PROLONGATIONS OF LINEAR CONNECTIONS TO THE FRAME BUNDLE

Luis A. Cordero and Manuel de Leon

In this paper we construct the prolongation of a linear connection \(\Gamma \) on a manifold \(M \) to the bundle space \(FM \) of its frame bundle, and show that such prolongated connection coincides with the so-called complete lift of \(\Gamma \) to \(FM \).

Introduction

The purpose of the present paper is to construct the prolongation of a linear connection on a manifold \(M \) to the bundle space \(FM \) of the frame bundle of \(M \). To do this, we use Morimoto's general theory of prolongations to tangential fibre bundles of \(p^r \)-jets of \(M \) [6] particularized when \(r = 1 \), as well as some result stated in [2].

In §1, we briefly recall some results which will be used in the remaining sections. In §2, the prolongation of a connection on a principal fibre bundle \(P \) to the principal bundle \(J^1_P \) of \(p^1 \)-jets of \(P \) is constructed. In §3, we apply the results in §2 for the case of linear connections and construct the prolongation \(\tilde{\Gamma} \) to \(FM \) of a linear connection \(\Gamma \) on \(M \), proving moreover that \(\tilde{\Gamma} \) coincides with the so-called complete lift \(\Gamma^C \) of \(\Gamma \) defined by Mok in [5]. Finally, in §4 we show that connections adapted to \(G \)-structures on \(M \) prolongate to

Received 18 July 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/83 $A2.00 + 0.00.
connections adapted to the corresponding prolongations of these G-structures introduced in [2].

In this paper all manifolds and mappings are assumed to be differentiable of class C^∞, entries of matrices are written as a_{ij}^i, i being the row index and j the column index, and summation over repeated index is always implied.

1. Preliminaries

Let M be an n-dimensional manifold, \mathbb{R}^P the Euclidean p-space and J^1_pM the set of 1-jets at $0 \in \mathbb{R}^P$ of all differentiable mappings $\mathcal{G} : \mathbb{R}^P \to M$ defined on some open neighborhood of $0 \in \mathbb{R}^P$; if $j^1(\mathcal{G})$ denotes the 1-jet of \mathcal{G} at 0, the target map $\pi : J^1_pM \to M$ is defined by $\pi(j^1(\mathcal{G})) = \mathcal{G}(0)$ and is in fact a projection map from J^1_pM onto M.

On J^1_pM there exists a structure of $(n+pn)$-dimensional manifold, canonically induced from the manifold structure of M, which is given as follows: let (U, x^α) be a coordinate system in M, U being the coordinate neighborhood and $\{x^\alpha\}$ the coordinate functions on U; then, on $J^1_pU = \pi^{-1}(U)$ we define a family of coordinate functions $\{x^\alpha^{\alpha_1}, x^\alpha_\alpha\}$ by setting

$$x^\alpha^{\alpha_1}(j^1(\mathcal{G})) = x^{\alpha_1}(\mathcal{G}(0)), \quad x^\alpha_\alpha(j^1(\mathcal{G})) = \frac{\partial(x^{\alpha_1}(\mathcal{G}))}{\partial x^\alpha_\alpha} \bigg|_0$$

$(1 \leq i \leq n, 1 \leq a \leq p)$ for any $j^1(\mathcal{G}) \in J^1_pU$, and where $\{x^1, \ldots, x^P\}$ are the canonical coordinate functions on \mathbb{R}^P. Then $\{J^1_pU, x^\alpha, x^\alpha_\alpha\}$ is a coordinate system in J^1_pU which will be said to be induced by (U, x^α) in M.

Let $h : M \to N$ be a differentiable map; then $h^1 : J^1_pM \to J^1_pN$ will
denote the map canonically induced by \(h \) and given by
\[h^1(j^1(\xi)) = j^1(h \circ \xi) \] for any \(j^1(\xi) \in J^1_P P \). If \((U, \tilde{x}^i), (U', \tilde{y}^j)\) are local coordinate systems in \(M \) and \(N \) respectively, and if we assume \(h : U \cup U' \) expressed by \(\tilde{y}^j = h^j(x^1, \ldots, x^n) \) then, with respect to the induced coordinate systems \(\{J^1_P U, x^i, x^\alpha\}, \{J^1_P U', \tilde{y}^j, \tilde{y}^\alpha\}\), \(h^1 \) is expressed by
\[h^1 : \tilde{y}^j = h^j(x^1, \ldots, x^n), \quad y^\alpha = \frac{\partial h^j}{\partial x^k} \tilde{x}^k, \] where \(1 \leq k \leq \dim M \), \(1 \leq j \leq \dim N \) and \(1 \leq \alpha \leq p \).

