THE SIMILARITY PROBLEM FOR TENSOR PRODUCTS OF CERTAIN C*-ALGEBRAS

FLORIN POP

We prove that every bounded representation of the tensor product of two C^* -algebras, one of which is nuclear and contains matrices of any order, is similar to a *-representation.

1. Introduction

A C^* -algebra $\mathcal A$ has the *similarity property* if every bounded representation $\pi: \mathcal A \to \mathcal B(\mathcal H)$ is similar to a *-representation, that is, if there exists an invertible operator $S \in \mathcal B(\mathcal H)$ such that $S^{-1}\pi S$ is a *-representation. This property was introduced by Kadison in [4], where he conjectured that all C^* -algebras have the similarity property. Haagerup [3] proved that a bounded representation is similar to a *-representation if and only if it is completely bounded, and also, that representations with a cyclic vector (or a finite cyclic set) are similar to *-representations. In addition, if π is completely bounded, then

$$\|\pi\|_{cb} = \inf\{\|S\| \|S^{-1}\|; \ S\pi S^{-1} \text{ is a *-representation}\}$$

and this infimum is attained ([5]).

Recently ([6, 7, 8]), Pisier introduced the notions of similarity degree and length, which have played a significant role in the study of the similarity problem.

The similarity degree d(A) of a C^* -algebra A is the smallest $\alpha \geq 0$ for which there is a constant C_A such that every bounded representation $\pi: A \to \mathcal{B}(\mathcal{H})$ satisfies $\|\pi\|_{cb} \leq C_A \|\pi\|^{\alpha}$. The length $\ell(A)$ is the smallest integer d for which there is a constant K such that, for any n and any $X \in M_n(A)$, there is an integer N = N(n, X), scalar matrices

$$\alpha_0 \in M_{n,N}(\mathbb{C}), \ \alpha_1 \in M_N(\mathbb{C}), \ldots, \alpha_{d-1} \in M_N(\mathbb{C}), \ \alpha_d \in M_{N,n}(\mathbb{C}),$$

and diagonal matrices $D_1, \ldots, D_d \in M_N(A)$ satisfying

$$\begin{cases} X = \alpha_0 D_1 \alpha_1 D_2 \dots D_d \alpha_d \\ \prod_{i=0}^{d} \|\alpha_i\| \prod_{i=1}^{d} \|D_i\| \leqslant K \|X\|. \end{cases}$$

Received 10th May, 2004

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 \$A2.00+0.00.

A C^* -algebra \mathcal{A} has the similarity property if and only if $d(\mathcal{A}) < \infty$ and Pisier [6] proved the striking fact that $d(\mathcal{A}) = \ell(\mathcal{A})$.

Despite all the progress made so far, there are few concrete examples of C^* -algebras known to have the similarity property. We list them below, together with their respective lengths:

- (i) If A is nuclear, then $\ell(A) = 2$ ([1]).
- (ii) If A = B(H), then $\ell(A) = 3$ ([7]).
- (iii) $\ell(A \otimes \mathcal{K}(\mathcal{H})) \leq 3$, A is arbitrary ([3, 8]).
- (iv) If \mathcal{M} is a type II₁ factor with property Γ , then $\ell(\mathcal{M}) = 3$ ([2]).

In this paper we add to the above list the following result: If \mathcal{A} and \mathcal{B} are unital C^* -algebras such that \mathcal{B} is nuclear and contains unital matrix algebras of any order, then $\ell(\mathcal{A} \otimes \mathcal{B}) \leq 5$.

Throughout this paper we shall assume that all C^* -algebras and their Hilbert space representations are unital. We denote by $\mathcal{A} \otimes \mathcal{B}$, $\mathcal{A} \bigotimes_{\min} \mathcal{B}$ and $\mathcal{A} \bigotimes_{\max} \mathcal{B}$ the algebraic, the spatial (minimal), and the maximal tensor products of two C^* -algebras \mathcal{A} and \mathcal{B} , respectively.

2. Preliminary Results

It is well known that, if \mathcal{A} and \mathcal{B} are C^* -algebras and $f: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ and $g: \mathcal{B} \to \mathcal{B}(\mathcal{H})$ are commuting *-representations, then the map $\psi: \mathcal{A} \otimes \mathcal{B} \to \mathcal{B}(\mathcal{H})$ defined on elementary tensors by $\psi(a \otimes b) = f(a)g(b)$ is bounded with respect to the maximal C^* -norm on $\mathcal{A} \otimes \mathcal{B}$. If, however, ψ is bounded with respect to the spatial norm on $\mathcal{A} \otimes \mathcal{B}$, then it extends to a *-representation of $\mathcal{A} \bigotimes \mathcal{B}$, so ψ is completely contractive. Therefore, boundedness alone with respect to the spatial norm implies automatic complete contractivity. The technical results in this section belong to this circle of ideas.

