by Theorem 2.1, C is

of Z--type with 1 £ h . Combining these results, we obtain I = h = k. D

In the remaining part of this section, we compute the first Laplacian

Av of v for later use.

Let x : M ->• IT be an isometric immersion of an oriented, n-

dimensional Riemannian manifold into a . We choose an oriented

orthonormal local frame e,.....e ,e ,.t....e on M such that e,,...,e

are tangent to M and hence e .,...,e are normal to M . We shall

make use of the following convention on the ranges of indices:

1 £ i,j,k, ... s n ; n + 1 £ r,s,t, ... s m .

Let V and V be the Levi-Civita connections on M and E

respectively. Denote by m , A3 B = l,...}m, the connection forms.
B

Then we have

(3.1) *'e
e
3-

 = *k3(ei)ek + hrijer-

(3.2) 7'ger = -h\.e. + «
s
r(e.)es , T>Q ep = «

S
r<e.)es ,

where D is the normal connection and h ij the coefficients of the

second fundamental form h . The Einstein convention is used for repeated

indices.
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By regarding v as an E -valued function on M , we have

r <7th
( 3 . 3 ) e . v — e . f & f A . . . A e / = w . . 6 , A . . . A e A . . . A g .

x- x, x n XQ 1 i" n

Since

(3.4) Av = - e . e . v •/• TV e j v .
^ ^ e. v '

by a direct computation we obtain

(3.5) Av = -hr'. . . e, A . . . A e A . . . A e

r s *th Jth
— ?2 • , ? l . - £ . A , . . A © A . . . A g A A g

i j tfe 1 s r n

where ||h|| = 7z i j ?z i j and

(3-6) hr^i -e^+ *V* r v - -Vv*'» - "Vv^-z •
By the Codazzi equation Ti"jk,i = hrij,k , (3.5) yields

(3.7) Av = -n Z e, A ... A D H A ... A e
i e. n

r s kth J t h 2
~h ij h ik ei A ••• A % A •'• A er A ••• A en + ihl v '

where H = (l/n)h ..e. is the mean curvature vector. We recall the
•̂̂ . x.

following Ricci equation of M in E :

(3.8) lP(e.}ei;e ,e ) = < U .,4 ]e .,6, > = h
r .,hS . . - hr. .hs ., ,

3' k' r' s r' s j' k %k %o ^J xk '

where FT i s the normal curvature tensor and A the Weingarten map

at e . From (3.7) and (3.8) we obtain the following.

LEMMA 3.2. Let x : M •*• ET be an isometric immersion of an

oriented n-dimensional Riemannian manifold M into a . Then the

Laplaoian of the Gauss map v : M •*• G(n,m) c A if is given by
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(3.9) Av = -n I e A . . .
ei

feth j t h

Since the f i r s t term of the right-hand side of (3.9) i s the only

term tangent to G(n,m) and other two terms are normal to G(n,m) ,

Lemma 3.2 implies the following result of LI33.

COROLLARY 3 . 1 . (Ruh and vilms [ 7 3 ] ) . Let M be a submanifold of

ET . Then the map v : M •*• G(n,m) is harmonic if and only if M has

parallel mean curvature vector in if" .

I f we c o n s i d e r t h e map v = i • v : M -*• G(n,m) > £> (i = the

inc lus ion) , then Lemma 3.2 gives

COROLLARY 3.2. Let M be a submanifold of E? . Then the map

v : M •* S is harmonic if and only if M has flat normal connection

and parallel mean curvature vector.

COROLLARY 3.3. Let M be a compact submanifold of if" . If the

map v : M •*• S> is harmonic, then all of the Pontrjagin classes and

the Euler class of the normal bundle TM vanish.

4. Submanifolds with 1-type Gauss Map.

From Theorem 2 .2 and Lemma 3.2 we have the f o l l o w i n g .

