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Abstract

In this paper, it is proved that every isometry between the unit spheres of two real Banach spaces preserves
the frames of the unit balls. As a consequence, if X and Y are n-dimensional Banach spaces and T0 is an
isometry from the unit sphere of X onto that of Y then it maps the set of all (n − 1)-extreme points of the
unit ball of X onto that of Y .
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1. Introduction

Throughout this paper, the term ‘Banach space’ always means a real Banach space.
Let X and Y be Banach spaces. Then the classical Mazur–Ulam theorem states that if
T : X→ Y is a surjective isometry then T is affine. In 1972, Mankiewicz [17] extended
this result by showing that if U ⊂ X and V ⊂ Y are open and connected and T0 : U → V
is a surjective isometry then there exists a surjective affine isometry T : X → Y such
that T0 = T |U . From this, in particular, it turns out that every isometry from the unit
ball of X onto that of Y can be extended to an isometric isomorphism between X and Y .
Motivated by this observation, Tingley [22] proposed in 1987 the following problem.
For a normed space X, let S X denote its unit sphere.

Tingley’s problem. Let X and Y be Banach spaces. Suppose that T0 : S X → S Y is a
surjective isometry. Then, does T0 have a linear isometric extension T : X → Y?

As the first result on this topic, it was shown in the same paper that T0(−x) = −T0x
for all x ∈ S X if both X and Y are finite dimensional. This problem is also known as
the isometric extension problem. Many papers, especially in the last decade, have been
devoted to the problem, and it has been solved positively for some classical Banach
spaces; see, for example, [1, 6, 10, 16, 23, 24].

Recently some mathematicians began to attack the problem on more general spaces.
In 2011, Cheng and Dong [3] studied somewhere-flat spaces. One year later, it was
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shown by Kadets and Martı́n [15] that the problem has an affirmative answer for finite-
dimensional polyhedral Banach spaces. Ding and Li [8] studied it using the notion of a
sharp corner point and Tan and Liu [19] introduced the Tingley property and obtained
results on almost-CL-spaces. However, surprisingly, Tingley’s problem remains open
even if X = Y and X is two dimensional. In [20], new methods and some results on
the two-dimensional Tingley problem were given. The survey of Ding [7] is a good
starting point for understanding the history of the problem.

The aim of this paper is to give a further geometric property of spherical isometries
by using the frame of the unit ball of Banach spaces, which can be understood as a
natural generalisation of the set of all the weakest k-extreme points. To do this, a
simple characterisation of the frame of the unit ball is given. We also mention two
problems which arise from our main result.

2. Preliminaries

Let X be a Banach space, and let BX denote the unit ball of X. A subset F of BX is
said to be an exposed face if F = f −1({1}) ∩ BX for some support functional f of BX .
Let ν be the spherical image map from S X into S X∗ , that is, ν(x) = { f ∈ S X∗ : f (x) = 1}.
We remark that f −1({1}) = x + ker f whenever f ∈ ν(x). In what follows, for each
f ∈ ν(x), the exposed face (x + ker f ) ∩ BX is denoted by F( f ) for short. Let E( f ) be
the relative boundary of F( f ) with respect to the affine hyperplane f −1({1}). Then the
frame of BX is defined by frm(BX) =

⋃
{E( f ) : f is a support functional for BX}. This

was first introduced in [18] to construct a new calculation method for the Dunkl–
Williams constant (compare [14]). Its geometric and topological properties were
studied in [21]. Suppose now that dim X ≥ k + 1. Then, an element x ∈ S X is said
to be a k-extreme point of BX if {xi}

k+1
i=1 ⊂ S X and x = (k + 1)−1 ∑k+1

i=1 xi imply the linear
dependence of {xi}

k+1
i=1 . The set of all k-extreme points of BX is denoted by extk(BX).

We remark that 1-extreme points are just extreme points in the usual sense, and that
extk(BX) ⊂ extk+1(BX) for all k ∈ N. This means that the notion of a (k + 1)-extreme
point is weaker than that of a k-extreme point for each positive integer k.

For finite-dimensional spaces, the set frm(BX) has the following characterisation.

Theorem 2.1 [21]. Let X be an n-dimensional Banach space. Then frm(BX) =

extn−1(BX).

This shows that frm(BX) is a natural generalisation of the set of all the weakest
k-extreme points of the unit ball.

We have another characterisation which has no restrictions on the dimension of the
space.

