MORITA DUALITY AND FINITELY GROUP-GRADED RINGS

SHENGGUI ZHANG

We give the relation between the (rigid) graded Morita duality and the Morita duality on a finitely group-graded ring and the relation between a left Morita ring and some of its matrix rings.

0. INTRODUCTION

The characterisations of Morita dualities can be found in [6]. (Rigid) graded Morita dualities are characterised in [2]. We use freely the same terminologies and notations on the Morita duality as in [6] and on the (rigid) graded Morita duality as in [2].

Throughout this paper, all rings are associative and have identity, all modules are unitary, G is a finite group with an identity e, and $|G| = m$. R is a graded ring of type G. R-mod $(R - gr)$ denotes the category of all (graded) left R-modules (of type G).

Let $M_{G}(R)$ denote the ring of m by m matrices over R with rows and columns indexed by the elements of G. If $x \in M_{G}(R)$, we write $x_{g,h}$ for the entry in (g, h)-position of x. Then if $x,y \in M_{G}(R)$, the matrix product of xy is given by

$$(xy)_{g,h} = \sum_{t \in G} x_{g,t}y_{t,h}$$

Following [6], we call the ring

$$RG = \{x \in M_{G}(R) | x_{g,h} \in R_{g^{-1}h} \}$$

is smash product of R with G.

In this paper, we first prove that a graded ring R has a (rigid) graded Morita duality on the left if and only if R has a left Morita duality. Secondly, we prove that a graded ring R has a left Morita duality if and only $M_{n}(R)_{\bar{g}}(g)$ has a left Morita duality for every natural number n and every $\bar{g} = (g_{1}, g_{2}, \ldots, g_{n}) \in G^{n}$, where

$$M - n(R)_{\bar{g}}(\bar{g}) = \left\{ \begin{pmatrix} \tau_{g_{1}g_{1}}^{-1} & \tau_{g_{1}g_{2}}^{-1} & \cdots & \tau_{g_{1}g_{n}}^{-1} \\ \tau_{g_{2}g_{1}}^{-1} & \tau_{g_{2}g_{2}}^{-1} & \cdots & \tau_{g_{2}g_{n}}^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ \tau_{g_{n}g_{1}}^{-1} & \tau_{g_{n}g_{2}}^{-1} & \cdots & \tau_{g_{n}g_{n}}^{-1} \end{pmatrix} \mid \tau_{g_{i}g_{j}}^{-1} \in \bar{R}_{g_{i}g_{j}^{-1}} \right\}$$
Finally, we prove that a graded ring \(R \) has a left Morita duality if and only if \(R\{H\} \) has a left Morita duality for any subgroup \(H \) of \(G \), where

\[
R\{H\} = \left\{ \alpha \in M_G(R) \mid \alpha_{x,y} \in R_{xHy}^{-1} = \bigoplus_{g \in eHy^{-1}} R_g \right\}.
\]

1. Graded Morita Duality and Morita Duality

Let \(xe_g \) denote the column vector with \(x \) in the \(g \)-position and zero in the other positions and \(e(g, h) \) denote the \(m \) by \(m \) matrix with the identity of \(R \) in the \((g, h)\)-position and the zero of \(R \) in the other positions. For every graded left \(R \)-module \(M = \bigoplus_{g \in G} gM \), we denote \(F(M) = \bigoplus_{g \in G} gMe_g \) and define \(r \cdot \widetilde{m} = \sum_{g} \left(\sum_{h} r_{g,h} m_{h} \right) e_g \) for every \(r \in R\#G \) and \(\widetilde{m} = \sum_{g \in G} gme_g \in F(M) \). So \(F(M) \) is a left \(R\#G \)-module with this scalar multiplication and the column vector addition. Conversely, for every left \(R\#G \)-module \(N \), we denote \(G(N) = \bigoplus_{g \in G} (e(g \cdot g)N) \) and define \(r \cdot n = \sum_{g \in G} r_g e(gh, h)n \) for every \(r \in R \) and \(n \in N \). Let \(gG(N) = e(g \cdot g)N \) for every \(g \in G \), then \(G(N) \) is a graded left \(R \)-module of type \(G \) with this scalar multiplication and the original addition.

We view every graded left \(R \)-homomorphism \(f: M \to N \) as left \(R\#G \)-homomorphism

\[
F(f): F(M) \to F(N)
\]

and view every left \(R\#G \)-homomorphism \(g: U \to V \) as a graded left \(R \)-homomorphism \(G(g): G(V) \to G(V) \). Following [9], we know that \(F: R - gr \to R\#G - \) mod and \(G: R\#G - \) mod \(\to R - gr \) are functors such that \(FG = 1 \) and \(GF = 1 \). It is clear that a graded left \(R \)-homomorphism \(f: M \to N \) is monic (epic) if and only if \(F(f): F(M) \to F(N) \) is monic (epic) and a left \(R\#G \)-homomorphism \(g: U \to V \) is monic (epic) if and only if \(G(g): G(U) \to G(V) \) is monic (epic). So the lattice of submodules of a left \(R\#G \)-module \(U \) is isomorphic to the lattice of graded submodules of \(G(U) \). Then we have the following.