THEOREM 4 .1 . Let x : M -*• if be an isometric immersion of a

compact, oriented Riemannian manifold M into a . Then the Gauss

map v : M -*• hnnf" is of 1-type if and only if M has constant scalar
curvature, flat normal connection and parallel mean curvature vector in

Proof. From Theorem 2.2 and Lemma 3.2 we see that v is of i-type

if and only if DH = 0 , FT = 0 and ||?l|| is a constant. From Gauss'
equation, the scalar curvature T of M satisfies n(n - 1)T =

n \H\ - \\h\\ . Since DH = 0 implies the constancy of the mean
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curvature \H\ , Theorem 4.1 follows. 0

If M is a hypersurface of E , we have

THEOREM 4.2. A compact hypersurface M of a has 1-type Gauss

map \> : M -*• A a if and only if M is a hypersphere in ft

Proof. Let M be a hypersurface of En+l . Then M has flat

normal connection. Thus, by Theorem 4.1, the Gauss map is of .2-type

if and only if M has constant mean curvature and constant scalar

curvature. Since a compact hypersurface of E has constant mean

curvature and constant scalar curvature if and only if M is a hyper-

sphere (Corollary 6.1 of [7] which follows easily from Proposition 4.1 of

[5, p. 271]), we conclude that v is of J-type if and only if M is a

hypersphere of ET D

If M is a compact hypersurface of a hypersphere S of E ,

then the normal connection of M in E is also flat. Thus, Theorem

4.1 implies that M has 1-type Gauss map if and only if M has constant

scalar curvature and constant mean curvature. Thus, by applying Theorem 2

of [6], we obtain the following.

THEOREM 4.3. Let M be a compact hypersurface of a hypersphere

s" of if1 Then M has 1-type Gauss map if and only if M is

one of the following submanifolds :

(a) A mass-symmetric 2-type submanifold of a ;

Cb) A small hypersphere of a ;

(c) A minimal hypersurface of s" with constant scalar curvature.

The following theorem classifies surfaces with i-type Gauss map

completely.

THEOREM 4.4. Let M be a compact surface in Ef . Then M has

1-type Gauss map if and only if M is one of the following surfaces:

(a) A sphere S2(r) c E3 c f1 ; or

(b) The product of two plane circles S1(a) x S1 (b) c Ek c g"1 .
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Proof. By Theorem 4.1 we see that both S2M and S1 (a) x S1 (b)

have 1-type Gauss map.

Conversely, if M is a compact surface in E with i-type Gauss

map, then we have (i) DH = 0 , (ii) T is constant and (iii) R = 0 .

Since M is compact, H ^ 0 . Thus, Theorem 2.1 of [4, p. 106] shows

that M is either a minimal surface of a hypersphere a of E ,

or it lies in E c E or in 5 c E If M is a minimal surface of

d"~l , then by iP = 0 , M lies in a S3 c Eh c if" (Remark 2.1 of [4,

3 3
p. 115]). Consequently, M lies either in E or in 5 . If M lies

3 2 3
in E , Theorem 4.2 shows that A? is a sphere 5 (r) c E . If M lies

3 •+ 3
in S <= E , Theorem 4.3 shows that A? is a sphere in E or a minimal

surface with constant Gauss curvature in S or a 2-type surface in

3 4 3

S <= E If M is a minimal surface of S with constant Gauss

curvature, then a result of [JZ] shows that M is the product of two

plane circles of the same radius. If M is a 2-type surface in

3i* 3

S c E , Theorem 2 of [6] shows that M is mass-symmetric in 5 . Thus

a classification theorem of [5, p. 279] yields that M is the product of

two plane circles of different radius. 0

From Theorem 4.1, we obtain immediately the following.

COROLLARY 4.1. Let x : M •*• tf" be an isometric iimersion of a

ocmpact oriented Riemannian manifold M into a . If the Gauss map of

x is of 1-type, then all of the Pontrjagin classes and the Euler class

of the normal bundle vanish.

Remark. In [7], Bleecker and Weiner had studied compact oriented

submanifolds of a whose Gauss map satisfies Av = Xv for some constant

A . They obtained results such as Theorems 4.1, 4.2 and 4.4.