Let \(G \) be a Lie group; then \(J^1_P P G \) has also a Lie group structure, its product being defined as follows: for any \(j^1(\xi), j^1(g) \in J^1_P P G \), \(j^1(\xi) \cdot j^1(g) = j^1(\xi g) \), where \(\xi g : H^P \to G \) is defined by \((\xi g)(t) = \xi(t)g(t), \quad t \in \text{dom} \xi \cap \text{dom} g \). The unit element \(e_p \) of \(J^1_P P G \) is then the 1-jet at \(0 \in H^P \) of the constant map from \(H^P \) into the unit element \(e \) of \(G \).

Next, we shall recall some results to be used later.

1. Assume \(p = n = \dim M \). Then the bundle space \(FM \) of the principal fibre bundle of linear frames over \(M \) (briefly, the frame bundle of \(M \)) is an open (dense) submanifold of \(J^1_M \), and the induced structure on \(FM \) is the usual one with respect to which \(\pi_M : FM \to M \) is a \(\text{GL}(n) \)-principal bundle, \(\text{GL}(n) \) denoting the general linear group. If \((U, \tilde{x}^i) \) is a local coordinate system in \(M \), the induced coordinate functions on \(FM = (\pi_M)^{-1}(U) \) will be written as \(\{\tilde{x}^i, \tilde{x}^\alpha\} \) if there is no confusion.

2. Assume \(p = 1 \). Then \(\pi : J^1_M \to M \) is nothing but the tangent bundle \(\pi_M : TM \to M \). In this case, if \((U, \tilde{x}^i) \) is a local coordinate system in \(M \), the induced coordinate functions on \(TM = (\pi_M)^{-1}(U) \) will be
written as \(\{ x^i; x^j \} \). Note that the linear structure of this vector bundle is locally given as follows: let \(X, Y \) be tangent vectors at \(x = (x^1, \ldots, x^n) \in U \) with coordinates \(X = \{ x^i; x^j \} \), \(Y = \{ x^i; y^j \} \);
then \(X + Y = \{ x^i; x^j + y^j \} \). If \(\delta : M \to N \), we shall denote by
\[
T_{\delta} : TM \to TN
\]
the induced map.

(3) Let \(P(M, \pi, G) \) be a principal fibre bundle with bundle space \(P \), base space \(M \), projection \(\pi \) and structure group \(G \). Then
\[
\pi^{\perp}P \bigg|_{\pi^{\perp}M, \pi^{\perp}N, \pi^{\perp}G}
\]
is again a principal fibre bundle. In fact, if
\[
\phi_U : \pi^{\perp}(U) \to U \times G
\]
is the trivialization of \(P \) over \(U \subseteq M \), then, since
\[
(\pi^{\perp})^{-1}\left(j^1_PU\right) = j^1_P\pi^{\perp}(U)
\]
we define \(\tilde{\phi}_U : j^1_P\pi^{\perp}(U) \to j^1_PU \times j^1_PG \) by setting
\[
\tilde{\phi}_U\left(j^1(\delta)\right) = \left(j^1(\pi \circ \delta), j^1(\eta \circ \phi_U \circ \delta)\right)
\]
for any \(j^1(\delta) \in j^1_P\pi^{\perp}(U) \),
where \(\eta : U \times G \to G \) is the canonical projection.

(4) Let \(G = GL(n), \{ x^i_j \} \) be the canonical coordinates in \(GL(n) \),
\(\{ x^i_j, x^i_{j\alpha} \} \) the induced coordinates in \(j^1_nGL(n) \) and \(\{ y^A_B, 1 \leq A, B \leq n+n^2 \} \)
the canonical coordinates in \(GL(n+n^2) \); then, there exists a canonical embedding of Lie groups
\[
j_n : j^1_nGL(n) \to GL(n+n^2)
\]
given by
\[
j_n\left(\left[\begin{array}{c} x^i_j \\ x^i_{j1} \\ \vdots \\ x^i_{jn} \end{array}\right] \right) = \left[\begin{array}{c} x^i_j \\ 0 \\ \vdots \\ 0 \end{array}\right]
\]
that is, with respect to the coordinates above \(j_n \) is expressed by
Frame bundle connections

