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Abstract

Schmidt’s game is a powerful tool for studying properties of certain sets which arise in Diophantine
approximation theory, number theory and dynamics. Recently, many new results have been proven using
this game. In this paper we address determinacy and indeterminacy questions regarding Schmidt’s game
and its variations, as well as more general games played on complete metric spaces (for example, fractals).
We show that, except for certain exceptional cases, these games are undetermined on certain sets. Judging
by the vast numbers of papers utilising these games, we believe that the results in this paper will be of
interest to a large audience of number theorists as well as set theorists and logicians.
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1. Introduction

In 1966, Schmidt [9] introduced a two-player game referred to thereafter as Schmidt’s
game. Schmidt invented the game primarily as a tool for studying certain sets which
arise in number theory and Diophantine approximation theory. These sets are often
exceptional with respect to both measure and category. The most significant example
is the following. Let Q denote the set of rational numbers. A real number x is
said to be badly approximable if there exists a positive constant c = c(x) such that
|x − (p/q)| > c/q2 for all p/q ∈ Q. We denote the set of badly approximable numbers
by BA. This set plays a major role in Diophantine approximation theory, and is well
known to be both meagre and Lebesgue null. Nonetheless, using his game, Schmidt
was able to prove the following remarkable result.

Theorem 1.1 (Schmidt [9]). Let ( fn)∞n=1 be a sequence of C1 diffeomorphisms
of R. Then the Hausdorff dimension of the set

⋂∞
n=1 f −1

n (BA) is 1. In particular,⋂∞
n=1 f −1

n (BA) is uncountable.

Before turning our attention to the determinacy aspects of the game, we devote the
first subsection of the introduction to describing the game as well as recent variations
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introduced by McMullen [7], both of which will be the focus of this paper. In the
second subsection of the introduction we state the main results of this paper.

1.1. Schmidt’s game and its variations. Let (X, d) be a complete metric space. In
what follows, we denote by B(x, ρ) the closed ball in the metric space (X, d) centred at
x of radius ρ, that is,

B(x, ρ) def
= {y ∈ X : d(x, y) ≤ ρ}. (1.1)

Let Ω
def
= X × R+ be the set of formal balls in X, and define a partial ordering on Ω by

letting
(x2, ρ2) ≤s (x1, ρ1) if ρ2 + d(x1, x2) ≤ ρ1.

We associate to each pair (x, ρ) a ball in (X, d) via the ‘ball’ function B(·, ·) as in
(1.1). Note that the inequality (x2, ρ2) ≤s (x1, ρ1) clearly implies (but is not necessarily
implied by) the inclusion B(x2, ρ2) ⊆ B(x1, ρ1). Nevertheless, the two conditions are
equivalent when (X, d) is a Banach space.

Fix α, β ∈ (0, 1) and S ⊆ X. The set S will be called the target set. Schmidt’s
(α, β, S )-game is played by two players, whom we shall call Alice and Bob. The
game starts with Bob choosing a pair ω1 = (x1, ρ1) ∈ Ω. Alice and Bob then take turns
choosing pairs ω′n = (x′n, ρ

′
n) ≤s ωn and ωn+1 = (xn+1, ρn+1) ≤s ω

′
n, respectively. These

pairs are required to satisfy

ρ′n = αρn and ρn+1 = βρ′n. (1.2)

Since the game is played on a complete metric space and since the diameters of the
nested balls

B(ω1) ⊇ · · · ⊇ B(ωn) ⊇ B(ω′n) ⊇ B(ωn+1) ⊇ · · · (1.3)

tend to zero as n→∞, the intersection of these balls is a singleton {x∞}. Call Alice
the winner if x∞ ∈ S ; otherwise Bob is declared the winner. A strategy consists of
a description of how one of the players should act based on the opponent’s previous
moves; see Section 2 for a precise formulation. A strategy is winning if it guarantees
the player a win regardless of the opponent’s moves. If Alice has a winning strategy for
Schmidt’s (α, β, S )-game, we say that S is an (α, β)-winning set. If S is (α, β)-winning
for all (equivalently, for all sufficiently small) β ∈ (0, 1), we say that S is an α-winning
set. If S is α-winning for some (equivalently, for arbitrarily small) α ∈ (0, 1), we say
that S is winning. (To see that ‘for all’ and ‘for some’ may be replaced by ‘for all
sufficiently small’ and ‘for arbitrarily small’, respectively, see [9, Lemmas 8 and 9].)