5. Surfaces with 2-type Gauss Map.

The main purpose of this and the next two sections is to classify

minimal surfaces of £> with 2-type Gauss map. In order to do so, we
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2
need to compute A v .

Let X : M -*• a be an isometric immersion of a compact oriented

surface into S"1 . Assume that M lies in the unit hypersphere S of

2? centred at the origin. Then the position vector x is a unit normal

vector. In the following, we choose an oriented orthonormal local frame

e.,e,je,,,..,e in such a way that e = x . Then we have
A c- o fit Tfl

(5.1) hm. . = -&.. and <f = 0 .
^J I'd r

In the following, we assume that M is a minimal surface of S

Then the first normal space Im h is of dimension S 2 . Thus, we may

also assume that e^3 e^ lies in Im h . Then, with respect to the local

frame chosen above, we have

(5.2) 4, = ... = A = 0 , A = -I .
-> 7 7 7 - 1 777

Consequently, by Ricci's equation, we obtain

(5.3) H(e.,e.;e 3e ) = 0 for r,8 ̂  3,4 .
"V Q T* 8

B e c a u s e DH = 0 , Lemma 3 . 2 g i v e s

( 5 . 4 ) Av = 2KDe3 A eh + | | f e | | 2 e
x
 A e

2 >

w h e r e K = Ft (e. ,e-e~,e. ) = h . h . - h . h . .

In the following, we shall make use of the following convention on

the ranges of indices:

^ - i->0}k - 2 ; 5 ^ OJBJY £ m ; 3 <, r,s,t, S ?TI .

By a straight-forward but lengthy computation, we may obtain

LEff"1A 5 . 1 . Under the hypothesis, we haoe

\\n\\2-l) + \ r | | u > M | 2 + \W\\\2)}e *eh

+ {A | H | 2 + Hhll" + 4(KD)}ei A

a

e 2
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+ 4(e/){h\.e. A elt+h\de3 A e.-^jej

- 4KD{hk..uaJe.) - h3..ua. (e J}e. A e
tj 3 i tj >t t j aj 3 j j

-2XD{(V a)aJe. V-iACe J ^ . f e J - u^ CeJa>a (e J }e A e,
e. 3 t 3 ^ 6 • ^ - 3 ^ 1 t ^ a •»

- 2KD{(V a ) a J e . V- u 6 . (e J o . " re J - to3 Je .)ua Je .)}e , A e .
e. ^ % " t i B £ 1 * ^ 3 ^ 3 a

^

Now, we give some examples of compact minimal surfaces in

.5 <= E with 2-type Gauss map. More examples will be given in

Section 6.

The first example is given by Veronese surface in 5 . We recall

the Veronese surface as follows (see [5 ,10 ]) .

Let (xs])3z) be the natural coordinate system in £" and

(u ,li ,M ,u ,U ) the natural coordinate system in E . We consider

the mapping defined by

\ 1 2 1 3 1 4 1 , 2 2 .
M = — J/3J M = — zx, u = — xyy u = (x - y )

/3 Jz /3 2/3
(5.5)

u5 = - (x2 + y2 - 2z2) .
6

This defines an isometric minimal immersion of 5 (/3) into 5 = S (1)

Two points (x,y,z) and (-x,-y,-z) of Sz(/3) are mapped into the

same point of 5 and this mapping defines an embedded real projective

plane in 5 which is called the Veronese surface. For the Veronese

surface, we have

(5-6)

Thus, Lemma 5.1 yields

(5.7) A2
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From (5.4) we have

(5.8) A v = " 3" e 3 A ei» ~3~ 1 2 '

Consequently, (5.7) and (5.8) give

(5 .9 ) A2v — Av + - v = 0 .
c o

Therefore, from (5.4) and (5.9) and Theorem 2.2, we may conclude that the

2 t| t

second standard immersion ty : S (v3) -*• S c E defined by (5.5) has

2-type Gauss map. Moreover, the order of the Gauss map is [1,3] (with

Xj = 2/3 and A3 = 4 ) .

