LEFT IDEALS IN THE NEAR-RING OF AFFINE TRANSFORMATIONS

WOLFGANG MUTTER

In this paper we determine the left ideals in the near-ring \(\text{Aff}(V) \) of all affine transformations of a vector space \(V \). It is shown that there is a Galois correspondence between the filters of affine subspaces of \(V \) and those left ideals of \(\text{Aff}(V) \) which are not left invariant. In particular, the not left invariant finitely generated left ideals of \(\text{Aff}(V) \) are precisely the annihilators of the affine subspaces of \(V \). A similar correspondence exists between the filters of linear subspaces of \(V \) and the left invariant left ideals of \(\text{Aff}(V) \). If \(V \) is finite-dimensional, then all left ideals of \(\text{Aff}(V) \) are finitely generated.

1. INTRODUCTION

Let \(V \) be a vector space and let \(\text{Aff}(V) \) denote the collection of all affine transformations of \(V \). Under pointwise addition and under composition of mappings \(\text{Aff}(V) \) is a near-ring. In [2] Blackett showed that the set \(C \) of all constant transformations forms an ideal of \(\text{Aff}(V) \). If \(V \) is finite dimensional, then \(C \) is the only non-trivial ideal of \(\text{Aff}(V) \). Wolfson [5] determined all ideals of \(\text{Aff}(V) \) for an arbitrary vector space \(V \). He observed that \(C \) is contained in all non-trivial ideals of \(\text{Aff}(V) \) and that \(\text{Aff}(V)/C \) is isomorphic to the ring \(\text{Hom}(V, V) \) of all linear transformations of \(V \). Thus the ideals of \(\text{Aff}(V) \) are the sets \(T_v + C \) with \(T_v = \{ f \in \text{Hom}(V, V) \mid \text{Range } f < \aleph_v \} \), where \(\aleph_v \) is a cardinal number.

In this paper we investigate the structure of the left ideals of \(\text{Aff}(V) \). We use the results of Baer on the left ideals of the ring \(\text{Hom}(V, V) \) in [1, p.172 following], where he showed that the finitely generated left ideals of \(\text{Hom}(V, V) \) are precisely the annihilators of the linear subspaces of the vector space \(V \). In particular, Baer established a Galois correspondence between the left ideals of \(\text{Hom}(V, V) \) and the filters of linear subspaces of \(V \). Thus, by the second isomorphism theorem for near-rings (see for example Theorem 1.31 in [3]), the left invariant left ideals of \(\text{Aff}(V) \) are completely determined, since a left ideal of \(\text{Aff}(V) \) is left invariant if and only if it contains the ideal \(C \) of all constant transformations of \(V \).

The purpose of this paper is to show that there is a similar correspondence between the left ideals of \(\text{Aff}(V) \) which are not left invariant and the affine subspaces of \(V \), as
in the case of $\text{Hom}(V, V)$. If V is finite dimensional, then all left ideals of $\text{Aff}(V)$ are finitely generated. In this case the left ideals of $\text{Aff}(V)$ which are not left invariant are precisely the annihilators of the affine subspaces of V. The left invariant left ideals of $\text{Aff}(V)$ are the sets $L + C$, where L is the annihilator of a linear subspace of V.

2. Basic definitions and results

For details on near-rings and N-groups we refer the reader to [4]. According to [4] we consider right near-rings.

Definition 2.1: Let $(N, +, \cdot)$ be a near-ring. A subset L of N is called a left ideal of N provided that

1. $(L, +)$ is a normal subgroup of $(N, +)$, and
2. $m(n + i) - mn \in L$ for all $i \in L$ and $m, n \in N$.

If S is a subset of a near-ring N, let $(S)_L$ denote the left ideal generated by S. In particular, $(n_1, \ldots, n_k)_L$ denotes the left ideal generated by $n_1, \ldots, n_k \in N$. If a near-ring N is regarded as a N-group in the usual way, the left ideals of N are precisely the kernels of N-homomorphisms with domain N.

