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A generalization of Lagrange multipliers

B. D. Craven

The method of Lagrange multipliers for solving a constrained
stationary-value problem is generalized to allow the functions
to take values in arbitrary Banach spaces (over the real field).
The set of Lagrange multipliers in a finite-dimensional problem
is shown to be replaced by a continuous linear mapping between
the relevant Banach spaces. This theorem is applied to a
calculus of variations problem, where the functional whose
stationary value is sought and the constraint functional each
take values in Banach spaces. Several generalizations of the

Euler-Lagrange equation are obtained.

1. Constrained stationary points in a Banach space

Let f:U~Y and h : U+ Z be Fréchet-differentiable maps, where
X, Y, Z are Banach spaces and U 1is an open subset of X . Under some
additional restrictions Theorem 1 gives a necessary and sufficient
condition for stationarity of f(x) subject to #h(x) = 0 . The proof
depends on three preliminary lemmas.

LEMMA 1. Let &, Ugs Vg be real Banach spaces; let A : S~ Uy
and B : S ~+ Vs be continuous linear maps, whose null spaces are N(4)
respectively N(B) ; let N(4) < N(B) ; let A map S onto Ug Then

there exists a contirnuous linear map C : Uy >V, such that B = (C o 4 .

Proof. Let p denote the projector of S onto the factor space
S/N(4) 5 define A : S/N(4) > U by Ao(x+N(A)) =Az ; then A isa
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continuous bijection of §/N(4) onto Uo . So A;l exists, continuous
by Banach's bounded inverse theorem. Define similarly B : S/N(B) » vy -

Since N(4) € N(B) , S/N(B) is a subspace of S/N(4) ; let g denote

the projector of S/N(4) onto S/N(B) . Define C = (Bo 0q) o A;l 5
-1

then COA=Bo°q0AO 0A=Booqop=B.

LEMMA 2. (Bartle [1]1). Let X, and Z be real Banach spaces; 5,

the closed ball in X with centre Ty s radius o ; ¢ : 8, +2Z a
continuously Fréchet-differentiable map, whose Fréchet derivative ¢' (xo)
is invertible, and satisfies ||¢' (a:o) | <30 <o . Then there exists a
constant B such that, if IId)(xo] || < B/p , then the equation ¢(x) = 0

has one and only one solution r satisfying ”5‘-300” =8 .

DEFINITION 1. The linearmsp M : X - Z , wvhere X and 2 are
real Banach spaces, has full rank if there are subspaces X;, X, of X
with X =X, + X, , Xy n X, = {0}, {0} #X, # X , such that the
restriction of M to X; 1is a bijection of X; onto 2 .

(X; = closure of X; .)

REMARK. If X and Z have finite dimensions n, m (m < n) , then

M has full rank iff the matrix representing M has rank m .

LEMMA 3. Let X, Z be real Banach spaces; S an open ball in X
with centre 0 ; h : S > Z a continuously Fréchet-differentiable map,
for which h'(0) has full rank, and Hh(0) = 0 . Then to each vector b
such that h'(0)b = 0, |bll =1 and each sufficiently small X > 0 ,
there exists a solution z = A +u of Hh(x) = 0, where |lull = o(|A]) ;
and conversely every solution of h(z) = 0 for which |zl is

sufficiently small is of this form.

Proof. If X is a direct sum X; + X, , express x € X as
x=v+w with v € X, , w € X, . Since 4'(0) has full rank,
h'(0)x = Av + Bw where A and B are continuocus linear maps and 4 is
invertible. For fixed w , define ¢ : X, » Z by ¢(v) = h(v, w) ; then
$'(0) = A , which is invertible, and [l¢(0)ji = [|R(0, w)ll < s if
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[l < A(s) =s say, since h is continuous. So by Lemma 2, for each
e=<B, ¢(v) =0 has a unique solution v = v(w) , with |v-0|| < ¢ , if
lwll < A(e/p) (where A(e/p) < e/p may be assumed). Since h 1is
differentiable