2
In general, the fc-th standard immersion ty, of a 2-sphere S in

lk
S can be defined as follows.

Let (B,<fr) denote the spherical coordinates of S (i1.,) of radius

r, = (k(k + l)/2)1' . Then the coordinates of S2(r,) in E3 are given

by

(5.10) x = v, cos ifij y = r, sin <() cos 9, z = r, sin ij> sin 8 .

2
In terms of (§,§) , the fe-th standard immersion if, of S (i",) intov,)

Jlk . .
S i s given by

(5.11)

u° = (rk//2) • B°k • P°Ccos

Ccos ((>; • c o s C i e ; , i = l , . . . , k 3

B^ • P^ Ccos

where (u ,u ,...,u ) is the Euclidean coordinate system of E

Moreover,

(5.i2) pjrt; = a - * V / 2 —J5j id - *2Jfc], o = o,i,...,k,

are the Legendre functions and B^r. are defined by
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It is well-known that the fc-th standard immersion is an isometric

2 ik
minimal immersion of 5 (rj^) into 5 If & is odd, it is an
imbedding and if k is even, it is a two-to-one map.

THEOREM 5.1. Let x : S2(r) ->-5m~1 c ]p be a minimal isometric

immersion of a 2-sphere S (r) into £> c IT . If x is not totally

geodesic, then it has 2-type Gauss map.

Proof. Let x : S (r) -*• & c E be a minimal isometric immersion

of S2(r) into d"~l . Then, by a well-known result of Calabi [3].,

r = v, for some natural number k and the immersion x is the k-th

standard immersion IJJ, of S (r,) into 5 c s (up to rigid motions

of S ) . If k = 1, x is a totally geodesic immersion. Thus, we

obtain k S 2 from hypothesis.

Since the fe-th standard immersion iK : S2(r.) •* S c s"1'1 c EF

is isotropic (see Theorem 1 and Remark 1 of LSI) , Lemma 3 of [S] implies

that, with respect to a suitable orthonormal frame e ,e ,e ,,,,,e so

that e = x , we havem

< » • » ' * . - [ ' . » ) • " , - ( » - « ) • ',-•••-1 =0, 4 = -I .m-\ m

Since e = x . we have
m

(5.15) ^

Moreover, from (5.14) and equation of Gauss, we find

(5.16) e2 = (k - l)(k + 2)/2k(k + 1) .

Let D denote the normal connection of S (r,) in E . Then, by

(5.14), (5.15), (5.16), and Codazzi equation, we obtain

(5.17) DQ e3 + 2i/1(e1)elt = Dg e^ - 2u2
1(e2)e3 ,
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(5.18) D e + 2u2 (eo)eu = -D e + 2us2 (e )e .

2 l

From (5.17) and (5.18) we get

(5.19) uk
3 = -2u1

1 ,

(5.20) " V ' V = " V V * l^Z(e2) = -ufjej* « - 5 •

Moreover, from (5.14) and (5.16), we obtain

(5.21) ||fc||2 = 4(k2 + k - l)/k(k + 1) ,

(5.22) X? = (k - 1) (k + 2)/k(k + 1) .

Furthermore, (5.21) yields

(5.23) I | |a )
a

3 | | 2 = \ TJ
a

On the other hand, by (5.14), (5.19) and structure equation, we have

(5.24) - io3 A ua
k = (2K +

w h e r e K= 2/k(k + 1) . C o m b i n i n g ( 5 . 2 0 ) , ( 5 . 2 3 ) a n d ( 5 . 2 4 ) , w e f i n d

(5.25) I | |o)a
3 | |2 = I flaiaj| 2 = 2K + K° = (k.2 + k + 2)/k(k + 1) .

a a

From (5.14) and ( 5 . 2 0 ) , we a l s o g e t

(5.26) h^.-ufje.) = h3..**, (e.) f o r 3=1,2.
13 3 i 13 i+ t

From the structure equations, we obtain

(5.27) (diii ) (Q ,Q ) = — (hi A a)