We now describe two variations of Schmidt’s game introduced by McMullen [7].
The first of these variations is the strong winning game. Given α, β ∈ (0, 1) and S ⊆ X,
the rules of the (α, β, S )-strong winning game are the same as the rules of Schmidt’s
(α, β, S )-game, except that (1.2) is replaced by the inequalities

ρ′n ≥ αρn and ρn+1 ≥ βρ
′
n. (1.4)

However, since (1.4) is insufficient to ensure that the diameters of the nested balls (1.3)
tend to zero, it may happen that the intersection I def

=
⋂

n B(ωn) is not a singleton. If this
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occurs, we call Alice the winner if I ∩ S , ∅; otherwise Bob is declared the winner.
If Alice has a winning strategy for the (α, β)-strong winning game with a given target
set S , then S is called (α, β)-strong winning. Similarly, as above one can talk about
α-strong winning and strong winning sets.

McMullen’s second variation is called the absolute winning game. Although he
defined it only on Rd, it can be played on much more general spaces. Fix c > 0. A
metric space (X, d) is said to be c-uniformly perfect if, for every pair (x, ρ) ∈ Ω with
ρ ≤ 1,

B(x, ρ) \ B(x, cρ) , ∅. (1.5)

If (X, d) is c-uniformly perfect for some c > 0, then we say that (X, d) is uniformly
perfect. Examples of uniformly perfect spaces include Rd as well as many fractal
subsets including the Cantor ternary set, the Sierpinski triangle and the von Koch
snowflake curve.

Let (X, d) be a complete c-uniformly perfect metric space, and fix 0 < β < c/5 and
S ⊆ X. The (β, S )-absolute winning game is played as follows. As before, Bob begins
by choosing a pair ω1 ∈ Ω. After Bob’s nth move ωn = (xn, ρn), Alice chooses a pair
ω′n = (x′n, ρ

′
n) ∈ Ω satisfying ρ′n ≤ βρn. She is said to ‘delete’ the associated ball B(ω′n).

Bob must then choose a ball ωn+1 = (xn+1, ρn+1) ≤s ωn such that

ρn+1 ≥ βρn and B(ωn+1) ∩ B(ω′n) = ∅. (1.6)

Such a choice is always possible due to (1.5); see [1, Lemma 4.3]. Bob’s choices result
in a decreasing sequence of sets

B(ω1) ⊇ · · · ⊇ B(ωn) ⊇ B(ωn+1) ⊇ · · · .

As before, let I =
⋂

n B(ωn), and call Alice the winner if I ∩ S , ∅. If Alice has a
winning strategy for the (β, S )-absolute winning game, then S is called β-absolute
winning. If S is β-absolute winning for all 0 < β < c/5, then we say that S is absolute
winning.

Remark 1.2. If (X, d) is a Banach space, then the (β, S )-absolute winning game may
be played for any 0 < β < 1/3; the hypothesis β < c/5 is not necessary. For a proof,
see for example the proof of Theorem 1.7(iv).

Remark 1.3. In the absolute winning game, Alice has rather limited control over the
situation, since she can block very few of Bob’s possible moves at each step. Thus,
being absolute winning is a rather strong property of a set.

The following proposition summarises some important properties of winning,
strong winning and absolute winning subsets of a complete uniformly perfect metric
space (X, d).

Proposition 1.4.

(i) Winning (respectively, strong winning, absolute winning) sets are dense.
(ii) Absolute winning implies strong winning, and strong winning implies winning.
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(iii) The countable intersection of α-winning (respectively, α-strong winning,
absolute winning) sets is again α-winning (respectively, α-strong winning,
absolute winning).

Proof. Indeed, (i) follows directly from the definition. The proof of (ii) is fairly
straightforward (see [7, pages 2–3]), and the basic idea of the proof of (iii) can be
found in [9, Theorem 2]. �

Remark 1.5. In [9, Theorem 7], Schmidt proved that for a large class of games
including the above games, the existence of a winning strategy implies the existence
of a positional winning strategy, that is, a winning strategy in which a player’s moves
depend only on his opponent’s previous move, and not on the entire history.

1.2. Determinacy of games. Inspired by the Banach–Mazur game, infinite games
have been studied for almost a century. In 1953, the notion of two-player zero-sum
infinite games with perfect information was introduced and systematically studied by
Gale and Stewart [2]. As stated above, the main purpose of this paper is to study
the determinacy of Schmidt’s game and its variations. (For set-theoretic results of a
somewhat different flavour concerning the game on the real line, see [5].) A two-player
game is called determined if one of the players has a winning strategy.

As a corollary of Martin’s celebrated Borel determinacy theorem [6], we deduce the
following theorem (see Theorem 3.1).

Theorem 1.6. Let (X, d) be a complete metric space. Fix 0 < α, β < 1 and S ⊆ X. If
S is Borel, then Schmidt’s (α, β, S )-game, the (α, β, S )-strong winning game and the
(β, S )-absolute winning game are determined. (In the last case, we assume that X is
c-uniformly perfect with β < c/5.)