0 =h{vw), w) =4v + Bw + Y(v, v) ,
vhere [{W(v, w)|| = e(llvl} + Jlwll) it [l + i < &§(e) .
Choose € < 3l47M ™ ana €' <€ such that €' (1+p7Y) < 8(e) ; irf
flwll < A(e'/p) then (vl + flwll < &' + €'/p < 8(e) ; hence
ol = 14~ Boa™ gl < A~ 2Blwi + e el l+lul) |
hence

il = (14 Bl+ella™ ) wll/ (1-clla™tl) < (2la™ Bl+1) ol

Therefore, taking any smaller € and &' ,

(), w)il = elpli+fwl) < €(2HA_13H+_2) il = o(lkll) +

So h(x) = 0 has a solution
_ -1 -1 -
z=v+w=-4"Bo+w-A"Yow,w =-rb+u

where X = H—A_le+wH , b= A_l(—A-le+w) , so h'(0)b =0, and
flull = o(|A]) ; and any vector b such that h'(0)b = 0 is necessarily

of the form -A 'Bw + w for some w € X, , since then -4 B € Xy

REMARK. If X and 2 are finite-dimensional, then an application
of Brouwer's fixed-point theorem proves Lemma 3 for h differentiable
only, not necessarily continuously differentiable. (Differentiable is
here taken to imply that the Fréchet derivative is a continuous linear

mapping from X into 2 .)

THEOREM 1. Let X, Y, Z be real Banach spaces; U an open subset
of X; f :U=Y qa Fréchet-differentiable map, and h : U > 2 a
continuously Fréchet-differentiable map; assume (by restricting Y and
Zz) that f(U) <is demse in Y and h{U) is dense in 7z . Let
E={x €U : hlz) =0 and h'(xz) has full rank} . Then f(x) 1is
stationary, subject to the constraint h(x) =0, at x =a € E 4if and
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only if there ts a continuous linear map M : Z + ¥ such that
(*) f'(a) =M o n'{a) .
REMARKS. f(x) stationary means f(z-8) - fla) = o(|lx-all) .
(*) 1is equivalent to the stationarity at z =g of flx) - M o hlx)

without constraints.

If Y=R and Z=FHK" then M reduces to a set of m constraints,
the usual Lagrange multipliers.

E is relatively open in {x : nlx) = 0} .

Proof. For a € E , f(x) - fla) = f'(a)(x-a) + £ where
liEll = o(jx~afl) . By Lemma 3, h(x) = 0 for « in a sufficiently small
neighbourhood of a if and only if & - a@a = Ab + n where A4'(a)b =0 ,
Bl = 1, and |inif = o(|A]) ; and then

flx) = fla) = Af'(a)b + F'(a)n + & = Af'{(a)b + o(]A])

since f'(a) is a continuous linear map. Hence, for a € E ,

Ff(x) is stationary at x = a , subject to the constraint Hh(x) =0

= (r'(a)b = 0= f'"(a)b = 0)

<> there is a continuous linear map M : Z » Y such that

f'(a) =M o h'(a) , by Lemma 1.

2. Calculus of variations in Banach spaces

Let V, S, ¥ be (real) Banach spaces, I = (g, b] a compact real
interval, and F : I xV xV >85 and H : I xV xV > W continuously
Fréchet-differentiable maps. Let § be a set of continuously
Fréchet-differentiable functions y : I + V , such that y(b) = B and
y{la) = o for all y € @ , and such that the vector space @ - @ contains
£(-)e for each fixed e € V and each continuously differentiable real
function & which vanishes on the boundary of I . Let f and 4

denote the maps defined, for y € @ , by the Bochner integrals

£ =j F(t, y(2), y'(£))dt 5 hiy) =j (e, y(2), y' (£)dt .
I ) I

Denote by Fy and Fy, the partial Fréchet derivatives of F with
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respect to its second and third arguments; for ¢ € I , y € @ , denote

Fb[t, yl = Fy(t, y(t), y'(t)) and similarly for Fy,[t, y] ; denote also

t
Fﬁmy]=JF[nyMr;Fﬂay1=-fw,w+F.w,w.
a ¥ Yy

Denote by SO (respectively Wb) the closure of the range of
f'(y) : @ - @5 [respectively h'(y) : @ - @ W) .