\[y^i_j = x^i_j, \quad y^i_{\alpha} = 0, \]

\[j_n : \]

\[y^i_j = x^i_{j\alpha}, \quad y^i_{\alpha} = \delta^i_{\beta} x^\beta_j, \]

where \(i_{\alpha} = \alpha n + i, \ 1 \leq i, \ \alpha \leq n \). If we consider the Lie algebras of \(J_n^1 \text{Gl}(n) \) and \(\text{Gl}(n+n^2) \) identified with the tangent spaces at the respective unit elements \(e_n \) and \(e \), then the induced homomorphism

\[j_n : T_{e_n} J_n^1 \text{Gl}(n) \to T_{e} \text{Gl}(n+n^2) \]

may be written as follows:

\[
j_n \left(\left(\delta^i_j, 0; A^i_j, B^i_{j\alpha} \right) \right) = \left(\begin{bmatrix} A^i_j & 0 & \ldots & 0 \\ B^i_j & A^i_j & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B^i_{jn} & 0 & \ldots & A^i_j \end{bmatrix} \right). \]

(5) Let \(F_n^M(M, \pi_M, \text{Gl}(n)) \) be the frame bundle of \(M \), \(J_n^1 F_n^M \) the induced \(J_n^1 \text{Gl}(n) \)-principal bundle and \(F_n^M J_n^1(M, \pi_M, \text{Gl}(n+n^2)) \) the frame bundle of the \((n+n^2) \)-dimensional manifold \(J_n^1 M \). Then there exists a canonical injective homomorphism of principal bundles [2]

\[j_M : J_n^1 F_n^M \to F_n^1 J_n^1 M \]

over the identity of \(J_n^1 M \), with associate Lie group homomorphism \(j_n \).

The homomorphism \(j_M \) is locally defined as follows: let \((U, x^i)\) be a local coordinate system in \(M \) and consider fibered coordinate functions \((x^i, x^i_\alpha, x^i_j, x^i_{j\alpha})\) on \(\pi_M^{-1} (J_n^1 U) \) and \((y^i, y^i_\alpha, y^i_j, y^i_{j\alpha})\) on \(F_n^1 U \); then, with respect to these coordinates, \(j_M \) is expressed by
Since the restriction \(F^1_M \) of \(F^1_M \) to the open submanifold \(\mathbb{F}_M \subset J^1_M \) is canonically isomorphic to the frame bundle \(FFM \) of \(FM \), then the homomorphism \(j_M \) above induces an injective homomorphism of principal bundles, noted again \(j_M : F^1_M \mathbb{F}_M \rightarrow FFM \), over the identity of \(FM \) and with associate Lie group homomorphism \(j_n \).

(6) Particularizing the general results of Morimoto ([6], Chapter IV), we can assert: let \(M \) be an \(n \)-dimensional manifold; then there exist canonical diffeomorphisms

\[
\alpha^p_{M}^{1} : TJ^1_{\mathbb{F}_M} \rightarrow J^1_{\mathbb{F}_M}, \quad \alpha^{1,p}_{M} : J^1_{\mathbb{F}_M} \rightarrow TJ^1_{\mathbb{F}_M},
\]

such that \(\alpha^p_{M}^{1} \) and \(\alpha^{1,p}_{M} \) are mutually inverse. Locally, \(\alpha^p_{M}^{1} \) is given as follows: let \((U, x^i) \) be a local coordinate system in \(M \) and let \((x^i, x^i_\alpha; x^i; x^i_\alpha), \quad \{y^i, \dot{y}^i, (y^i)_\alpha, (\dot{y}^i)_\alpha\} \) be the induced coordinate functions on \(TJ^1_{\mathbb{F}_M} \) and \(J^1_{\mathbb{F}_M} \) respectively. Then

\[
\alpha^p_{M}^{1} : y^i = x^i, \quad \dot{y}^i = \dot{x}^i, \quad (y^i)_\alpha = x^i_\alpha, \quad (\dot{y}^i)_\alpha = x^i_\alpha,
\]

with \(1 \leq i \leq n, \ 1 \leq \alpha \leq p \). The local expression of \(\alpha^{1,p}_{M} \) is obvious. Moreover, if \(\phi : M \rightarrow N \) is a differentiable map, then the following diagram is commutative.
2. Prolongation of connections