We may ask whether these games remain determined when S is not a Borel set. In
this paper, we consider the worst-case scenario: when S is a Bernstein set, meaning
that every closed perfect subset of X intersects both S and X \ S . Bernstein sets are
pathological in that they are not measurable with respect to any nonatomic regular
measure and do not have the Baire property [8, Theorem 5.4]. Every uncountable
Polish space contains a Bernstein subset [8, Theorem 5.3]. (Both of the above results
are stated for R but easily generalise. In the latter result, the assumption that X is an
uncountable Polish space guarantees that the number of closed subsets of X is equal to
#(X).) We may now state our main theorem. See Section 3.2 for the proof.

Theorem 1.7. Let (X, d) be a complete c-uniformly perfect metric space and let S ⊆ X
be a Bernstein subset. Fix 0 < α, β < 1.

(i) If α, β < c/(1 + 2c), then Schmidt’s (α, β, S )-game and the (α, β, S )-strong
winning game are undetermined.

(ii) If (X, d) is a Banach space and if 1 + αβ > 2 max(α, β), then Schmidt’s (α, β, S )-
game and the (α, β, S )-strong winning game are undetermined.
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(iii) If β < (c/5)2, then the (β, S )-absolute winning game is undetermined.
(iv) If (X, d) is a Banach space and if β < 1/3, then the (β, S )-absolute winning game

is undetermined.

Remark 1.8. The hypotheses of Theorem 1.7 are irrelevant in applications, since one
generally cares only about small values of α and β (see the definitions of α-winning
and winning sets). Moreover, if 1 + αβ ≤ 2 max(α, β), then Schmidt’s (α, β, S )-game
and the (α, β, S )-strong winning game are determined for all S by [9, Lemmas 5
and 6]. Thus, if (X, d) is a Banach space, then the hypotheses of Theorem 1.7 cannot
be weakened.

Remark 1.9. One may define Schmidt’s S -game as follows. First, Alice chooses
α ∈ (0,1), then Bob chooses β ∈ (0,1) and then Alice and Bob play Schmidt’s (α, β,S )-
game. Note that a set S is winning if and only if Alice has a winning strategy for
Schmidt’s S -game. It follows immediately from Theorem 1.7 that Schmidt’s S -game
is undetermined whenever S is a Bernstein set. Similar statements may be made about
the strong and absolute winning games.

2. A more general context

To prove Theorems 1.6 and 1.7, we will introduce a larger class of games which
includes the games of Section 1.1. Before defining this class, we introduce an auxiliary
class, the class of Gale–Stewart games.

2.1. Gale–Stewart games. Let E be a nonempty set, and let E∗ and EN denote the
sets of finite and infinite words with alphabet E, respectively. Elements of E∗ ∪ EN

will be called plays. For each play ω ∈ E∗ ∪ EN, we will denote the length of ω by |ω|,
so that |ω| =∞ if ω ∈ EN.

Let P∗(E) denote the collection of nonempty subsets of E and fix a map Γ :∐
n∈N En−1 → P∗(E). The map Γ will be called the ruleset. A play ω ∈ E∗ ∪ EN will

be called legal if ωn ∈ Γ(ω1, . . . , ωn−1) for all n ≤ |ω|. The set of all legal plays will be
denoted E∗

Γ
∪ EN

Γ
.

Fix a set S ⊆ EN
Γ

(the target set). Alice and Bob play the (E, Γ,S)-Gale–Stewart
game as follows: Alice and Bob alternate choosing elements ω1, ω2, . . . ∈ E, with the
odd elements chosen by Bob and the even elements by Alice. The elements they
choose must satisfy (ω1, . . . , ωn) ∈ E∗

Γ
for all n ∈ N. Such a choice is always possible.

If the resulting play ω = (ω1, ω2, . . .) ∈ EN is in S, then Alice wins; otherwise Bob
wins.

An Alice-strategy for a Gale–Stewart game (E,Γ,S) is a map σA :
∐∞

n=0 E2n+1
Γ
→ E

such that σA(ω) ∈ Γ(ω) for all ω ∈
∐∞

n=0 E2n+1
Γ

. Similarly, a Bob-strategy is a map
σB :

∐∞
n=0 E2n

Γ
→ E such that σB(ω) ∈ Γ(ω) for all ω ∈

∐∞
n=0 E2n

Γ
. Given any two

strategies σA and σB, there is a unique infinite play ω ∈ EN
Γ

such that, for each n ∈ N,

ωn =

σA(ω1, . . . , ωn−1) if n is even,
σB(ω1, . . . , ωn−1) if n is odd.