(5. 28) (do) -) (& ,6 ) = — (bi A(o

Thus, by using (5.20), (5.27) and (5.28) we give

(5.29) (V uaje. = u ,(e.)ma.(e.) - to ,

(5.30)
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C o n s e q u e n t l y , ( 5 . 2 1 ) , ( 5 . 2 2 ) , ( 5 . 2 5 ) , ( 5 . 2 6 ) , ( 5 . 2 9 ) , ( 5 . 3 0 ) and Lemma 5 . 1

y i e l d

( 5 . 3 1 ) A2v = 4{XD \\h\\2 + 2K}e3 A eh

+ { \\h\\* + 4(KD)2}e1 A e2 .

Since \\h\\ , K and K are constant, (5 .4) , (5.31) and Theorems 2.2 and

4.4 imply that the Gauss map v i s of 2-type. 0

From the proof of Theorem 5.1 we have the following.

COROLLARY 5 .1 . Let x : M •* S^"1 c E™ be a minimal isometrio

immersion of a compact oriented surface M into £> . If M is

constant isotropic in !> ~ (or in a), then the Gauss map of x is of

either 1- or 2-type.

6. Classif ication of Minimal Tori with 2-type Gauss Map.

Let (n^kjm) be a triple of integers with n,k > 0 . Let A be

the lattice generated by

(6.1) {(0, 2^2/3 nv), (J2kv, /2/3 (2m -

— 2 6
Consider the map y, - , ; R + E defined by

f Yl} Kj Tfl)

(6.2) ~y Js,t) = — Tcos — (s + /3 t), sin — (s + SE t) ,

cos — (-S + /3 t), sin — (-S + /3 t), cos/2~ s, sin /2 s) .
/2 J2

Then y . , is an isometric immersion and i t induces a minimal isometric

? 5 6
immersion of the flat torus T, , , = B /A into 5 <= E which is

(n,K.3m)

denoted by y. •, . so we have

(6.3) y, 7 , ; T, , . -*• S5 c £ 6 .

^frijk^m) (n,k,m)

The following result completely classifies minimal flat tori in

£> with 2-type Gauss map.
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THEOREM 6.1. (a) For any triple (n,k,m) of integers with
n,k > 0 , the minimal isometric irmersion (6.3) has 2-type Gauss map.

(b) Let y : T2 •* S7"" ^ if be an isometric minimal immersion of

a flat torus T into S> . If the Gauss map of y is of 2-type,
then

(b.1) T is isometric to the flat torus T, , , for some

natural numbers k and n and integer m ;
2 5

(b.2) T is immersed fully in a totally geodesic 5-sphere S of
S7*"1 ; and

(b. 3) up to rigid motions, y is given by the composition i .

& ( k ) ; T "* ̂ 5 "*" S"!~1 c ^" ' wnere i is tne inclusion.

Proof. (a) Let y. , . be the isometric immersion of T, , ,J (niKam) (n1K.1m)

given by (6.3), induced from (6.2). Then, by a direct computation, we

h a v e *»(nKm) = *y(nkm) ' T h u S' b y a r e s u l t o f - *(nMk3m)

is a minimal immersion. Since the Gauss map is given by v = 3/3s A d/Zt,

a straight-forward computation yields

(6.4) A2v - SAv + 12M = 0 .

From Theorem 4.4, we know that v is not of i-type. Thus,

Theorem 2.2 implies that the Gauss map is of 2-type.

(b) Let y : T -*• S c. E be an isometric minimal immersion of

a flat torus T into o such that the Gauss map of y is of 2-type.

Assume that T1 = H V A , where A is a lattice in B which defines the

flat torus T . Without loss of generality, we may assume that A is

given by

(6.5) A = {(2hvu, 2irmv + 2hmj) | h,m e Z} ,

where U, V, W are real numbers with u, V > 0 . The dual lat t ice of A
is given by
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It is known that the spectrum of r = R /A is given by

(6.7) {(K.^+^ , M £ l } .