Let \(P(M, \pi, G) \) be a principal fibre bundle and consider on \(P \) a connection whose connection form will be denoted by \(\omega \). Following Kobayashi [3], we shall consider this form \(\omega \) as a differentiable map \(\omega : TP \to TG \) which is a linear map of the tangent space \(T_uP \) with values in the tangent space \(T_{\tilde{\delta}}G \) for each point \(u \in P \), and satisfying:

\[
\omega(u \cdot \tilde{\delta}) = \delta^{-1} \cdot \tilde{\delta},
\]

\[
\omega(\tilde{u} \cdot \delta) = \delta^{-1} \cdot \omega(\tilde{u}) \cdot \delta,
\]

for every \(u \in P \), \(\delta \in G \), \(\tilde{u} \in T_uP \) and \(\tilde{\delta} \in T_{\tilde{\delta}}G \), and where by definition \(\tilde{u} \cdot \delta = TR_\delta(\tilde{u}) \), \(u \cdot \tilde{\delta} = TL_\delta(\tilde{u}) \), \(R_\delta : P \to P \) and \(L_\delta : G \to G \) being the canonical maps.

Let \(\omega : TP \to TG \) be a connection form on \(P(M, \pi, G) \) and define a differentiable map \(\omega_1 : T^1P \to T^1G \) by setting

\[
(2.1) \quad \omega_1 = \alpha^{1P}_G \circ \omega^1 \circ \alpha^{1P}_{1P}.
\]

Then, from Morimoto's general results [6], we know that

\[
\text{Im} \omega_1 \subset T_{\tilde{\delta}}G \setminus \tilde{J}_G^1P,
\]

\[
\omega_1(\tilde{u} \cdot \tilde{\delta}) = \delta^{-1} \cdot \tilde{\delta},
\]

\[
\omega_1(\tilde{\tilde{u}} \cdot \delta) = \delta^{-1} \cdot \omega_1(\tilde{u}) \cdot \tilde{\delta},
\]
for every \(\tilde{\xi} \in J^1_p G \), \(\tilde{\mu} \in J^1_p P \), \(\tilde{\xi} \in T_{\tilde{\xi}} J^1_p G \) and \(\tilde{\mu} \in T_{\tilde{\mu}} J^1_p P \). Hence, to prove that \(\omega \) is actually a connection form on the principal bundle \(J^1_p \left(J^1_p M, \pi, J^1_p G \right) \) it suffices to prove that \(\omega : T_{\bar{u}} J^1_p P \to T_{\bar{u}} J^1_p G \) is a linear map for any \(\bar{u} \in J^1_p P \).

To do this we proceed as follows.

Let \((U, x^i), (U', y^a) \) be local coordinate systems in \(P \) and \(G \), respectively, with \(u = \pi(\bar{u}) \in U \), \(e \in U' \) and \(1 \leq i \leq \dim P \), \(1 \leq a \leq \dim G \). Then, with respect to the induced coordinate systems \((TU, x^i, \dot{x}^i), (TU', y^a, \dot{y}^a) \) in \(TP \) and \(TG \) respectively, \(\omega \) is expressed by

\[
\omega : y^a = \omega^a(x^i; \dot{x}^i) = \dot{y}^a(e) , \quad \dot{y}^a = \omega^a(x^i; \dot{x}^i),
\]

and, therefore, for any \(i \) and \(a \),

\[
(2.2) \quad \frac{\partial \omega^a}{\partial x^i} = \frac{\partial \omega^a}{\partial \dot{x}^i} = 0 .
\]

On the other hand, if \(\bar{u}, \bar{u}' \in T_{\bar{u}} P \) are given by \(\bar{u} = \left(x^i; \dot{x}^i \right) \), \(\bar{u}' = \left(x^i; \dot{x}^{i'} \right) \) then the linearity of \(\omega : T_{\bar{u}} P \to T_{\bar{e}} G \) implies

\[
(2.3) \quad \omega^a(x^i; \dot{x}^i + \dot{x}^{i'}) = \omega^a(x^i; \dot{x}^i) + \omega^a(x^i; \dot{x}^{i'}),
\]

and therefore

\[
(2.4) \quad \frac{\partial \omega^a}{\partial x^i} (x^i; \dot{x}^i + \dot{x}^{i'}) = \frac{\partial \omega^a}{\partial x^i} (x^i; \dot{x}^i) + \frac{\partial \omega^a}{\partial \dot{x}^i} (x^i; \dot{x}^{i'}),
\]

\[
\frac{\partial \omega^a}{\partial x^i} (x^i; \dot{x}^i + \dot{x}^{i'}) = \frac{\partial \omega^a}{\partial x^i} (x^i; \dot{x}^i) + \frac{\partial \omega^a}{\partial \dot{x}^i} (x^i; \dot{x}^{i'}).
\]