(2.1)
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This play represents the game which results if the players Alice and Bob play
according to the strategies σA and σB, respectively. It will be denoted (σA, σB).
If (σA, σB) ∈ S for every Bob-strategy σB, then the Alice-strategy σA is said to
be winning for the (E, Γ,S)-Gale–Stewart game. We will equivalently say that σA

ensures that φ ∈ S. Here we think of φ as denoting the outcome of an arbitrary game.
Conversely, if (σA, σB) < S for every Alice-strategy σA, then the Bob-strategy σB

is said to be winning for the (E, Γ,S) game, and we say that the strategy ensures
that φ < S. Clearly, both players cannot possess a winning strategy. The (E, Γ,S)-
Gale–Stewart game is said to be determined if one of the players possesses a winning
strategy.

Alternatively, we may characterise the notion of winning strategies in terms of
compatible plays.

Notation 2.1. Given ω, τ ∈ E∗ ∪ EN, we write ω � τ if τ is an extension of ω, that is,
if ωn = τn for all n ≤ |ω|.

Definition 2.2. Let σA be an Alice-strategy. A play ω ∈ E∗
Γ
∩ EN

Γ
is called σA-

compatible if ω2n = σA(ω1, . . . , ω2n−1) whenever 2n ≤ |ω|. Similarly, given a Bob-
strategy σB, a play ω ∈ E∗

Γ
∪ EN

Γ
is called σB-compatible if ω2n+1 = σB(ω1, . . . , ω2n)

whenever 2n + 1 ≤ |ω|.
Given a strategy σ, denote by E∗σ (respectively, ENσ ) the set of σ-compatible plays

in E∗
Γ

(respectively, EN
Γ

).

Remark 2.3. Under this definition, an Alice-strategy σA is winning if and only if
ENσA
⊆ S, and a Bob-strategy σB is winning if and only if ENσB

∩ S = ∅.

One of the main problems in game theory is to classify which Gale–Stewart games
are determined. The best general result in this regard is the following theorem.

Theorem 2.4 (Martin [6]). Let E be a nonempty set and let S ⊆ EN
Γ

be a Borel set,
where EN

Γ
is viewed as a subspace of EN equipped with the product topology (viewing E

as a discrete topological space). Then the (E,Γ,S)-Gale–Stewart game is determined.

On the other hand, the following result is well known (for example, [4, page 137,
paragraph 8]).

Proposition 2.5. If S is a Bernstein set and if Γ(ω) = E for all ω ∈
∐

n∈N En−1, then the
(E,Γ,S)-Gale–Stewart game is undetermined.

2.2. The games of Section 1.1 as Gale–Stewart games. Based on Theorem 2.4
and Proposition 2.5, one might guess that the games described in Section 1.1 exhibit
the same behaviour, that is, that they are determined on Borel sets but undetermined
on Bernstein sets. And, indeed, Theorems 1.6 and 1.7 show that this is essentially
correct. To prove these theorems, we will relate the games of Section 1.1 to
Gale–Stewart games.

Let (X, d) be a complete metric space. Fix α, β ∈ (0, 1) and S ⊆ X, and consider
Schmidt’s (α, β,S )-game. We will consider a corresponding Gale–Stewart game which
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is determined if and only if Schmidt’s (α, β, S )-game is determined. Let E = Ω be the
set of formal balls in X. Define the ruleset Γ = Γα,β :

∐
n∈N En → E according to the

rules of Schmidt’s (α, β)-game; namely, E 3 ωn ∈ Γ(ω1, . . . , ωn−1) if and only if

ωn ≤s ωn−1 and ρn =

{
αρn−1 if n is even,
βρn−1 if n is odd.

Let
Sα,β =

{
ω ∈ ENΓ :

⋂
n∈N

B(ω2n+1) ∩ S , ∅
}
.

Then the (E, Γα,β, Sα,β)-Gale–Stewart game is equivalent to Schmidt’s (α, β, S )-
game, in the sense that every winning Alice-strategy (respectively, Bob-strategy)
for the (E, Γα,β,Sα,β)-Gale–Stewart game corresponds to a winning Alice-strategy
(respectively, Bob-strategy) for Schmidt’s (α, β,S)-game, and vice versa. In particular,
each game is determined if and only if the other is.

Similarly, for the (α, β, S )-strong winning game and the (β, S )-absolute winning
game, there exist rulesets Γ

strong
α,β and Γabsolute

β and sets Sstrong
α,β and Sabsolute

β such that
the (E,Γstrong

α,β ,S
strong
α,β )-Gale–Stewart game is equivalent to the (α, β, S )-strong winning

game and the (E, Γabsolute
β ,Sabsolute

β )-Gale–Stewart game is equivalent to the (β, S )-
absolute winning game.