The eigenspace V(\) of A with eigenvalue X is given by

(6.8) Spantcosf— + —•) , sinf—-f —J | (—) + (-) = \} ,

where e = k - — .

Since y : T •*• S> c ET is minimal, hy = 2y . Thus, every

coordinate function of y is an eigenfunction of A with eigenvalue 2.

We put

(6.9) <H*ni>

where e. = k. - n.w/v and k.} n. e Z . Let §P = I (#P denotes the^ ^ % ^ ^

cardinal number of P) . For simplicity, we may assume P={(z.,n.) \ i e I1}

when Iy = {1,2,...jl}. Then the isometric immersion z/ may assume to be

of the following form:

(6.10) y(s,t) = (\i. cos(e.s + n.t), y. sinfe.s + n.t)) . _ ,
"V % "V % Is % %£J

where I is a subset of J7J p. are positive constants and

(6.11) e. = e./u, n. = n./v, z. + n. = 2 .

If #1=2, then T i s a minimal flat torus in S . Thus, by a result
o

of [721, T is immersed as a Clifford torus. Thus, by Theorem 4.4, y

has i-type Gauss map which is a contradiction. Thus, we obtain #1 2 3.

Since cosC-8^ = cos 9 and sinf-8j = -sin 9 , without loss of generality

we may put

(6.12) n. > 0 for i e I .

2 _W—1
Since y is an isometric immersion of T into S , we have

(6.13) i A - * >
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y 2—2 = y 2—2 _ ̂
(6.14) ^ Vi E i *• Vin i '

(6.15) I v\W = 0 .

By applying (6.10) we see that the nonzero coordinates of the Gauss map

v : T2 + A V = Ef"(m-1)/2 are given by

(6.16) v(s.t) = (v- •(- cos ((z. + eJs + (n. +nJt) +
13 1 3 1 3

+ cosCCe. - zJs + (n. - n.)t)) .
1 3 1 - 3

- u. .CsinCCe. + z Js + (n. + n Jt) +
13 1 3 1 3

i ' 73)S + ("i ~ "j

^3--Ii+13)S+ (\+"jH) '

- sinfrl\ - IJs + rn. - n.

y . . Ccos ( (z . + zJs + (n. + nJt) +
13 1 3 1 3

+ coslYF. - "zJs + (n. - njt))). . ,
1 3 1 3 i<3

where

(6.17) p. . = 4 \i.\i.(7.n. - J.nJ .
13 2 % 3 % j Q i

By direct computation, we find

(6.18) Av = (\i..(-b.. cosCCe. +~z~Js + (n. +njt) +
13 13 1 3 1 3

+ a.. cosCfe. - zJs + (n. - nJt)) ,
13 1 3 1 3

- \i. .(b. .sin((7. +7Js + (n. + n Jt) +
13 13 1 3 1 3

+ a..sin((7. - 7.)s + (n. - njt)) ,
13 1 3 1 3

- \i..(b.. sinCC7. +7Js + (n. +njt) -
13 13 1 3 1 3

- a. . sinfCe. - e Js + (n. - n Jt)) .
13 1 3 1 3

v..(b.. cosfCT. + 7Js + (n. + nJt) +
13 13 1 3 1 3

+ 0.. cosffe". - 7Js + (n. - njt))). . ,
13 1 3 1 - 3 1 <3
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(6.19) A 2 v = (v..(-b2.. c o s f f e . + e.)s + (n. +n.)t) +
13 1-0 1 3 1 3