Suppose that \mathcal{A} and \mathcal{B} are unital C^* -algebras and $\mathcal{X} \subseteq \mathcal{A}$ is an operator system, that is, a closed, self-adjoint, unital vector subspace. Denote by $\mathcal{X} \bigotimes \mathcal{B}$ the closure of $\mathcal{X} \otimes \mathcal{B}$ (elementary operators) in the spatial norm inherited from $\mathcal{A} \bigotimes_{\min}^{\min} \mathcal{B}$. Let $\varphi: \mathcal{X} \to \mathcal{B}(\mathcal{H})$ be a unital completely positive map and let $\pi: \mathcal{B} \to \mathcal{B}(\mathcal{H})$ be a *-representation such that $\varphi(x)\pi(b) = \pi(b)\varphi(x)$ for every $x \in \mathcal{X}, b \in \mathcal{B}$. Suppose, in addition, that the map defined on $\mathcal{X} \otimes \mathcal{B}$ with values in $\mathcal{B}(\mathcal{H})$ taking $\sum_{i=1}^{n} x_i \otimes b_i$ to $\sum_{i=1}^{n} \varphi(x_i)\pi(b_i)$ is bounded with respect to the spatial norm on $\mathcal{X} \otimes \mathcal{B}$, so it extends to a bounded map ω on $\mathcal{X} \bigotimes_{\min}^{n} \mathcal{B}$. Under these hypotheses we have

LEMMA 2.1. If $\mathcal B$ is nuclear, then the map ω is completely positive on $\mathcal X \bigotimes_{\min} \mathcal B$.

PROOF: The map taking $\sum_{i=1}^{n} x_i \otimes b_i$ to $\sum_{i=1}^{n} \varphi(x_i) \otimes b_i$ is completely positive from

 $\mathcal{X} \bigotimes_{\min} \mathcal{B}$ to $\mathcal{B}(\mathcal{H}) \bigotimes_{\min} \mathcal{B}$, and the map taking $\sum_{i=1}^{n} y_i \otimes b_i$ to $\sum_{i=1}^{n} y_i \otimes \pi(b_i)$ is completely positive

from $\mathcal{B}(\mathcal{H}) \underset{\min}{\bigotimes} \mathcal{B}$ to $\mathcal{B}(\mathcal{H}) \underset{\min}{\bigotimes} \pi(\mathcal{B})$. Then the map taking $\sum_{i=1}^{n} x_i \otimes b_i$ to $\sum_{i=1}^{n} \varphi(x_i) \otimes \pi(b_i)$ is completely positive from $\mathcal{X} \underset{\min}{\bigotimes} \mathcal{B}$ to $\mathcal{B}(\mathcal{H}) \underset{\min}{\bigotimes} \pi(\mathcal{B})$, as the composition of the two previous maps. Since the ranges of φ and π commute, the latter map's range is included in $\pi(\mathcal{B})' \underset{\min}{\bigotimes} \pi(\mathcal{B})$. Note that, since \mathcal{B} is nuclear, so is $\pi(\mathcal{B})$. The map from $\pi(\mathcal{B})' \otimes \pi(\mathcal{B})$

into $\mathcal{B}(\mathcal{H})$ taking $\sum_{i=1}^{n} y_i \otimes z_i$ to $\sum_{i=1}^{n} y_i z_i$ extends to a *-representation of $\pi(\mathcal{B})' \bigotimes_{\max} \pi(\mathcal{B})$ = $\pi(\mathcal{B})' \bigotimes_{\min} \pi(\mathcal{B})$. This shows that ω , as a composition of three completely positive maps, is completely positive on $\mathcal{X} \bigotimes_{\min} \mathcal{B}$.

PROPOSITION 2.2 Let \mathcal{A} and \mathcal{B} be unital C^* -algebras, \mathcal{B} nuclear. Let $\varphi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a complete contraction and let $\pi: \mathcal{B} \to \mathcal{B}(\mathcal{H})$ be a *-representation such that $\varphi(a)\pi(b)=\pi(b)\varphi(a)$ for every $a\in \mathcal{A},\ b\in \mathcal{B}$. If the map $\Theta: \mathcal{A}\otimes \mathcal{B}\to \mathcal{B}(\mathcal{H})$, defined on elementary tensors by $\Theta(a\otimes b)=\varphi(a)\pi(b)$, is bounded with respect to the spatial norm on $\mathcal{A}\otimes \mathcal{B}$, then it extends to a complete contraction on $\mathcal{A}\otimes \mathcal{B}$.

PROOF: Consider the operator system of $A \otimes M_2$

$$\mathcal{X} = \left\{ \left(egin{array}{cc} \lambda I & x \\ y & \mu I \end{array}
ight); \ x,y \in \mathcal{A}
ight\}$$

and define $\Phi: \mathcal{X} \to \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$ by

$$\Phi\left(\left(\begin{array}{cc}\lambda I & x\\ y & \mu I\end{array}\right)\right) = \left(\begin{array}{cc}\lambda I & \varphi(x)\\ \varphi(y) & \mu I\end{array}\right).$$

It is well-known that φ is completely contractive if and only if Φ is completely positive. Define also $\tilde{\pi}: \mathcal{B} \to \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$ by

$$\widetilde{\pi}(b) = \left(\begin{array}{cc} \pi(b) & 0 \\ 0 & \pi(b) \end{array} \right).$$

Finally, define

$$T: \mathcal{X} \otimes \mathcal{B} \to \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

by $T(X \otimes b) = \Phi(X)\widetilde{\pi}(b)$. Notice that Φ and $\widetilde{\pi}$ commute, T is bounded with respect to the spatial norm inherited by $X \otimes \mathcal{B}$ from $(A \otimes M_2) \bigotimes_{\min} \mathcal{B}$, and its norm satisfies $||T|| \leq 2||\Theta|| + 2$.