2.3. Games played on complete metric spaces. We can generalise the ideas of
Section 2.2 to the setting of games played on complete metric spaces. Such games
will depend on a nonempty set E, a ruleset Γ :

∐
n∈N En−1 →P∗(E), a complete metric

space (X, d) and two additional parameters (I, S ).
The parameter I is the topological interpretation of the game, and it is a map

I : E∗
Γ
→ K∗(X), where K∗(X) denotes the set of all nonempty closed subsets of

X, which is order preserving in the sense that ω � τ implies I(τ) ⊆ I(ω). Given
a topological interpretation I : E∗

Γ
→ K∗(X), we can define I : EN

Γ
→ K∗(X) by the

formula I(ω) =
⋂∞

n=0 I(ω1, . . . , ωn).
The parameter S is the target set, and it is a subset of X. The (E, Γ, I, S )-game is

played as follows. Players Alice and Bob take turns playing legal moves, resulting in
a play ω ∈ EN

Γ
which defines the outcome I(ω) ∈ K∗(X). If I(ω) ∩ S , ∅, then Alice

wins; otherwise Bob wins. We say that the (E, Γ, I, S )-game is a game played on the
metric space (X, d).

Based on the above description, it is easy to see that each (E, Γ, I, S )-game is
equivalent to some Gale–Stewart game, namely, the Gale–Stewart game (E, Γ,SI,S ),
where

SI,S = {ω ∈ ENΓ : I(ω) ∩ S , ∅}. (2.2)

Moreover, the games of Section 1.1 are all examples of games played on complete
metric spaces, with I(ω) =

⋂
n<|ω|/2 B(ω2n+1).

We mention in passing that the well-known Banach–Mazur game is also an example
of a game played on a complete metric space. It satisfies the hypotheses of the two
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main theorems in the next section, and is therefore determined on Borel sets and
undetermined on Bernstein sets. However, both these results are already known as
a consequence of the fact that Alice has a winning strategy for the Banach–Mazur
game if and only if the target set is comeagre; see [4, page 152, last paragraph and
page 153, first paragraph] and [8, page 29, last paragraph], respectively. In fact, the
former reference shows that the Banach–Mazur game is determined on analytic sets.
The corresponding question of whether the games of Section 1.1 are determined on
analytic sets remains open.

3. Determinacy and indeterminacy of games played on complete metric spaces

In this section, we state and prove generalisations of the theorems of Section 1.2.

3.1. Determinacy on Borel sets. We will prove the following generalisation of
Theorem 1.6.

Theorem 3.1. Let (E, Γ, I, S ) be a game played on a complete metric space (X, d) and
suppose that S ⊆ X is Borel. Suppose in addition that

For all ω ∈ ENΓ , either diam(I(ω1, . . . , ωn)) −→
n

0 or I(ω) ∩ S , ∅. (3.1)

Then the (E,Γ, I, S )-game is determined.

Remark 3.2. For the games of Section 1.1, (3.1) holds as long as S is dense.

Proof. Fix ω ∈ EN
Γ

and, for each n, let ωn = (xn, ρn). By assumption, we have
(x2m+1, ρ2m+1) ≤s (x2n+1, ρ2n+1) for all m ≥ n, so

d(x2m+1, x2n+1) ≤ ρ2n+1 − ρ2m+1. (3.2)

Since the sequence (ρ2n+1)∞0 is decreasing and bounded, it is Cauchy and therefore the
right-hand side of (3.2) tends to zero as m, n→∞. Thus, the sequence (x2n+1)∞0 is
Cauchy. Since X is complete, we have x2n+1 → x for some x ∈ X. Then I(ω) ⊇ B(x, ρ),
where ρ = limn→∞ ρn. Since S is dense, we have I(ω) ∩ S , ∅ if ρ > 0. �

On the other hand, if S is not dense, then Bob can win on the first turn. Thus,
Theorem 3.1 implies Theorem 1.6.

Proof of Theorem 3.1. By Theorem 2.4, it suffices to show that the set SI,S defined in
(2.2) is Borel. Let

Z = {ω ∈ ENΓ : diam(I(ω1, . . . , ωn)) −→
n

0}. (3.3)

Clearly, Z is Borel. On the other hand, EN
Γ
\ Z ⊆ SI,S by (3.1). So, it suffices to show

thatSI,S ∩ Z is Borel. Since X is complete, we have #(I(ω)) = 1 for allω ∈ Z. Thus, we
may define a map ι : Z → X by letting {ι(τ)} = I(τ). We observe that SI,S ∩ Z = ι−1(S ).
Thus, to complete the proof, it suffices to show the following lemma.

Lemma 3.3. The map ι is continuous.
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Proof. Suppose that U is an open subset of X, and fix x ∈ U and ω ∈ ι−1(x). Since
ω ∈ Z, we have diam(I(ω0, . . . , ωn)) < d(x, X \ U) for some n ∈ N. Then the set
V = {τ ∈ EN

Γ
: τi = ωi, 0 ≤ i ≤ n} satisfies ω ∈ V ∩ Z ⊆ ι−1(U); moreover, V is open

in the topology of EN
Γ

. Since x and ω were arbitrary, ι is continuous. �

Now the proof of Theorem 3.1 is complete. �

3.2. Indeterminacy on Bernstein sets. To state the appropriate generalisation of
Theorem 1.7 to the setting of games played on complete metric spaces, we need to
introduce some more terminology.