Theorem 2.2 [21]. Let X be a Banach space. Then

frm(BX) =
⋃
{ext(BM) : M is a two-dimensional subspace of X} .
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Some basic properties of frm(BX) are collected in the following theorem. An
element x in a Banach space X is said to be Birkhoff orthogonal to y ∈ X, denoted
by x ⊥B y, if ‖x + ty‖ ≥ ‖x‖ for all t ∈ R; see Birkhoff [2], Day [4, 5] and James
[11–13].

Theorem 2.3 [21]. Let X be a Banach space.

(i) Suppose that x ∈ S X . Then x ∈ frm(BX) if and only if there exists y ∈ X\{0} such
that x ⊥B y and ‖x + ty‖ > 1 for all t > 0.

(ii) The set frm(BX) is symmetric, that is, frm(BX) = −frm(BX).
(iii) Let M be a closed subspace of X. Then frm(BM) ⊂ frm(BX) ∩ M.
(iv) If X is infinite dimensional, then

⋃
k∈N extk(BX) ⊂ frm(BX).

(v) The set frm(BX) is always closed, and is connected if dim X ≥ 3.

3. A further property

We start this section with the following simple characterisation of frm(BX).

Theorem 3.1. Let X be a Banach space, and let x ∈ S X . Then x < frm(BX) if and only
if (x + tBX) ∩ S X is convex for some t > 0.

Proof. Suppose that x < frm(BX). Then x is a smooth point of BX by [21, Lemma 4.1],
and we have x + rBker ν(x) ⊂ F(ν(x)) for some r > 0. Putting t = r/(2 + r), it follows
that (x + tBX) ∩ S X = x + tBker ν(x). Indeed, for each y ∈ x + tBX , one has y = x + tz for
some z ∈ BX , or

(2 + r)y = (2 + r)x + rz
= (2 + r + r〈z, ν(x)〉)x + r(z − 〈z, ν(x)〉x)

= (2 + r + r〈z, ν(x)〉)
(
x +

r
2 + r + r〈z, ν(x)〉

(z − 〈z, ν(x)〉x)
)
.

We now remark that
1

2 + r + r〈z, ν(x)〉
(z − 〈z, ν(x)〉x) ∈ Bker ν(x)

since ‖z − 〈z, ν(x)〉x‖ ≤ 2 and 2 + r + r〈z, ν(x)〉 ≥ 2, which implies that

y ∈
2 + r + r〈z, ν(x)〉

2 + r
(x + rBker ν(x)) ⊂

2 + r + r〈z, ν(x)〉
2 + r

S X .

This shows y ∈ S X if and only if 〈z, ν(x)〉 = 0, and hence we obtain (x + tBX) ∩ S X ⊂

x + tBker ν(x). The other inclusion is obvious.
Conversely, we assume that (x + tBX) ∩ S X is convex for some t > 0. Suppose

that there exists y ∈ S X such that x ⊥B y and ‖x + ry‖ > 1 for all r > 0. Let z(r) =

‖x + ry‖−1(x + ry) for all r ∈ R. Then we have max{‖z(r) − x‖, ‖z(−r) − x‖} ≤ t for some
r > 0, that is, z(r), z(−r) ∈ (x + tBX) ∩ S X . However, putting k = (‖x + ry‖ + ‖x − ry‖)/2
and λ = ‖x + ry‖/(‖x + ry‖ + ‖x − ry‖), one obtains k > 1 and x = k((1 − λ)z(r) +

λz(−r)). This is a contradiction, which, together with Theorem 2.3(i), proves the
theorem. �
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As a consequence, we obtain another formulation of frm(BX).

Corollary 3.2. Let X be a Banach space. Then

frm(BX) = {x ∈ S X : (x + tBX) ∩ S X is not convex for all t > 0} .

For our purpose, we need three lemmas which can be essentially found in Cheng
and Dong [3]; see also Holmes [9, Exercise 2.18] for the first one. The proofs are
given only for the sake of completeness, and based on the original ones except for the
former half of the third one.

For each x ∈ S X , let st(x, S X) = {y ∈ S X : ‖x + y‖ = 2}. Then we remark that
C ⊂ st(x, S X) whenever C is a convex subset of S X and x ∈ C.

Lemma 3.3. Let X be a separable Banach space. Suppose that C is a maximal convex
subset of S X . Then C = st(x, S X) for some x ∈ C.

Proof. Let {xn}
∞
n=1 be a dense subset of C, and let x0 =

∑
n 2−nxn. Then, for each

f ∈ ν(x0), we have f (xn) = 1 for all n ∈ N, which implies that C ⊂ F( f ). This and the
maximality of C together imply that C = F( f ). Now, take an arbitrary y ∈ st(x0, S X).
For an element g of ν(2−1(x0 + y)), one has g(x0) = g(y) = 1, or g ∈ ν(x0) and
y ∈ F(g) = C. This completes the proof. �

For a subset A of a Banach space, let [A] be the closed linear span of A.