Lemma 1.1. Let \(M \) be a left \(R\#G \)-module, then

1. \(M \) is injective if and only if \(G(M) \) is gr-injective.
2. \(M \) is finitely cogenerated if and only if \(G(M) \) is finitely gr-cogenerated.
3. \(M \) is cogenerator if and only if \(\{ (g)G(M) \mid g \in G \} \) is a set of cogenerators in \(R - gr \).

Definition 1.2: (1) Suppose \(M \) is a left \(R \)-module \(m_i \in M, M_i \) is a submodule of \(M, i \in I \). A family \(\{m_i, M_i\}_{i \in I} \) is called solvable in case there is an \(m \in M \) such that \(m - m_i \in M_i \) for all \(i \in I \), it is called finitely solvable if \(\{m_i, M_i\}_{i \in F} \) is solvable
for any finite subset \(F \subseteq I \), and the module \(M \) is called linearly compact in case any finitely solvable family of \(M \) is solvable.

(2) Let \(M \) be a graded left \(R \)-module. A pair \((m, N)\) is called a homogeneous pair of degree \(g \) if \(N \) is a graded submodule of \(M \) and \(m \in g M \). A homogeneous family of \(M \) is a family of homogeneous pairs all of them with the same degree and the graded left \(R \)-module \(M \) is called \(gr \)-linearly compact in case any finitely solvable homogeneous family of \(M \) is solvable.

Lemma 1.3. (1) \(RR \) is \(gr \)-linearly compact if \(R#G \) is linearly compact.

(2) \(G(M) \) is \(gr \)-linearly compact if \(R\#G \)-module \(M \) is linearly compact.

Proof: (1) Suppose that \(\{m_i, M_i\}_{i \in I} \) is a finitely solvable homogeneous family of \(RR \) with the same degree \(g \). Let \(M_i^g = \{\alpha \in M_G(R) \mid \alpha_{g,h} \in g^{-1} M_i\} \) and \(m_i^g = \sum_{h \in G} m_i e(g h, h) \), \(i \in I \). For every finite subset \(F \subseteq I \), \(\{m_i, M_i\}_{i \in F} \) is solvable, so there is a \(m_F \in M \) such that \(m_F - m_i \in M_i, i \in F \), \(g m_F - m_i \in g M_i, i \in F \). Let \(m_F^g = \sum_{h \in G} g m_F e(g h, h) \), then \(m_F^g \in R\#G \) such that \(m_F^g - m_i^g \in M_i^g, i \in F \).

So \(\{m_i^g, M_i^g\}_{i \in I} \) is finitely solvable. Since \(R\#G \) is linearly compact, there is an \(r \in R\#G \) such that \(r - m_i^g \in M_i^g, i \in I \), so \(r_{g,h} - m_i \in g M_i \subseteq M_i, i \in I \), so \(RR \) is \(gr \)-lineary compact.

(2) Suppose that \(\{n_i, N_i\}_{i \in I} \) is a finitely solvable homogeneous family of \(G(M) \) with the same degree \(g \) and \(n_i = e(g, g) m_i, m_i \in M, i \in I \). Let \(M_i = F(N_i), i \in I \). For any finite subset \(F \subseteq I \), \(\{n_i, N_i\}_{i \in F} \) is solvable. So there is an \(n_F \in G(M) \) such that

\[
n_F - n_i \in N_i, i \in F, \text{ so } g n_F - n_i \in g N_i, i \in F.\]

Let \(n_F = \sum_{h \in G} e(h, h) m^{(h)} \), then

\[
e(g, g) m^{(g)} - e(g, g) m_i = e(g, g) \left(m^{(h)} - m_i \right) \in N_i, i \in F.
\]

Since \(N_i = G(M_i), i \in F, g N_i = e(g, g) M_i, i \in F, m^{(g)} - m_i \in M_i, i \in F \). Therefore, \(\{m_i, M_i\}_{i \in F} \) is finitely solvable. \(M \) is linearly compact, so there is \(m \in M \) such that \(m - m_i \in M_i, i \in I \). Let \(n = e(g, g) m \), then \(n \in G(M) \) such that \(n - n_i \in G(M_i) = N_i, i \in I \), so \(G(M) \) is \(gr \)-linearly compact.

Theorem 1.4. A graded ring \(R \) has a left Morita duality if and only if \(R \) has a rigid graded Morita duality on the left.

Proof: If \(R \) has a rigid graded Morita duality on the left, then \(R \) has a left Morita duality by [3, Proposition 4.3].