Definition 3.4. Let (E,Γ,S) be a Gale–Stewart game. Given τ ∈ E∗
Γ
, an Alice-strategy

σA and a Bob-strategy σB, there is a unique infinite play ω � τ satisfying (2.1) for
all n > |τ|. This play represents the game which results if the players Alice and Bob
first make the moves τ1, . . . , τ|τ| and then play according to the strategies σA and σB,
respectively. It will be denoted (τ, σA, σB). If (τ, σA, σB) ∈ S for every Bob-strategy
σB, then the Alice-strategy σA is said to be winning relative to τ for the (E, Γ,S)-
Gale–Stewart game. We say that the strategy σA ensures that φ ∈ S assuming φ � τ.
Conversely, if (σA, σB) < S for every Alice-strategy σA, then the Bob-strategy σB is
said to be winning relative to τ for the (E, Γ,S)-Gale–Stewart game, and we say that
σB ensures that φ < S assuming φ � τ.

Definition 3.5. Let (E, Γ, I, S ) be a game played on a complete metric space (X, d).
Let Z be defined as in (3.3) and, for each x ∈ X, let

Nx = {ω ∈ ENΓ : x < I(ω)}.

(i) The (E, Γ, I, S )-game is shrinking if, for every ω ∈ E∗
Γ
, both players have

strategies ensuring φ ∈ Z assuming φ � ω.
(ii) The (E, Γ, I, S )-game is nondegenerate if, for every ω ∈ E∗

Γ
and x ∈ X, both

players have strategies ensuring φ ∈ Nx assuming φ � ω.

In other words, the game is shrinking if each player can ensure that the outcome is in
Z, even if for finitely many moves that player does not have free will. Similarly, the
game is nondegenerate if each player can ensure that the outcome is in Nx, under the
same stipulations. More informally, the game is shrinking if each player can force the
diameters to tend to zero, and is nondegenerate if each player can avoid an arbitrary
specified point. (However, see Remark 3.8.)

Theorem 3.6. Let (E,Γ, I,S ) be a shrinking nondegenerate game played on a complete
metric space (X, d). If Alice (respectively, Bob) has a winning strategy for the
(E, Γ, I, S )-game, then S (respectively, X \ S ) contains a closed perfect set. In
particular, if S is a Bernstein set, then the game is undetermined.

Proof. In fact, we will demonstrate the following slightly weaker assertion: if Alice
(respectively, Bob) has a strategy ensuring that φ ∈ Z implies ι(φ) ∈ S (respectively,
that φ ∈ Z implies ι(φ) < S ), then S (respectively, X \ S ) contains a closed perfect set.
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The advantage of proving the weaker assertion is that it is symmetric with respect to
interchanging Alice and Bob, so without loss of generality we suppose that Alice has
a strategy σA which ensures that φ ∈ Z implies ι(φ) ∈ S . Recall that E∗σA

denotes the
set of finite σA-compatible plays (see Definition 2.2).

Lemma 3.7. For every ω ∈ E∗σA
and r > 0, there exist τ1, τ2 � ω in E∗σA

such that
diam(I(τi)) < r and I(τ1) ∩ I(τ2) = ∅.

Proof. Since (E, Γ, I, S ) is shrinking, Bob has a strategy σB ensuring that φ ∈ Z
assuming φ � ω; it follows that the play τ∞1

def
= (ω, σA, σB) is σA-compatible and

satisfies ω � τ∞1 ∈ Z. Since τ∞1 ∈ Z and X is complete, I(τ∞1 ) is a singleton, say
I(τ∞1 ) = {x}. Since (E, Γ, I, S ) is nondegenerate, Bob has a strategy σ̃B ensuring that

φ ∈ Nx assuming φ � ω; it follows that the play τ∞3
def
= (ω, σA, σ̃B) is σA-compatible

and satisfies ω � τ∞3 ∈ Nx. Since x < I(τ∞3 ) =
⋂
τ3�τ

∞
3

I(τ3), there exists a finite play
ω � τ3 � τ

∞
3 satisfying x < I(τ3). Again using the fact that (E, Γ, I, S ) is shrinking,

there is a σA-compatible play τ∞2 ∈ Z satisfying τ3 � τ
∞
2 . Again, I(τ∞2 ) is a singleton,

say I(τ∞2 ) = {y}. We have x , y. Let ρ = min((1/2)d(x, y), r) > 0, and let τ1 � τ
∞
1 and

τ2 � τ
∞
2 satisfy diam(I(τi)) < ρ. Since I(τ∞i ) ⊆ I(τi), this completes the proof. �

Let BN be the set of all infinite binary sequences and B∗ be the set of all finite
binary sequences. We will denote the concatenation operator on B∗ by the symbol ∗.
We inductively define a map g : B∗→ E∗σA

sending the empty string of B∗ to the empty
string of E∗ via the following rule.