In general, a left ideal of a near-ring is not invariant under multiplication from the left. Therefore, we call a left ideal L of a near-ring N left invariant, if for all $n \in N$ and $i \in L$ the element $n \cdot i$ is in L. The left invariant left ideals of a near-ring can be characterised as follows:

Lemma 2.2: Let N be a near-ring with constant part N_c and let L be a left ideal of N. Then L is left invariant if and only if $N_c \subseteq L$.

Proof: If L is left invariant and n_c is in N_c, then $n_c = n_c \cdot i \in L$ for all $i \in L$. Conversely, if $N_c \subseteq L$, then for all $n \in N$ and $i \in L$ the element $n \cdot i = n \cdot i - n \cdot 0 + n \cdot 0$ is in L, since $n \cdot 0$ is in N_c.

If V is a vector space and S is a subset of V, then $\text{Ann}(S)$ denotes the annihilator $\{f \in \text{Aff}(V) \mid f(S) = 0\}$. If p is an element of V, let (p) denote the constant transformation of V which carries all of V onto p. Any affine transformation $f \in \text{Aff}(V)$ can be decomposed as $f = f - (f(0)) + (f(0))$ with $f - (f(0)) \in \text{Hom}(V, V)$ and $(f(0)) \in C$. $\text{Hom}(V, V)$ is a subnear-ring of $\text{Aff}(V)$ and

$$
\varphi : \text{Aff}(V) \to \text{Hom}(V, V) : f \mapsto f - (f(0))
$$

is a surjective near-ring homomorphism with $\ker \varphi = C$. By Lemma 2.2 and by the second isomorphism theorem for near-rings ([3, Theorem 1.31]) φ induces a bijective correspondence between the left invariant left ideals of $\text{Aff}(V)$ and the left ideals of $\text{Hom}(V, V)$ by $L \to \varphi(L)$.

Downloaded from: https://www.cambridge.org/core. IP address: 54.70.40.11, on 15 Feb 2019 at 01:45:26, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700028823
A left ideal L of $\text{Aff}(V)$ which is not left invariant does not contain many constant transformations, for we have

Lemma 2.3. If L is a not left invariant left ideal of $\text{Aff}(V)$, then $L \cap C = \{0\}$.

Proof: It is easy to show that $L \cap C$ is isomorphic to a submodule of the simple $\text{Hom}(V, V)$-module V. Hence, by Lemma 2.2, the assertion of the lemma is obvious. □

For an affine transformation f let $Z(f)$ denote the zero-set of f, that is $Z(f) = \{p \in V \mid f(p) = 0\}$. If $Z(f)$ is not empty, then it is an affine subspace of V. Conversely, every affine subspace of a vector space is the zero-set of an affine transformation. More precisely:

Lemma 2.4. Let $A = p + U$ be an affine subspace of a vector space V, where U is a linear subspace of V and $p \in V$. Then there exists $f \in \text{Aff}(V)$ with $Z(f) = A$. In particular, if W is a linear complement of U in V, there exists $f \in \text{Aff}(V)$ with $Z(f) = A$ and $f(V) = W$.

Proof: By the Complementation Theorem in [1, p.12], there exists a linear subspace W of V with $V = U \oplus W$. If τ_{-p} denotes the translation by $-p$ and pr_W is the projection map from V onto W, then $f = \text{pr}_W \circ \tau_{-p}$ is an affine transformation of V with the required properties. □

3. The Not Left Invariant Left Ideals

In this section we determine the left ideals of $\text{Aff}(V)$ which are not left invariant.

Lemma 3.1. Let L be a left ideal of $\text{Aff}(V)$ and let f_1, \ldots, f_n be in L with $Z(f_1) \cap \cdots \cap Z(f_n) \neq \emptyset$. If g is an affine transformation of V with $Z(g) \supseteq Z(f_1) \cap \cdots \cap Z(f_n)$, then $g \in L$.