Since F 1is Fréchet-differentiable, so is f ,and, for y € @ ,

neg-q,

f'(yn JI (Fy[t, y]n(t)+Fy,[t, yIn'(¢))dt

- f F'lt, yIn'(£)dt + F' b, y1(n(b)-n(a)) + f F (¢, yIn' (¢)dt
I Y

integrating by parts using Theorem 2 of [2]

I FAle, yIn'(¢)dt + 0 .
I

LEMMA 4. For fized y € @, J PAt, yIn'(t)dt = 0 for each
I

neg-@ = F*t,yl=0 foreach t €I .

Proof. Let P be the projector of S onto the one-dimensional
subspace spanned by the vector s € § ; substitute n(z) = £(¢)e where
e €V and E(-) is a continuously differentiable real function on I .
Then, for fixed y , P o F*[¢, yIn'(¢) = a(£)E'(t)s , where oa(-) is a

continuous function (with y as parameter). If the first statement of the

lemma holds, then I a(z)g'(t)dt = 0 for each continuously differentiable
I

£(+) which vanishes at a and b . By [4], page 10, Lemma 2, oa(t) = 0
for each t ; therefore P o F#*[t, y]e =0 ; so, since 8 and e are

arbitrary, F*[¢, y] = 0 . The converse is immediate.

THEOREM 2. Let F and h be as defined above; let E denote the
set of y € Q@ such that h'(y) has full rank. Then f(y) <is stationary,
subject to the comstraint h(y) =0, at a € E if and only if there is a

continuous linear map M : Wb - So such that, at y = a ,
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d
El{y,[t, y] = Ky[t, yl , where K=F -Mo H .
Proof. By Theorem 1, f(y) is stationary, given #(y) = 0 , at
y = a if and only if there is a continuous linear map M : WO > So such
that f(y) - ¥ o h(y) has zero Fréchet derivative at y = a . Then (in
the notation preceding Lemma U4)

(£'(y)-M o n'(y)}n = j K*[t, yIn'(t)dt .
I

By Lemma 4, this vanishes for all n € @ - @ if and only if, for all
t €Tl

t
k*[t, y] = - J K [t, yldt + X ,[t, y] =0 .
a ¥ Y
If so, then (d/dt)Ky,[t, y] exists, as a Fréchet derivative, and

==K ,[t, yl = Ky[t, yl .

The converse is immediate.
REMARK. Theorem 2 has a partial generalization where I is replaced

by a bounded closed subset of P (p-space), with boundary I ; and the
boundary condition on y € @ becomes y(-) = p(-) on 09I , where p is

a given function. Then y' = (yi, cees yé) and n' = (ni, cees né)

become p-vectors, mapping RP into V ,and F and H become functions
of t, y, yi, cens yé . The proof depends on a Banach-space
generalization of the Gauss-Green theorem, given in [2], Theorem A.

Let &(-) denote the measure of (p-1)-dimensionsl surface area,

used in [2]. Call a subset E, ¢ R thin if ¢(E) < ©» and E,6 isa

countable union of disjoint continuous images of the unit sphere in RE .

(It follows that the p-dimensional Lebesgue measure of E, is zero.)
THEOREM 3. Let f and h be as in Theorem 2, but with the compact

interval I replaced by a campact subset of RP  whose boundary 3I is
thin; Llet Io be a thin subset of the tnterior of I ; let @ be a set
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of continuously Fréchet-differentiable functions y : I +V , such that
y(t) = p(t) for t €3I , p(-) being a given function. Let E denote
the set of y € @ such that h'(y) has full rank.