If ω = g(θ) for some θ ∈ B∗, choose σA-compatible plays τ1, τ2 � ω
satisfying diam(I(τi)) < 2−|θ| and I(τ1) ∩ I(τ2) = ∅, as guaranteed by
Lemma 3.7. Let g(θ ∗ i) def

= τi for i = 1, 2.

Let g : BN→ ENσA
denote the natural extension of g and observe that g is continuous.

Moreover, g : BN → Z. By Lemma 3.3, ι ◦ g : BN → X is continuous and, by
construction, ι ◦ g is injective and thus ι ◦ g is a homeomorphic embedding. On the
other hand, since σA ensures that φ ∈ Z implies ι(φ) ∈ S , we have ι ◦ g(BN) ⊆ S . Thus,
S contains the closed perfect set ι ◦ g(BN). �

Having completed the proof of Theorem 3.6, we proceed to use it to deduce
Theorem 1.7. This consists of verifying that each of the games in Section 1.1 is
shrinking and nondegenerate under the hypotheses of Theorem 1.7.

Proof of Theorem 1.7 usingTheorem 3.6. (i) Schmidt’s (α,β,S )-game and the (α,β,S )
-strong winning game are both shrinking for every complete metric space (X, d).
Indeed, either player may choose the smallest possible radius on each turn,
guaranteeing that the diameters of the balls tend to zero and thus that φ ∈ Z.

Now suppose that (X, d) is c-uniformly perfect and that α, β < c/(1 + 2c). We
claim that both Schmidt’s (α, β, S )-game and the (α, β, S )-strong winning game are
nondegenerate. Indeed, suppose that one of the players has just made a move B(x, ρ)
and suppose the other player, without loss of generality Alice, wants to avoid the
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point y ∈ X. If y < B(x, αρ), then Alice may choose the ball B(x, αρ) and thus avoid
the point y. So, suppose y ∈ B(x, αρ). Since X is c-uniformly perfect, we have
B(y, (1 − 2α)ρ) \ B(y, c(1 − 2α)ρ) , ∅; fix z ∈ B(y, (1 − 2α)ρ) \ B(y, c(1 − 2α)ρ). Then
B(z, αρ) ⊆ B(x, ρ), since d(z, x) ≤ (1 − α)ρ. So, B(z, αρ) is a legal move for Alice, and
it avoids the point y because d(z, y) ≥ c(1 − 2α)ρ > αρ by the condition on α.

(ii) If (X, d) is a Banach space, then Schmidt’s (α, β, S )-game is nondegenerate as
long as 2 max(α, β) < 1 + αβ; this follows directly from [9, Lemma 7].

(iii) For any 0 < β < c/5, the β-absolute winning game is shrinking on any complete
c-uniformly perfect metric space. Indeed, Bob can force the diameters to go to zero by
always choosing the smallest possible radius for his ball. Next we will describe Alice’s
strategy to force the diameters to go to zero. Suppose Bob has just made his nth move
B(xn, ρn). Alice’s strategy will be to remove the centre {xn} (or a small neighbourhood
thereof). This forces Bob’s (n + 1) ball ωn+1 = (xn+1, ρn+1) ≤s ωn = (xn, ρn) to satisfy
xn < B(xn+1, ρn+1), that is, ρn+1 < d(xn, xn+1). On the other hand, by the definition of
formal inclusion, we have d(xn, xn+1) ≤ ρn − ρn+1. Combining these inequalities gives
ρn+1 < ρn/2, which implies that ρn → 0.

Now suppose that β < (c/5)2. We claim that the (β, S )-absolute winning game
is nondegenerate. Indeed, Alice can avoid a point x ∈ X by simply deleting a
neighbourhood of it. Now suppose that Alice has just deleted the ball B(x′, ρ′),
following Bob’s move B(x, ρ). To see that Bob can avoid the point y, note that by
[1, Lemma 4.3] there is a ball B(z, (c/5)ρ) ⊆ B(x, ρ) \ B(x′, ρ′); applying [1, Lemma
4.3] again gives a ball B(w, (c/5)2ρ) ⊆ B(z, (c/5)ρ) \ {y}. By making this move, Bob
avoids the point y.