Now, let \(\left(x^i, \dot{x}_a^i, \dot{x}_a, \dot{x}_a^{i'} \right), \left(y^a, y_a^a, y_a, y_a^a \right) \) be the induced coordinate functions on \(J^1_p U \) and \(J^1_p U' \) respectively. Then, taking into account the local expressions of \(\alpha^1_p, \alpha^1_G \) and \(\omega^1 \) as well as (2.2), a
Frame bundle connections

direct computation leads to the following local expression of ω_1:

$$y^\alpha = y^\alpha(\epsilon), \quad y^\alpha_\alpha = 0,$$

$$\omega_1 : y^\alpha = \omega^\alpha(x^i; \dot{x}^i),$$

$$y^\alpha_\alpha = \frac{\partial \omega^\alpha}{\partial x^k} (x^i; \dot{x}^i) \cdot x^k + \frac{\partial \omega^\alpha}{\partial \dot{x}^k} (x^i; \dot{x}^i) \cdot \dot{x}^k.$$

Therefore, if $\tilde{u} \in \mathcal{J}^1_P$ has coordinates $\tilde{u} = \{x^i, \dot{x}^i\}$ and

$$\tilde{u}, \tilde{u}' \in T_{\tilde{u}} \mathcal{J}^1_P$$

are given by $\tilde{u} = \{x^i, x^i; \dot{x}^i, \dot{x}^i\}$, $\tilde{u}' = \{x^i, x^i; \dot{x}^i, \dot{x}^i\}$

then $\tilde{u} + \tilde{u}' = \{x^i, x^i; \dot{x}^i + \dot{x}^i, \dot{x}^i + \dot{x}^i\}$ and a straightforward computation, using (2.3) and (2.4), leads to

$$y^\alpha_\alpha(\omega_1(\tilde{u} + \tilde{u}')) = y^\alpha_\alpha(\omega_1(\tilde{u})) + y^\alpha_\alpha(\omega_1(\tilde{u}')),$$

$$y^\alpha_\alpha(\omega_1(\tilde{u} + \tilde{u}')) = y^\alpha_\alpha(\omega_1(\tilde{u})) + y^\alpha_\alpha(\omega_1(\tilde{u}')).$$

Thus we have proved the following theorem

THEOREM 2.1. Let $\omega : TP \rightarrow TG$ be a connection form on a principal fibre bundle $P(M, \pi, G)$. Then $\omega_1 : T\mathcal{J}^1_P \rightarrow T\mathcal{J}^1_G$ given by (2.1) is a connection form on the principal fibre bundle $\mathcal{J}^1_P \{\mathcal{J}^1_M, \pi^1, \mathcal{J}^1_G\}$. We shall call ω_1 the prolongation of the connection ω to \mathcal{J}^1_P.

We remark that, for $p = 1$, ω_1 coincides with the connection tangential to ω due to Kobayashi ([3], p. 152), also obtained by Morimoto in [7].

3. Prolongation of linear connections to the frame bundle

In this section we apply the result in the previous section to the linear connections on a manifold. From now on the indices

$h, i, j, k, \ldots, \alpha, \beta, \gamma, \ldots$ have range in $\{1, 2, \ldots, n\},$

A, B, C, \ldots in $\{1, 2, \ldots, n+n^2\}$ and \dot{i}_α stands for $\alpha n + i$.

Let \(F_M(M, \pi_M, \text{Gl}(n)) \) and \(FFM(F_M, \pi_{FM}, \text{Gl}(n+n^2)) \) be the frame bundles of \(M \) and \(F_M \) respectively.

Theorem 3.1. Let \(\Gamma \) be a linear connection on a manifold \(M \). Then there exists canonically a linear connection \(\tilde{\Gamma} \) on the frame bundle \(F_M \) of \(M \), which will be called the prolongation of \(\Gamma \) to \(F_M \).