+ <?. . cos(Cz. - 7 j s + (n. - n.
13 id 1 3

2 _ _ _
- v. .(b. . s i n f f e . + t.)s + (n. + n.)t) +

13 13 1 3 1 3

+ o2. . s i n (Y7 . - 7.)8 + (n. - n.) ,
13 1 3 1 3

- v. Ab. . sinCCr. + l.)s + (n. + n.)t) -
13 13 1 3 1 3

- a . , sinffe. - z .)s + (n. - n .)t)) ,
13 1 3 1 3

2
y. Ab. . cosCCe. + c.)s + (n. + n.)t)) +

13 13 1 3 1 3

+ a. . coslTe . - e .)s + (n. - n .)t))) . . ,
13 1 3 1 3 1 < 3

where

(6.20) b. . = 4 + 27.7. + Zn.n. ,
13 13 13

(6.21) c..= 4 - 2e\7. - 2n.n. .
13 1 3 1 3

If b. . = a. . for a l l i < 3 , then
13 13

(6.22) e . e . = -n.n. , i < 3 •
13 13

This implies that either e,* = ani for all 3' e. I or n,• = OZJ for all

j e I . Thus, by (6.9) , we obtain

(6.23) n1. = 2/(1 + cZ) or 7* = 2/(1 + a2) for 3 e I .

3 3
This gives #1 < 2 which contradicts the assumption. Consequently, there

is a pair (1,3) (i < 3) such that b- • / a- • . Without loss of
13 13

generality, we may assume that b^2 ^ a . This is equivalent to

(6.24) Eje2 ^ ~nin
2-

T h u s , f r o m ( 6 . 1 6 ) , ( 6 . 1 8 ) , ( 6 . 1 9 ) and T h e o r e m 2 . 2 , w e f i n d

(6.25) {bir°ij I i'J * *> * < 0) = ^i2-c12} '

We put
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(6.26) B-. = jb.. - 2 , y.. = -6.. .

From (6.9) and (6.12) we have

1

(6.27) n . = (2 - 72J .
3 3

If * 1 - = * 1 2 » then (6.20), (6.26) and (6.27) give

(6.28) 7. =

If b. • = a , we have

(6.29) l.=-\

From (6.27), (6.28) and (6.29) we get #1 < S .

If B,2 = 4 } then §1=2, which is impossible. Therefore, we

have 8,. < 4 . This condition is equivalent to the condition einofi ezn\'

Without loss of generality, we may assume

(6.30) 7 ^ < 72«" .

From (6.20), (6.26) and (6.30) we find

(6.31, 7 2 = |

If we put

(6-32, 7, = 4

then we have

(6.33) {1

It is clear that 1, 2 e I . Moreover, we have #1 £ 3 .

If I ^ / { 7 ^ , then #1=3 and { 7 ^ = {7^7^-7^ If

e or -e3 belongs to {e.}. ̂  , then by (6.9) and (6.32) we may find

| e:3 j = | e2 | . Consequently, we always have
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(6.34) <e

Without loss of generality, we may assume that e > 0 , Let us simply

denote e by c and denote n by n . Then from (6.34) we have

(6.35) {(e.,n.)}. = {(-z,n), (z,n),(e.,n,)}, e > 0, n > 0 .

I f we apply our argument of d e r i v i n g (6.31) t o ( 6 . 3 5 ) , we f ind

(6.36) T1 = ± 7(3 - 2T2) , 7a = ± 7 .

Therefore , by using (6 .27) , we get

(6.37) n i = {(2 - ~P)(l - 2 T 2 ) 2 } 2 , n l ? n .

T h e r e f o r e , ( 6 . 2 0 ) , ( 6 . 2 1 ) , ( 6 . 3 5 ) , (6.36) and (6.37) y i e l d

(6 .38) ibij>eij}i<j = {i^> 4"2' (7 + 7 1 ; 2 + (" + * / '

(7 - 7aJ
2 + (n - nx)

Z, (7 - 7X)2 + (n + n^2, (7 + 7^ + (n - n^2}.

Since the Gauss map i s of 2- type , #{£>. .,c. . | i < j} = 2 . Thus, by

( 6 . 3 6 ) , (6.37) and e, n > 0 , we obtain n = 0 . Therefore, by (6.37) ,

—0 2
we ob ta in e = 2 or 1/2 . I f e = 2 , we obtain from (6.27) t ha t
n = 0 which y ie lds #1=2 by v i r tue of (6 .35) . Hence, we find

(6.39) 1=—-17l = ±z7=±/2in = ^ .