(iv) If (X,d) is a Banach space, then, for 0 < β < 1/3, the argument of (iii) shows that
the β-absolute winning game is shrinking. We must show that it is also nondegenerate.
Indeed, Alice can avoid a point by simply deleting a neighbourhood of it. We will
now describe Bob’s strategy to avoid a point x0 ∈ X. The strategy will consist of two
phases. We will describe the second phase first. Fix a unit vector v ∈ X. Suppose that
Bob has just made the move B(xn, ρn) and that Alice has deleted the ball B(x′n, ρ′n) with
ρ′n ≤ βρn. Consider the balls

B(xn + (1 − β)ρnv, βρn) and B(xn − (1 − β)ρnv, βρn). (3.4)

It is readily computed that the distance between these balls is precisely 2(1 − 2β)ρ.
In particular, since β < 1/3, this distance is strictly greater than 2βρ, which is in
turn greater than the diameter of Alice’s ball B(x′n, ρ′n). Thus, Alice’s ball B(x′n, ρ′n)
intersects at most one of the balls (3.4). Bob’s strategy will be to choose whichever
ball Alice’s ball does not intersect, that is, whichever one is legal.

The result of Bob’s strategy will be that the outcome of the game takes the form

xn +

∞∑
m=0

εm(1 − β)βmρnv, (3.5)

where εm = ±1 for all m ∈ N. So, during the first phase of his strategy, Bob’s goal
will be to choose a ball B(xn, ρn) such that x0 cannot be written in the form (3.5) or,
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equivalently, that

xn < S ρn :=
{
x0 +

∞∑
m=0

εm(1 − β)βmρnv : εm ∈ {−1,+1}
}
.

We remark that if dim(X) ≥ 2, this is easy; Bob may simply choose the ball B(xn, ρn)
so that xn does not lie on the line x0 + Rv. This is possible since the set of legal centres
for Bob’s balls always contains a nonempty open set; see below for details.

On the other hand, suppose that dim(X) = 1, that is, X = R. Then, for each ρ > 0,
the set S ρ has Hausdorff dimension logβ(1/2) < 1 (see [3]) and thus Lebesgue measure
zero. Alternatively, we may compute directly that λ(S ρ) = 0:

λ(S ρ) ≤
∑
ε0=±1

· · ·
∑

εM−1=±1

λ
{
x0 +

∞∑
m=0

εm(1 − β)βmρnv : εm ∈ {−1,+1} ∀m ≥ M
}

= 2Mλ
{ ∞∑

m=M

εm(1 − β)βmρnv : εm ∈ {−1,+1} ∀m ≥ M
}

≤ 2M diam
{ ∞∑

m=M

εm(1 − β)βmρnv : εm ∈ {−1,+1} ∀m ≥ M
}

= 2M+1
∞∑

m=M

(1 − β)βmρn = (2β)M2ρn −→
M

0.

In particular, S ρ has empty interior. Now suppose that Bob has just made the move
B(xn−1, ρn−1) (the last move where he ‘does not have free will’) and that Alice has just
deleted the set B(x′n−1, ρ

′
n−1). Then the set of x for which Bob can legally play the ball

B(x, βρn−1) is the set

B(xn−1, (1 − β)ρn−1) \ B(x′n−1, βρn−1 + ρ′n−1). (3.6)

Since β < 1/3 and ρ′n−1 ≤ βρn−1, we have (1 − β)ρn−1 > βρn−1 + ρ′n−1. It follows that
the set (3.6) contains a nonempty open set, so Bob can choose his centre not to lie in
the set S βρn−1 . In this way he avoids the point x0. �

Remark 3.8. It is not true that for a shrinking game, if a player has a strategy ensuring
φ ∈ S, then he or she also has a strategy ensuring φ ∈ S ∩ Z. For example, let X = BN

with the metric
d(θ, ψ) = 4−min{k:θk,ψk}

and consider the set

S = {θ ∈ X : θk = 1 for infinitely many n ∈ N}.

As we have seen above, the (1/2, 1/2, S )-strong winning game is shrinking. However,
Alice has a strategy ensuring φ ∈ ι−1(S ) ∪ (EN

Γ
\ Z), but she does not have a strategy
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ensuring φ ∈ ι−1(S ). Indeed, the only turns on which the choices of players affect the
outcome of the game are those turns n for which

ρn < 4−k ≤ ρn−1 for some k. (3.7)
Either player can ensure that he or she controls all such turns by simply choosing
ρn = ρn−1 unless it is possible to choose ρn satisfying (3.7), in which case he or she
does that instead. This ensures that either the outcome is not in Z or it is precisely
what the player wanted, except for the finitely many values which were determined by
Bob’s initial ball. In particular, Alice has a strategy ensuring that φ ∈ ι−1(S ) ∪ (EN

Γ
\ Z)

and Bob has a strategy ensuring that φ ∈ ι−1(X \ S ) ∪ (EN
Γ
\ Z). The existence of the

latter strategy guarantees that Alice cannot have a strategy ensuring φ ∈ ι−1(S ).
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