Proof. Let \(\omega \) be the connection form on \(F_M \) defining the connection \(\Gamma \). The prolongation \(\omega_1 \) of \(\omega \) is a connection form on \(J^1 F_M \), \(n^i = \dim M \). Then, using the bundle homomorphism \(j_M : J^1 F_M \mapsto FFM \) described in §1, (5), we canonically obtain a connection \(\tilde{\Gamma} \) on the principal fibre bundle \(FFM \).

Next, we shall compute the local components \(\tilde{\Gamma}_{BC} \) of the prolongation \(\tilde{\Gamma} \) of \(\Gamma \) to \(F_M \).

Let \(\omega : TFM \rightarrow T\text{Gl}(n) \) be the connection form of \(\Gamma \), \((U, x^i) \) a local coordinate system in \(M \), \(\{x^i, x^j_i\} \) the induced coordinate functions on \(F_M \), \(\{y^i, y^j_i\} \) the canonical coordinates in \(\text{Gl}(n) \) and \(\{\xi^i, \xi_j^i, \xi_i^j, \xi_j^i\} \), \(\{y^i, y^j_i\} \) the induced coordinate functions on \(TFM \) and \(T\text{Gl}(n) \), respectively. Then \(\omega \) is locally expressed by

\[
\begin{align*}
\omega &= \omega_j^i \left(x^h, x^h_k, \xi^h_k \right) = \delta_j^i, \\
\omega &: \omega_j^i \left(y^h, y^h_k, \xi^h_k \right),
\end{align*}
\]

and thus, if \(\{e_j^i\} \) denotes the canonical basis of \(\text{gl}(n) \equiv T_e \text{Gl}(n) \), we can set

\[
\omega \left(x^h, x^h_k, \xi^h_k \right) = \omega_j^i \left(x^h, x^h_k, \xi^h_k \right) e_j^i \in T_e \text{Gl}(n).
\]

Let \(\sigma : U \rightarrow F_M \) be the natural cross section of \(F_M \) over \(U \), that is \(\sigma(x) = \{x^i, \xi_j^i\} \) for any \(x = (x^1, \ldots, x^n) \in U \), and set \(\omega_U = \sigma^* \omega \).
Then \(\omega_{\mathcal{U}} \) defines the local components \(\Gamma_{jkl}^i \) of \(\Gamma \) on \(\mathcal{U} \) by the equation
\[
\omega_{\mathcal{U}} = \left[\Gamma_{jkl}^i \, dx^j \right] e^k_i
\]
and, using Proposition 7.3 in [4], one easily finds
\[
\omega_{j}^{i}(x, x^{h}; x^{h}; x^{h}; x^{h}) = \gamma_{j}^{i} + \gamma_{j}^{i} \gamma_{k}^{h} x^{j} x^{h} + \gamma_{j}^{i} \gamma_{k}^{h} \gamma_{j}^{h}
\]
where \(\left\{ \gamma_{j}^{i} \right\} = \left(x_{k}^{i} \right)^{-1} \). Consequently, at the point \(q = \{ x^{h}; x^{h}; x^{h}; x^{h} \} \) we have
\[
\begin{align*}
\frac{\partial \omega_{j}^{i}}{\partial x^{k}}(q) &= \gamma_{j}^{i} \left(\frac{\partial \Gamma_{h}^{l} \gamma_{m}^{h}}{\partial x^{j}} \right) x_{m}^{l} x^{h}, \\
\frac{\partial \omega_{j}^{i}}{\partial x^{k}}(q) &= -\gamma_{j}^{i} \gamma_{h}^{l} x_{m}^{l} x_{j}^{m} + \gamma_{j}^{i} \gamma_{l}^{m} \delta_{k}^{j} x_{m}^{h} - \gamma_{j}^{i} \gamma_{h}^{l} \gamma_{j}^{m}, \\
\frac{\partial \omega_{j}^{i}}{\partial x^{k}}(q) &= \gamma_{j}^{i} \gamma_{l}^{h} \gamma_{h}^{l} x^{h}, \\
\frac{\partial \omega_{j}^{i}}{\partial x^{k}}(q) &= \gamma_{j}^{i} \delta_{k}^{j}.
\end{align*}
\]