Proof: Since $Z(f_1) \cap \cdots \cap Z(f_n)$ is not empty, there exist an element $p \in V$ and a linear subspace U of V with $p + U = Z(f_1) \cap \cdots \cap Z(f_n)$. Let $\tau_p \in \text{Aff}(V)$ be given by $\tau_p(x) = x + p$. Then τ_p defines an $\text{Aff}(V)$-automorphism of $\text{Aff}(V)$ by $h \mapsto h \circ \tau_p$. Hence

$$U = Z(f_1 \circ \tau_p) \cap \cdots \cap Z(f_n \circ \tau_p)$$

and $U \subseteq Z(g \circ \tau_p)$. In particular, $f_1 \circ \tau_p, \ldots, f_n \circ \tau_p$ and $g \circ \tau_p$ are linear transformations of V. Since $\text{Hom}(V, V)$ is a left ideal of $\text{Aff}(V)$, the left ideal $\langle f_1 \circ \tau_p, \ldots, f_n \circ \tau_p \rangle_\ell$ generated by $f_1 \circ \tau_p, \ldots, f_n \circ \tau_p$ is obviously the smallest left ideal of the ring $\text{Hom}(V, V)$ which contains $f_1 \circ \tau_p, \ldots, f_n \circ \tau_p$. Hence $g \circ \tau_p \in \langle f_1 \circ \tau_p, \ldots, f_n \circ \tau_p \rangle_\ell$ by [1, p.173, Theorem A, and p.177, Theorem 1]. The second isomorphism theorem 1.30 for N-groups in [4] implies $g \in \langle f_1, \ldots, f_n \rangle_\ell \subseteq L$. □

In order to prove the next lemma, we need the following two propositions:
Proposition 3.2. Let V be a vector space and let A_1 and A_2 be affine subspaces of V with $A_1 \cap A_2 = \emptyset$. Then there exist maximal affine subspaces M_1 and M_2 of V such that $A_1 \subseteq M_1$, $A_2 \subseteq M_2$ and $M_1 \cap M_2 = \emptyset$.

Proof: Let p_1, p_2 be in V and let U_1, U_2 be linear subspaces of V with $A_1 = p_1 + U_1$ and $A_2 = p_2 + U_2$. Since $A_1 \cap A_2 = \emptyset$, $p_1 - p_2$ is not in $U_1 + U_2$. By the Complementation Theorem in [1, p.12], there exists a linear subspace U of V such that V can be decomposed as

$$V = \text{span}(p_1 - p_2) \oplus (U_1 + U_2) \oplus U.$$

Then $M_1 = p_1 + (U_1 + U_2 + U)$ and $M_2 = p_2 + (U_1 + U_2 + U)$ are maximal affine subspaces of V with the required properties. \(\square\)

Proposition 3.3. If L is a left ideal of $\text{Aff}(V)$ and $f \in L$ with $Z(f) = \emptyset$, then L is left invariant.

Proof: $f(V)$ is an affine subspace of V. Thus by Lemma 2.4 there exists $g \in \text{Aff}(V)$ with $Z(g) = f(V)$. Furthermore the constant transformation

$$(-g(0)) = g \circ f - g \circ (0)$$

is in L. Moreover, $g(0)$ is not zero, since 0 is not in $f(V)$. Hence the assertion of the lemma follows by Lemmas 2.2 and 2.3. \(\square\)

Lemma 3.4. Let L be a left ideal of $\text{Aff}(V)$ and suppose there are $f, g \in L$ with $Z(f) \cap Z(g) = \emptyset$. Then L is left invariant.