Lemma 3.4. Let X and Y be Banach spaces, and let A be a separable subset of X.
Suppose that T0 : S X → S Y is a surjective isometry. Then there exist separable
subspaces X0 ⊂ X and Y0 ⊂ Y such that A ⊂ X0 and T0(S X0 ) = S Y0 .

Proof. Let M1 = [A] and N1 = [T0(S M1 )], respectively. Define the closed subspaces
Mk ⊂ X and Nk ⊂ Y inductively by Mk = [T−1

0 (S Nk−1 )] and Nk = [T0(S Mk )] for all
k ≥ 2. Then one can show that M0 =

⋃
k∈N Mk and N0 =

⋃
k∈N Nk have the desired

properties. �

Lemma 3.5. Let X and Y be Banach spaces. Suppose that T0 : S X → S Y is a surjective
isometry. If C is a maximal convex subset of S X , then T0(C) is a maximal convex subset
of S Y .

Proof. Once it has been proved that the lemma is true for separable Banach spaces,
then one can prove the general case from it. Indeed, applying the preceding lemma
to each finite subset A ⊂ C, we have separable subspaces MA ⊂ X and NA ⊂ Y such
that A ⊂ MA and T0(S MA ) = S NA . Let CA = C ∩ MA, and let KA be a maximal convex
subset of S MA such that CA ⊂ KA. Then the separability of MA ensures that T0(KA)
is a maximal convex subset of S NA , or conv T0(CA) ⊂ S NA , which in turn implies that
conv T0(C) ⊂ S Y . Let K be a maximal convex subset of S Y such that T0(C) ⊂ K. Using
the above argument for T−1

0 and K, we also have C ⊂ T−1
0 (K) ⊂ conv T−1

0 (K) ⊂ S X .
This shows T0(C) = K, as desired.

Now, suppose that both X and Y are separable. Then Lemma 3.3 assures that
C = st(x, S X) for some x ∈ C. Let K be a maximal convex subset of S Y such
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that T0x ∈ K. Then, similarly by Lemma 3.3, there exists y ∈ K such that K = st(y, S Y ).
We observe that x ∈ T−1

0 (K) = st(−T0(−y0), S X) means −T0(−y0) ∈ C. This and the
convexity of C guarantee that C ⊂ T−1

0 (K), or conv T0(C) ⊂ S Y . The proof is completed
by an argument similar to that at the end of the preceding paragraph. �

Remark 3.6. The finite-dimensional case of the preceding lemma is due to Tingley
[22, Lemma 13].

We now present a further geometric property of spherical isometries.

Theorem 3.7. Let X and Y be Banach spaces. Suppose that T0 : S X → S Y is a
surjective isometry. Then T0(frm(BX)) = frm(BY ).

Proof. Let x < frm(BX). Then Theorem 3.1 guarantees that (x + tBX) ∩ S X is convex
for some t > 0. Let C be a maximal convex subset of S X such that (x + tBX) ∩ S X ⊂ C.
From the identity (x + tBX) ∩ S X = ((x + tBX) ∩ S X) ∩C, we obtain

(T0x + tBY ) ∩ S Y = T0((x + tBX) ∩ S X)
= T0(((x + tBX) ∩ S X) ∩C)
= ((T0x + tBY ) ∩ S Y ) ∩ T0(C)
= (T0x + tBY ) ∩ T0(C).

Applying Lemma 3.5, one has that T0(C) is also a maximal convex subset of S Y . Thus
the set (T0x + tBY ) ∩ S Y is convex, which, together with Theorem 3.1, implies that
T0x < frm(BY ).

Finally, since T−1
0 is also a surjective isometry, we have T0(S X\frm(BX)) =

S Y\frm(BY ), and the theorem follows from the bijectivity of T0. �

By Theorems 2.1 and 3.7, we immediately have the following corollary.

Corollary 3.8. Let X and Y be n-dimensional Banach spaces. Suppose that T0 : S X →

S Y is a surjective isometry. Then T0(extn−1(BX)) = extn−1(BY ).

We wonder whether Theorem 3.7 and Corollary 3.8 remain true for the sets of
all stronger k-extreme points. Namely, does every spherical isometry T0 satisfy
T0(extk(BX)) = extk(BY ) for all k ∈ N? As a remark, it is known that ext(BX) , ∅ if
and only if extk(BX) , ∅ for some k ∈ N. A proof of this fact is given here only for the
sake of completeness.