For © =1, 2, ..., p let the partial Fréchet derivative
]
F I[t, y]
;Y

exist at each point of I - Io , and have norm integrable over I , with

respect to p-dimensional Lebesgue measure. Let H satisfy similar
hypotheses to F .

Then f(y) is stationary, subject to the constraint #h{y) = 0 , at

y =a € E if and only if there is a continuous linear map ¥ : WO - So
such that, at y = a ,

diva,[t, yl = Ky[t, y)

where K=F -MoH , Ky' is the vector in RP whose <-th component

is XK, , and
Yi

3
divk ,[¢, y] = — K ,[t, y] .
y .= 31:1: yi

1=1

Proof, By Theorem 1, f(y) is stationary, given h(y) = 0 , at
a € E if and only if f(y) - M o h(y) has zero Fréchet derivative at

a . Since the partial Fréchet derivatives (B/Bti]Ky, exist,
1

él Kults yIny(2) = aivi® (£, yIn(e)} - {aivk,, (¢, y1in(e)

For y €@, n€@-@ , and dt denoting p-dimensional Lebesgue

measure,

(F' (y)=M ° ' (y))n L_ [Ky[t, yIn(t) + ;f Ky.,[t, y]n;;(t)]dt

=1 Y

f (60 41 - asve Lo, yntorce
I
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since by [2], Theorem A,
J aivik ,[£, yIn(t)}de
T Y
equals an integral of Ky,[t, yIn(t) over 3I , and n(t) =0 for

t € 9T .

Since N 1is an arbitrary member of @ ,

il
o

'y -Moh'(y) =0 = Ky[ta yl - diVKyv[t, y]

3. An application
Let V=8=W-= So = Wo = C(J) , the space of all continuous complex

functions on J = [0, 1] ; 1let I = [a, b] be a compact real interval.
If y € Q maps I into V , then y 1is represented by a map (also
denoted y) of I *x J into complex numbers; define @ by requiring
that (Vs € J) y(b, 8) = B and yla, s) =a ; (Vs) y(-, g) is
continuously differentiable, and (V¢ ¢ I) y(s, -) is continuous. Let
P(+, +, *,) be a continuously differentiable function of three real
variables. For each s € J , let w(-, s) be a (complex) measure on
I x J , which is weak-¥-continuous in s € J and satisfies

sup w(-, )l < e

s€J
(vhere norm of a measure means total variation). For u, v € 4§ , s € J ,

t € I , define

Flt, u(t), v(£))(s) = F(t, ult, s), v(t, 8)) =
j (¢, ult, a), v(t, B8))dw((a, B), s) -
IxJ

Then F(t, u(t), v(t)] €V, and F is continuously
Fréchet-differentiable. Define H in terms of a function P and a

measure , satisfying similar hypotheses to P and w .

In Theorem 2, M is a continuous linear map from C(J) into C(J) ;

so by [3], Theorem 3, X = F - M o H has the representation
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(*) k(t, y(¢), y'(£))(s) = Ft, y(2), y'(£))(s) -
I H(t, y(t), y'(£))(2)dg(z, s)
J
where, for each s € J , g(-, s) is a (complex) measure on J ,
weak-*~-continuous in g and satisfying

sup llg(-, )| <= .
sed

Write (¥) briefly as

Kiz, ¥)(o) = Flz, y1(o) - [ ALz, y1a)dgla, o) .
J
Denote by D the differential operator defined by

DK[t, y] = S K[ty - K L8, ] .

Then the criterion of Theorem 2 is formally equivalent to the following

generalization of the Euler-Lagrange equation

(#) DF[t, yl(-) = IJ DH{t, yl(z)dg(z, -)

Since, by Theorem 2, DK exists, (#) will be valid provided that also
£rlty)

exists (so DH exists), and (to validate differentiation under the
integral sign in (#)) is, for each ¢t € I , locally dominated by a

function g-integrable on I .
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