Conversely, if \(R \) has a left Morita duality then \(R\#G \) has a left Morita duality by [8] Theorem 3.9. Suppose that \(R\#G \) has a left Morita duality induced by a left
$R \# G$-module W, then $R \# G R \# G$ is linearly compact and W is a linearly compact finitely cogenerated injective cogenerator by [7] Theorem 4.5. So $G(W)$ is a gr-finitely cogenerated gr-linearly compact left R-module such that $\{(g)G(W) \mid g \in G\}$ is a set of cogenerators of $R - gr$ by Lemma 1.1 and 1.3, and $R R$ is gr-linearly compact by Lemma 1.3. Therefore R has a rigid graded. Morita duality on the left by [3] Theorem 5.19.

2. Morita rings and matrix rings

For any natural number n and every $\bar{g} = (g_1, g_2, \ldots, g_n) \in G^n$ and every $h \in G$, let

$$M_n(R)_h(\bar{g}) = \begin{pmatrix}
T_{g_1 h g_1^{-1}} & T_{g_1 h g_2^{-1}} & \cdots & T_{g_1 h g_n^{-1}} \\
T_{g_2 h g_1^{-1}} & T_{g_2 h g_2^{-1}} & \cdots & T_{g_2 h g_n^{-1}} \\
\vdots & \vdots & \ddots & \vdots \\
T_{g_n h g_1^{-1}} & T_{g_n h g_2^{-1}} & \cdots & T_{g_n h g_n^{-1}}
\end{pmatrix} \in R_{g_1 h g_j^{-1}}$$

and $M_n(R)(\bar{g}) = \bigoplus_{h \in G} M_n(R)_h(\bar{g})$, then $M_n(R)_e(\bar{g})$ a ring with the matrix multiplication and the matrix addition and $M_n(R)(\bar{g})$ is a graded ring of type G, we have

Theorem 2.1. If R has a left Morita duality, then $M_n(R)_e(\bar{g})$ has a left Morita duality for every natural number n and every $\bar{g} \in G^n$. Conversely, if $M_n(R)_e(\bar{g})$ has a left Morita duality for some natural number n and every $\bar{g} \in G^n$, then R has a left Morita duality.

Proof: If R has a left Morita duality, and let E be the minimal injective cogenerator of $R_e - \text{mod}$, then R_e has a left Morita duality and R_g and $\text{Hom}_{R_g}(R_e, E)$ are linearly compact for every $g \in G \setminus \{e\}$ by [2] Theorem 2.3. Following [4], we know the matrix ring $M_n(R)_e(\bar{g})$ has a left Morita duality for every natural number n and every $\bar{g} \in G^n$.

Conversely, if the matrix ring $M_n(R)_e(\bar{g})$ has a left Morita duality for some natural number n and every $\bar{g} \in G^n$, then, following [4], R_e has a left Morita duality, and $R_{g_i h g_j^{-1}}$ and $\text{Hom}_{R_e}(R_{g_i h g_j^{-1}}, E)$ are linearly compact, $i, j = 1, 2, \ldots, n$, so R_e has a left Morita duality and R_g and $\text{Hom}_{R_g}(R_g, E)$ are linearly compact for every $g \in G \setminus \{e\}$. Following [2] Theorem 2.3, R has a left Morita duality.

Theorem 2.2. If R is a strongly graded ring and $M_n(R)(\bar{g})$ has a left Morita duality for some natural number n and some $\bar{g} \in G^n$, then R has a left Morita duality.

Proof: If R is a strongly graded ring, then $M_n(R)(\bar{g})$ is a strongly graded ring by [5] Theorem 1.5.6. $M_n(R)_e(\bar{g})$ has a left Morita duality, so $M_n(R)(\bar{g})$ has a left

If U is a nonempty subset of G, let $R(U) = \sum_{z \in U} R_z$. Suppose H is a subgroup of G, we define $R\{H\} \subseteq M_G(R)$ by

$$R\{H\} = \{\alpha \in M_G(R) \mid \alpha_{x,y} \in R_{xH_y^{-1}}\}.$$

Theorem 2.3. If R has a left Morita duality, then $R\{H\}$ has a left Morita duality for any subgroup H of G. Conversely, if $R\{H\}$ has a left Morita duality for some subgroup H of G, then R has a left Morita duality.

Proof: R has a left Morita duality, so $R\#G$ has a left Morita duality by [8] Theorem 3.9, so, $R\{H\}$ has a left Morita duality by [6] Lemma 1.2 and [2] Corollary 2.6 for every subgroup H of G. Conversely, if $R\{H\}$ has a left Morita duality for some subgroup H of G. Since $R\{H\}$ is a strongly graded ring by [6] Lemma 1.2, $R\#G$ has a left Morita duality by [2] Corollary 2.6. So R has a left Morita duality by [8] Theorem 3.9.

References