Proof: By Proposition 3.3 it suffices to show that there exists an affine transformation $h \in L$ with $Z(h) = \emptyset$. Therefore we may assume that $Z(f)$ and $Z(g)$ are not empty. By Proposition 3.2 there exist maximal subspaces M_1 and M_2 of V such that $Z(f) \subseteq M_1$, $Z(g) \subseteq M_2$ and $M_1 \cap M_2 = \emptyset$. By Lemma 2.4 there exist nonzero elements p_1 and p_2 in V and transformations $f_1, f_2 \in \text{Aff}(V)$ with $M_1 = Z(f_1)$, $M_2 = Z(f_2)$, $f_1(V) = \text{span}(p_1)$ and $f_2(V) = \text{span}(p_2)$. Lemma 3.1 implies $f_1, f_2 \in L$, since $Z(f_1) \supseteq Z(f)$ and $Z(f_2) \supseteq Z(g)$. Now we distinguish two cases:

Suppose dim $V > 1$. Then there exist nonzero elements $q_1, q_2 \in V$ with $\text{span}(q_1) \cap \text{span}(q_2) = \{0\}$. Let h_1 and h_2 be invertible linear transformations of V with $h_1(p_1) = q_1$ and $h_2(p_2) = q_2$. Then $h_1 \circ f_1(V) = \text{span}(q_1)$ and $h_2 \circ f_2(V) = \text{span}(q_2)$. Furthermore the transformation $h = h_1 \circ f_1 - h_2 \circ f_2$ is in L. If $x \in V$, then

$$h(x) = 0 \iff h_1 \circ f_1(x) = h_2 \circ f_2(x) \iff h_1 \circ f_1(x) = h_2 \circ f_2(x) = 0 \iff f_1(x) = f_2(x) = 0.$$

Hence $Z(h) = \emptyset$, since $Z(f_1) \cap Z(f_2) = \emptyset$. This proves the assertion of the lemma for dim $V > 1$. \(\square\)
If \(\dim V = 1 \), then there exist distinct elements \(q_1 \) and \(q_2 \) in \(V \) with \(Z(f_1) = \{q_1\} \) and \(Z(f_2) = \{q_2\} \). An easy check shows that in this case \(f_1 \) and \(f_2 \) are injective. Hence there exist affine transformations \(h_1 \) and \(h_2 \) with \(h_1 \circ f_1 = h_2 \circ f_2 = \text{id} \). The constant transformation

\[
 h = (g_2(0) - g_1(0)) = (g_1 \circ f_1 - g_1 \circ (0)) - (g_2 \circ f_2 - g_2 \circ (0))
\]

is in \(L \) and is not zero, since \(h_1(0) = h_1(f_1(q_1)) = q_1 \) and \(h_2(0) = h_2(f_2(q_2)) = q_2 \). This completes the proof of the lemma.

Now we are in a position to establish a bijective correspondence between the left ideals of \(\text{Aff}(V) \), which are not left invariant, and the filters of affine subspaces of \(V \). First we need

Definition 3.5: A nonempty family \(\mathcal{F} \) of affine subspaces of a vector space \(V \) is called an \(\mathcal{A} \)-filter on \(V \) provided that

1. \(\emptyset \notin \mathcal{F} \),
2. if \(A_1, A_2 \in \mathcal{F} \), then \(A_1 \cap A_2 \in \mathcal{F} \), and
3. if \(A \in \mathcal{F} \) and \(A' \) is an affine subspace of \(V \) with \(A' \supseteq A \), then \(A' \in \mathcal{F} \).

For example, if \(A \) is an affine subspace of \(V \), the family \(\mathcal{F}_A \) of all affine subspaces of \(V \) which contain \(A \) is an \(\mathcal{A} \)-filter on \(V \). Obviously \(\mathcal{F}_A \) is the smallest \(\mathcal{A} \)-filter containing \(A \), hence we call \(\mathcal{F}_A \) the \(\mathcal{A} \)-filter generated by \(A \).

Theorem 3.6. Let \(V \) be a vector space.

1. If \(L \) is a left ideal of \(\text{Aff}(V) \) which is not left invariant, then

 \[
 Z[L] = \{Z(f) \mid f \in L\}
 \]

 is an \(\mathcal{A} \)-filter on \(V \).