Let X be a Banach space, and let k ∈ N. We first show that x < extk(BX) if
and only if there exists a subspace M such that dim M ≥ k and x + tBM ⊂ S X for
some t > 0. Suppose that x < extk(BX). Then x = (k + 1)−1 ∑k+1

i=1 xi for some linearly
independent subset {xi}

k+1
i=1 of S X . We remark that conv({xi}

k+1
i=1 ) ⊂ F( f ) whenever f ∈

ν(x). Let M = [{−x + xi}
k+1
i=1 ]. It is easy to see that {−x + xi}

k
i=1 is linearly independent,

and so dim M = k. Moreover, it follows from the identity x = (k + 1)−1 ∑k+1
i=1 xi

that k−1(x − x j) = k−1 ∑
i, j(−x + xi) ∈ −x + F( f ) for all 1 ≤ j ≤ k, which, together

with 0 ∈ −x + F( f ), implies that k−1 absconv({−x + xi}
k
i=1) ⊂ −x + F( f ). This shows

tBM ⊂ −x + F( f ) for some t > 0, or x + tBM ⊂ S X . Conversely, assume that there
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exists a subspace M of X such that dim M ≥ k and x + tBM ⊂ S X for some t > 0.
We remark that x < M from the assumption. Let {ei}

k
i=1 be a linearly independent

subset of M, and let ek+1 = −
∑k

i=1 ei. Putting L = t−1 max1≤i≤k+1 ‖ei‖, one can show that
{x + L−1ei}

k+1
i=1 ⊂ S X is also linearly independent and that x = (k + 1)−1 ∑k+1

i=1 (x + L−1ei).
Hence it follows that x < extk(BX). We note that this equivalence easily shows
extk(BX) ⊂ extk+1(BX) for all k ∈ N.

Now, suppose that extk(BX) , ∅ for some k ∈ N. Take an arbitrary x ∈ extk(BX).
We assume that x < ext(BX). Then there exist two distinct elements y, z ∈ S X and
s ∈ (0, 1) such that x = (1 − s)y + sz. Let z(t) = (1 − t)y + tz for all t ∈ R. Since
the function t→ ‖z(t)‖ is convex, it follows that {t ∈ R : z(t) ∈ S X} = [t1, t2] for some
t1 ≤ 0 and 1 ≤ t2. Without loss of generality, we may assume that t1 = 0 and t2 = 1.
It is enough to prove that y ∈ extk−1(BX). To this end, suppose on the contrary that
y < extk−1(BX). As was shown above, there exists a subspace M of X such that
dim M ≥ k − 1 and y + tBM ⊂ S X for some t > 0. Let {ei}

k−1
i=1 be a linearly independent

subset of S M . Then one has x ± (1 − s)tei ∈ F( f ) for all 1 ≤ i ≤ k − 1 whenever
f ∈ ν(x). Putting r = min{1 − s, s, (1 − s)t} and ek = z − y, it follows that r > 0 and
absconv({rei}

k
i=1) ⊂ −x + F( f ). This guarantees that there exists r0 > 0 such that

x + r0BN ⊂ S X , where N = [{ei}
k
i=1]. Since it can be shown that dim N = k, we have

x < extk(BX) by the argument in the preceding paragraph, which is a contradiction that
proves y ∈ extk−1(BX). Thus ext(BX) , ∅ follows by an induction, and so we should
assume that ext(BX) , ∅ when considering the above problem.

We finally mention two problems which naturally arise from Theorem 3.7. The first
one is a Mazur–Ulam type problem.

Problem 3.9. Let X and Y be Banach spaces. Suppose that T0 : frm(BX)→ frm(BY ) is
a surjective isometry. Then, does T0 have a linear isometric extension T : X → Y?

Of course this is more difficult than Tingley’s problem unless the following one is
solved positively.

Problem 3.10. Let X and Y be Banach spaces. Suppose that T0 : frm(BX)→ frm(BY )
is a surjective isometry. Then, does T0 have an isometric extension T̃0 : S X → S Y?

Remark 3.11. If no assumptions are added, both Problems 3.9 and 3.10 have negative
answers in the case dim X = dim Y = 2. Indeed, let X = Y = `2

∞. Then frm(BX) =

ext(BX) = {(1, 1), (1, −1), (−1, 1), (−1, −1)}. Define an operator T0 on frm(BX) by
T0(1, 1) = (1, 1), T0(1,−1) = (1,−1), T0(−1, 1) = (−1,−1) and T0(−1,−1) = (−1, 1).
This is a counterexample of the problems since T0 does not map antipodal pairs of
points to such pairs. Hence, in the case dim X = dim Y = 2, we at least need an
assumption which implies T0(−x) = −T0x for all x ∈ frm(BX).
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