Now, let \(\tilde{\omega} \) denote the connection form of the extension of \(\omega_{\perp} \) to \(F_{\mathcal{U}}^{1} M \) via the homomorphism \(\mathcal{J}_{M} : F_{\mathcal{U}}^{1} M \rightarrow F_{\mathcal{U}}^{1} M \); then \(\mathcal{J}_{M} \tilde{\omega} = \mathcal{J}_{n} \circ \omega_{\perp} \). If \(\tilde{\sigma}^{1} : J^{1}_{n} U \rightarrow F_{\mathcal{U}}^{1} M \) denotes the cross-section of \(J^{1}_{n} M \) induced by
\[
\begin{align*}
\sigma : U \rightarrow F_{\mathcal{U}}^{1} M,
\end{align*}
\]
then the composition \(\tilde{\sigma} = \mathcal{J}_{M} \circ \sigma^{1} \) is easily proved to be the natural cross-section of \(F_{\mathcal{U}}^{1} M \) over \(J^{1}_{n} U \).

Let \(\left\{ \Gamma_{BC}^{A} \right\} \) still denote the local components of the linear connection on \(J^{1}_{n} M \) which is defined by \(\tilde{\omega} \), with respect to the induced coordinate system \(\left\{ J^{1}_{n} U, x^{j}, x_{\alpha}^{j} \right\} \). Then, if \(\left\{ E_{B}^{A} \right\} \) denotes the canonical basis of \(gl(n+n^{2}) = T_{\epsilon} gl(n+n^{2}) \), we have...
\[\tilde{\omega} \left(\frac{\partial}{\partial x^j} \tilde{u} \right) = \tilde{T}_A E^B, \quad \tilde{\omega} \left(\frac{\partial}{\partial x^j} \tilde{u} \right) = \tilde{T}_A E^B, \]

\[\tilde{u} = \tilde{\partial}(u) \text{ for any point } u \in J^n U. \text{ On the other hand, setting } \]

\[u_\perp = \sigma^1(u), \]

\[(T_j M) \left(\frac{\partial}{\partial x^j} u_\perp \right) = \left(\frac{\partial}{\partial x^j} \tilde{u} \right), \quad (T_j M) \left(\frac{\partial}{\partial x^j} u_\perp \right) = \left(\frac{\partial}{\partial x^j} \tilde{u} \right), \]

and hence

\[\tilde{\omega} \left(\frac{\partial}{\partial x^j} \tilde{u} \right) = j_n \left[\omega_1 \left(\frac{\partial}{\partial x^j} u_1 \right) \right], \]

\[\tilde{\omega} \left(\frac{\partial}{\partial x^j} \tilde{u} \right) = j_n \left[\omega_1 \left(\frac{\partial}{\partial x^j} u_1 \right) \right]. \]

Then, if \(u = \left(x^j, x^\alpha \right) \), we have

\[\omega_1 \left(\frac{\partial}{\partial x^j} u_1 \right) = \omega_1 \left(x^i, x^i, 0, 0, \delta^i_j, 0, 0, 0 \right) \]

\[\left[I, 0; \omega^h \left(x^i, x^i; 0, 0, \delta^i_j \right) \right] \]

\[\left[I, 0; \omega^h \left(x^i, x^i; 0, 0, \delta^i_j \right) \right] \]

\[\omega_1 \left(\frac{\partial}{\partial x^j} u_1 \right) = \omega_1 \left(x^i, x^i, 0, 0, 0, 0, \delta^i_j, 0 \right) \]

\[\left[I, 0; \omega^h \left(x^i, x^i; 0, 0, 0 \right) \right] \]

\[\left[I, 0; \omega^h \left(x^i, x^i; 0, 0, 0 \right) \right] \]

where \(I \) and \(0 \) denote the unit matrix and the zero matrix, respectively.

Therefore
and, restricting to $\mathbb{F}M$, that is to the coordinate neighborhood $\mathbb{F}U$, we obtain the local components of the prolongation $\tilde{\Gamma}$ of Γ to $\mathbb{F}M$:

\[
\begin{align*}
\tilde{h}_{ji} &= h_{ji}^1, & \tilde{h}_{ji}^0 &= 0, & \tilde{h}_{j\gamma}^\alpha &= 0, & \tilde{h}_{j\gamma j}^\alpha &= 0, & \tilde{h}_{j\gamma j}^\alpha &= 0, \\
\tilde{h}^\alpha_{ji} &= x^k_{\alpha} \tilde{h}^k_{ji}, & \tilde{h}^\alpha_{j\gamma} &= \delta^\alpha_h^{\beta j}, & \tilde{h}^\alpha_{j\gamma j} &= \delta^\alpha_h^{\beta j j}.
\end{align*}
\]

Now, comparing with Mok's result in ([5], p. 81), we deduce

THEOREM 3.2. Let Γ be a linear connection on M. Then the prolongation $\tilde{\Gamma}$ of Γ to the frame bundle $\mathbb{F}M$ of M coincides with the complete lift Γ^G of Γ to $\mathbb{F}M$ defined by Mok [5].