2. If \(\mathcal{F} \) is an \(\mathcal{A} \)-filter on \(V \), then

 \[
 Z \leftarrow [\mathcal{F}] = \bigcup \{\text{Ann}(A) \mid A \in \mathcal{F}\}
 \]

 is a not left invariant left ideal of \(\text{Aff}(V) \).

Moreover, the mapping \(Z \) is one-one between the set of all not left invariant left ideals of \(\text{Aff}(V) \) and the \(\mathcal{A} \)-filters on \(V \).

Proof: 1. Let \(L \) be a left ideal of \(\text{Aff}(V) \) which is not left invariant. We have to show that \(Z[L] \) satisfies the properties 1 – 3 of Definition 3.5. Proposition 3.3 implies \(\emptyset \notin Z[L] \). Suppose now that \(A_1, A_2 \in Z[L] \). If \(A_1 \cap A_2 = \emptyset \), then by Lemma 3.4 \(L \) is left invariant, which contradicts the hypothesis. If \(A_1 \cap A_2 \neq \emptyset \), then according to Lemma 2.4 there exists \(f \in \text{Aff}(V) \) with \(Z(f) = A_1 \cap A_2 \). Lemma 3.1 implies \(f \in L \),...
hence $A_1 \cap A_2 \in Z[L]$. Finally, let $A \in Z[L]$ and let A' be an affine subspace of V with $A' \supseteq A$. By Lemma 2.4 there exists $f' \in \text{Aff}(V)$ with $A' = Z(f')$. Since $A \neq \emptyset$ by Lemma 3.4, Lemma 3.1 implies $f' \in L$. Therefore A' is in $Z[L]$. Altogether, we have shown that $Z[L]$ is an A-filter on V.

2. The proof of the second assertion of the theorem is straightforward and therefore omitted.

3. In order to verify that the mapping Z is one-one, we prove that Z^- is the inverse mapping of Z. If F is an A-filter on V then clearly $Z[Z^-[F]] = F$. Furthermore it is obvious that any left ideal L of $\text{Aff}(V)$ satisfies $L \subseteq Z^-[Z[L]]$. If, in addition, L is not left invariant, we have seen that $Z[L]$ is an A-filter on V. Therefore, if f is an affine transformation with $Z(f) \in Z[L]$, then $Z(f) \neq \emptyset$, and hence $f \in L$ by Lemma 3.1. This proves the converse inclusion $Z^-[Z[L]] \subseteq L$.

As a consequence of Theorem 3.6 we note that for an affine transformation f with nonempty zero-set $Z(f)$ the left ideal $(f)_\ell$ generated by f and the annihilator $\text{Ann}(Z(f))$ of $Z(f)$ coincide. Furthermore, we get the following

Corollary 3.7. The not invariant left invariant ideals L of $\text{Aff}(V)$ are precisely the sets

$$Z^-[F] = \bigcup \{\text{Ann}(A) \mid A \in F\}$$

where F is a filter of affine subspaces of V.

4. The Finitely Generated Left Ideals

Now we are in a position to determine the finitely generated left ideals of $\text{Aff}(V)$.

Theorem 4.1. Let V be a vector space.

1. The finitely generated left invariant left ideals of $\text{Aff}(V)$ are precisely the sets $\text{Ann}(U) + C$, where U is a linear subspace of V.

2. The finitely generated left ideals of $\text{Aff}(V)$, which are not left invariant, are precisely the annihilators $\text{Ann}(A)$, where A is an affine subspace of V.