Since n. = 0 , we may choose e = / 2 . Consequently, we obtain

Substituting (6.40) into (6.13), (6.14) and (6.15) we get

2 2 2
u = V<2 = W3= 1/3 . Therefore, we find that the nonzero coordinates of

y : T -*• £> c Or are given by the following functions:
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y = — cos — (s + /I t) , y2 = — sin — (s + /3 t)

(6.41) y = — cos— (-s + /3 t) , y = — sin — (-S + / J t)
3 /% /2 /3 /2

yK = — cos /2 s j y — — s i n *% s .

Because y .....y are functions on T = B /A , they are invariant under
1 6

the action of A . From this we see that (hu + /3(mv + hw))//2 ,

(-hu + /Z(mv + hw))//2~ and /2 hu are integers for any integers h , m.

In particular, we have

(6.42) u = k//2 , v = /2/Z n , a) = (2m - k)//6

for some integer m and natural numbers k and n . Therefore, we

find that the la t t ice A is generated by

(6.43) {(0, 2/2/3 m) , (/2k-n, /2(2m - k)t//3)} .

It is easy to verify that the functions ya are invariant under the action

of A . Thus, we complete the proof of (b). 0

7. Classification of Surfaces with 2-type Gauss Map.

We give the following.

THEOREM 7.1 (Class i f ica t ion) . Let x : M •* S™"1 c s"1 be a minimal

isometric immersion of a compact oriented surface M into £>~ . Then

x has 2-type Gauss map if and only if either (1) M is a 2-sphere

S (r,) with radius r, = /k(k + l)/2 for some integer k > 2 and x

is given by the k-th standard immersion iji, of S (r,) or (2) M is

the flat torus 1. , , , = IT/N for some integers n,k,h with n,k > 0,

where A i s the lattice generated by

(7.1) {(0, 2/2/3 tin), (/2 kit, /2~/Z(2h - k)v)} ,

and the immersion x is induced from the isometric immersion

x : B2 ->• S5 c E6 c if" defined by
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x(s,t) = — (cos — (a + Jz t), sin — (e + /3 t) ,

(7.2)

cos — (-8 + S3 t), sin — (-s + /3 t), cos J2s, sin /2s, 0,...,0) ,
/2 J2

up to rigid motions of s

Proof. Let x : M •*• S e g be a minimal isometric immersion of

a compact oriented surface into £i . If the Gauss map is of 2-type,

then, by Theorem 2.2, there exist two constants b and c such that

the Gauss map v of x satisfies

(7.3) A2v + Z>Av + cv = 0 .

By l o o k i n g a t v = e A e , a t equa t ion (5 .4) and a t Lemma 5 . 1 , we f ind

(7 .4 ) ( e i H m 2 2 i i m

Since A = -I , (7.4) implies that \\h\\ is constant. Similarly, by

looking at the coefficients of e A e of (5.4) and using Lemma 5.1

and (7.3) we obtain

(7.5) \\h\\* + 4(KD)2 +b |M|2 + o = 0 .

Because ||̂ || , b and c are constant, (7.5) shows that A is also

constant. If K = 0 > then, by the constancy of ||fc|| and minimality of

M in S , we conclude from Theorem 4.1 that the Gauss map is of 1-

type which is a contradiction. Thus, K is a nonzero constant. Since

M is minimal in S and ||7i|| is constant, M has constant Gauss

curvature. Therefore, by applying a result of C2], we may conclude that

M is either an ordinary 2-sphere S (r) of radius r or a flat torus.

If M is 5 (v) , we conclude from Theorem 4.4 and a result of [3] that

r = v, = vk(k + l)/2 for k * 2 and x is the fe-th standard immersion

tfi, . If M is a flat torus, then we conclude from Theorem 6.1 that M

is given by iT/A for some lattice generated by (7.1) where n,k>h are
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integers with n,k > 0 . Moreover, by Theorem 6.1, we also see that x

is induced by the isometric immersion x of R into E defined by

(7.2) up to rigid motions.

The converse of this was given in Theorems 5.1 and 6.1. 0
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