From Lemma 2.1, T is completely positive and, by Arveson's extension theorem, T has a unital completely positive extension to $(\mathcal{A} \otimes M_2) \bigotimes_{\min} \mathcal{B}$, denoted by \widetilde{T} . As a unital completely positive map on a C^* -algebra, \widetilde{T} is completely contractive. The map

$$j:\mathcal{A}\bigotimes_{\min}\mathcal{B} o (\mathcal{A}\otimes M_2)\bigotimes_{\min}\mathcal{B}$$

defined on elementary tensors by

$$j(a \otimes b) = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \otimes b = \begin{pmatrix} 0 & a \otimes b \\ 0 & 0 \end{pmatrix}$$

is completely isometric and

$$\widetilde{T}\left(\left(\begin{array}{cc}0&a\\0&0\end{array}\right)\otimes b\right)=T\left(\left(\begin{array}{cc}0&a\\0&0\end{array}\right)\otimes b\right)=\left(\begin{array}{cc}0&\Theta(a\otimes b)\\0&0\end{array}\right).$$

We conclude that Θ is a complete contraction.

COROLLARY 2.3. Let \mathcal{A} and \mathcal{B} be unital C^* -algebras, \mathcal{B} nuclear. If π is a bounded representation of $\mathcal{A} \bigotimes_{\min} \mathcal{B}$ such that $\pi|_{\mathcal{A}}$ is completely bounded and $\pi|_{\mathcal{B}}$ is self-adjoint, then π is completely bounded and $\|\pi\|_{cb} \leq \|\pi|_{\mathcal{A}}\|_{cb}$.

3. THE MAIN RESULT

We are ready to prove the main result of this paper.

PROPOSITION 3.1. Let \mathcal{A} and \mathcal{B} be unital C^* -algebras such that \mathcal{B} is nuclear and contains unital matrix algebras of any order. If π is a bounded representation of $\mathcal{A} \bigotimes \mathcal{B}$, then π is completely bounded and $\|\pi\|_{cb} \leq \|\pi\|^5$.

PROOF: There exists $S \in \mathcal{B}(\mathcal{H})$ invertible such that $||S|| \cdot ||S^{-1}|| \leq ||\pi||^2$ and $\rho = S\pi S^{-1}$ is self-adjoint on \mathcal{B} [3]. Since ρ is unital and \mathcal{B} contains matrices of any order, then so does $\rho(\mathcal{B})$. Since $\rho(\mathcal{A})$ and $\rho(\mathcal{B})$ commute, we have $||\rho|_{\mathcal{A}} \otimes \mathrm{Id}_{M_n}|| \leq ||\rho||$, which shows that $\rho|_{\mathcal{A}}$ is completely bounded and $||\rho|_{\mathcal{A}}||_{cb} \leq ||\rho|| \leq ||\pi||^3$. It follows from Corollary 2.3 that ρ is completely bounded and $||\rho||_{cb} \leq ||\pi||^3$. This shows that $\pi = S^{-1}\rho S$ is completely bounded and

$$\|\pi\|_{cb} \le \|S\| \cdot \|S^{-1}\| \cdot \|\rho\|_{cb} \le \|\pi\|^5.$$

Π

REFERENCES

- [1] E. Christensen, 'Extensions of derivations II', Math. Scand. 50 (1982), 111-122.
- [2] E. Christensen, 'Finite von Neumann algebra factors with property Γ', J. Funct. Anal. 186 (2001), 366-380.

- [3] U. Haagerup, 'Solution of the similarity problem for cyclic representations of C^* -algebras', Ann. Math. 118 (1983), 215-240.
- [4] R.V. Kadison, 'On the orthogonalization of operator representations', Amer. J. Math. 77 (1955), 600-620.
- [5] V.I. Paulsen, 'Completely bounded homomorphisms of operator algebras', Proc. Amer. Math. Soc. 92 (1984), 225-238.
- [6] G. Pisier, 'The similarity degree of an operator algebra', St. Petersburg Math. J. 10 (1999), 103-146.
- [7] G. Pisier, 'Similarity problems and length', Taiwanese J. Math. 5 (2001), 1-17.
- [8] G. Pisier, 'Remarks on the similarity degree of an operator algebra', *Internat. J. Math.* 12 (2001), 403-414.

Department of Mathematics and Computer Science Wagner College Staten Island, N.Y. 10301 United States of America e-mail: fpop@wagner.edu