Proof: The first assertion of the theorem follows by Theorem A in [1, p.173], Theorem 1 in [1, p.177], the second isomorphism theorem for near-rings and Lemma 2.2. To show 2, suppose first that $L = (f_1, \ldots, f_n)_\ell$ is a finitely generated left ideal of $\text{Aff}(V)$ which is not left invariant. By Theorem 3.6 the family $Z[L]$ is an A-filter on V. Hence there exists $f \in L$ with $Z(f) = Z(f_1) \cap \cdots \cap Z(f_n)$. Moreover, $Z(f)$ is not empty. By the remarks following Theorem 3.6 the left ideal $(f)_\ell$ generated by f agrees with the annihilator $\text{Ann}(Z(f))$. Therefore $\text{Ann}(Z(f)) \subseteq L$. Since $\text{Ann}(Z(f))$ is a left ideal of $\text{Aff}(V)$ containing f_1, \ldots, f_n, it follows that $\text{Ann}(Z(f)) = L$.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 15 Feb 2019 at 01:45:26, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0004972700028623
Conversely, if \(A \) is an affine subspace of \(V \), by Lemma 2.4 there exists \(f \in \text{Aff}(V) \) with \(A = Z(f) \). The remarks following Theorem 3.6 imply \(\text{Ann}(A) = \langle f \rangle \), hence \(\text{Ann}(A) \) is a finitely generated and obviously not left invariant left ideal of \(\text{Aff}(V) \).

For the proof of the next theorem it will be convenient to have

Lemma 4.2. Let \(V \) be a vector space. Then the following statements are equivalent:

1. \(\dim V < \infty \).
2. Every \(A \)-filter on \(V \) is generated by an affine subspace of \(V \).

Proof: Let \(\dim V < \infty \) and let \(F \) be an \(A \)-filter on \(V \). Let \(A \in F \) such that \(\dim A \leq \dim A' \) for all \(A' \in F \). If \(A' \in F \), then \(A \cap A' \in F \) and so \(\dim A \leq \dim (A \cap A') \). This implies \(A \subseteq A' \). Hence \(F \) is contained in the \(A \)-filter \(F_A \) generated by \(A \). Since \(A \in F \), it follows that \(F = F_A \).

To show the converse, suppose that \(\dim V = \infty \). Then the family of all finite dimensional linear subspaces of \(V \) is an \(A \)-filter on \(V \) which is not generated by an affine subspace of \(V \).

Theorem 4.3. Let \(V \) be a vector space. Then the following statements are equivalent:

1. \(\dim V < \infty \).
2. All left ideals of \(\text{Aff}(V) \) are finitely generated.

Proof: Let \(V \) be a finite dimensional vector space and let \(L \) be a left ideal of \(\text{Aff}(V) \). If \(L \) is not left invariant, then according to Corollary 3.7 and Lemma 4.2 there exists an affine subspace \(A \) of \(V \) with \(L = \bigcup \{ \text{Ann}(A') \mid A' \in F_A \} = \text{Ann}(A) \). Therefore Theorem 4.1 implies that \(L \) is finitely generated.

If \(L \) is a left invariant left ideal of \(\text{Aff}(V) \), then \(L \) can be decomposed as \(L = L_0 + C \), where \(L_0 \) is a left ideal of \(\text{Hom}(V, V) \). In particular, \(L_0 \) is a left ideal of \(\text{Aff}(V) \) which is not left invariant. Hence \(L_0 \) is finitely generated. Furthermore, Lemma 2.3 implies that \(C \) is a finitely generated left ideal of \(\text{Aff}(V) \). Therefore \(L \) is finitely generated.

If conversely all left ideals of \(\text{Aff}(V) \) are finitely generated, then \(\dim V < \infty \) by Theorem 4.1, Lemma 4.2 and Corollary 3.7.

In particular, Theorem 4.1 and Theorem 4.3 show that for a finite dimensional vector space \(V \) there is a Galois correspondence between the left invariant left ideals of \(\text{Aff}(V) \) and the linear subspaces of \(V \) and a similar correspondence between the not left invariant left ideals of \(\text{Aff}(V) \) and the affine subspaces of \(V \).
REFERENCES

Mathematisches Institut
Universität Erlangen-Nürnberg
Bismarckstr. 1 ½
D-8520 Erlangen,
Federal Republic of Germany