4. Prolongation of connections adapted to G-structures

We begin this section proving a lemma.

LEMMA 4.1. Let $P(M, \pi, G)$ be a reduced bundle of the principal fibre bundle $P'(M, \pi, G')$, and let ω' be a connection form on P' reducible to the connection form ω on P. Then $J^1_P\left(J^1_M, \pi, J^1_P G\right)$ is a reduced bundle of $J^1_{P'}\left(J^1_M, \pi, J^1_{P'} G\right)$, and the prolongation ω'_1 of ω' to $J^1_{P'}$ is reducible to the prolongation ω_1 of ω to J^1_P.

Proof. Let $\phi : P \to P'$ be the injective homomorphism of principal bundles which yields the reduction of G' to G, and denote also by $\phi : G \to G'$ the corresponding Lie group homomorphism. Then a straightforward computation shows that the induced bundle homomorphism $\phi^1 : J^1_P \to J^1_{P'}$ yields a reduction of $J^1_P G'$ to $J^1_P G$ whose associate Lie group homomorphism is the induced one, $\phi^1 : J^1_P G \to J^1_{P'} G'$. On the other
hand, that ω' is reducible to ω means that the following diagram commutes:

\[
\begin{array}{ccc}
TP & \xrightarrow{\omega} & TG \\
\downarrow T\tilde{\delta} & & \downarrow T\tilde{\delta} \\
TP' & \xrightarrow{\omega'} & TG'.
\end{array}
\]

Therefore, from (6) in §1 we obtain a new commutative diagram

\[
\begin{array}{cccc}
TJ^1_p & \xrightarrow{\alpha^{p,1}_P} & J^1_p^TP & \xrightarrow{\omega^1} & J^1_p^TG & \xrightarrow{\alpha^{1,p}_G} & TJ^1_G \\
\downarrow T\tilde{\delta}^1 & & \downarrow (T\tilde{\delta})^1 & & \downarrow (T\tilde{\delta})^1 & & \downarrow T\tilde{\delta}^1 \\
TJ^1_p' & \xrightarrow{\alpha^{p,1}_{P'}} & J^1_p^TP' & \xrightarrow{(\omega')^1} & J^1_p^TG' & \xrightarrow{\alpha^{1,p}_{G'}} & TJ^1_G'.
\end{array}
\]

which implies that ω'_1 is reducible to ω_1. #

Let G be a Lie subgroup of $GL(n)$ and denote

\[
\tilde{G} = j_n\left(J^1_n^G\right) \subset GL(n+2^n). \]

Assume that $P(M, \pi, G)$ is a reduced bundle of the frame bundle $FM(M, \pi_M, GL(n))$ of M, $n = \dim M$, that is P is a G-structure on M. In [2] we have defined the prolongation of the G-structure P on M to a \tilde{G}-structure \tilde{P} on FM as follows: we consider the injective bundle homomorphism $i^1 : J^1_n^P \rightarrow J^1_n^{FM}$ induced by

\[
i : P \rightarrow FM \quad \text{and define } \tilde{P} = (j_M \circ i^1)(J^1_n^P)|_{FM}.
\]

As usual, we say that a linear connection Γ on M is adapted to the G-structure $P(M, \pi, G)$ on M if Γ is reducible to a connection on P. Then, taking into account Lemma 4.1 and the results in the previous section, we easily deduce

Theorem 4.2. Let Γ be a linear connection on M adapted to a G-structure $P(M, \pi, G)$ on M. Then the prolongation $\tilde{\Gamma}$ of Γ to FM is adapted to the \tilde{G}-structure $\tilde{P}(FM, \pi, \tilde{G})$ on FM, prolongation of P to FM.

We remark that Theorem 4.2 improves some particular results in [1] and
[5] where only the prolongations (or complete lift) of \(G \)-structures on \(M \) defined by tensor fields of types \((0, s)\) and \((1, s)\) have been considered.

References

Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad de Santiago de Compostela, Spain.