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Abstract

We determine a bound for the valency in a family of dihedrants of twice odd prime orders which
guarantees that the Cayley graphs are Ramanujan graphs. We take two families of Cayley graphs with the
underlying dihedral group of order 2p: one is the family of all Cayley graphs and the other is the family
of normal ones. In the normal case, which is easier, we discuss the problem for a wider class of groups,
the Frobenius groups. The result for the family of all Cayley graphs is similar to that for circulants: the
prime p is ‘exceptional’ if and only if it is represented by one of six specific quadratic polynomials.
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1. Introduction

A k-regular graph X with standard assumptions is called Ramanujan if its largest
nontrivial eigenvalue (in the sense of absolute value) is not greater than the Ramanujan
bound 2

√
k − 1. The Ramanujan property of a graph means that the associated Ihara

zeta function (formulated in [7], [8]) satisfies the ‘Riemann hypothesis’, which enables
us to have a good estimate for the number of prime cycles in the graph (see, for
example, [9]). See also [6] for further relations between this property and various
mathematical objects.

We considered the following problem in our previous paper [5]. Let G be a finite
group and S a set of Cayley subsets of G, and put

X = XG,S = {X(S ) | S ∈ S},

where X(S ) is the Cayley graph of G with respect to the Cayley subset S ∈ S.
Letting L = {|G| − |S | | S ∈ S} be the set of ‘covalencies’ of graphs in X, we write
X =

⊔
l∈L Xl, where Xl = {X(S ) ∈ X | |G| − |S | = l}. Notice that X1 = {K|G|} if 1 ∈ L,

where K|G| = X(G \ {1}) is the complete graph with |G|-vertices. According to [1],
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some neighbours of K|G| are expected to be Ramanujan. We want to estimate them
precisely, that is, to determine the bound

l̂G,S = max{l ∈ L | X ∈ Xk is Ramanujan for 1 ≤ k ≤ l}

of edge-removal in S which preserves the Ramanujan property from the complete
graph K|G|.

Previously, we have discussed this problem when X is the family consisting of all
circulants of odd prime orders. In this paper, we treat the cases when X is a family of
dihedrants of twice odd prime orders. Specifically, we consider two families of Cayley
graphs with the underlying group D2p: the dihedral group of order 2p, whose Cayley
subsets S are the set SA of all Cayley subsets and the set SN of all normal ones. Here,
we call a Cayley subset normal if it is a union of conjugacy classes of G. The normal
case is the easier to discuss, since the spectra of the normal Cayley graphs are given
by an explicit formula (see Lemma 2.1). We discuss the problem, in this case, for a
wider class of groups, the Frobenius groups. On the other hand, it is hard to handle
the family for all Cayley subsets in general. However, we can study the family of all
dihedrants in detail, since their eigenvalues can be explicitly written down. We prove
the following result which is similar to the one for circulants obtained in [5].

Theorem 1.1 (Theorem 4.5). In the family consisting of all dihedrants of twice odd
prime orders 2p, the prime p is ‘exceptional’ if and only if it is of the form of one of
six specific quadratic polynomials.

The classical Hardy–Littlewood conjecture asserts that every quadratic polynomial
represents an infinite number of primes under some standard conditions. So our result
implies that there are an infinite number of exceptional primes if and only if the Hardy–
Littlewood conjecture is true for at least one of these six quadratic polynomials.

Throughout the paper, we denote the set of all odd primes by P and the cyclic group
of order m by Zm = Z/mZ for m ∈ Z≥1.

2. Preliminaries

2.1. Cayley graphs and their spectra. Let X be a k-regular finite graph with m
vertices which is undirected, connected and simple. The adjacency matrix AX of X
is the symmetric matrix of size m whose entry is one if the corresponding pair of
vertices are connected by an edge and zero otherwise. We call the eigenvalues of AX

the eigenvalues (or the spectra) of X. The set Λ(X) of all eigenvalues of X is given by

Λ(X) = {λi | k = λ0 > λ1 ≥ · · · ≥ λm−1 ≥ −k}.

Let µ(X) be the largest nontrivial eigenvalue of X in the sense of absolute value

µ(X) = max{|λ| | λ ∈ Λ(X), |λ| , k}.

The graph X is called a Ramanujan graph if µ(X) ≤ 2
√

k − 1. Here the constant
2
√

k − 1 is often called the Ramanujan bound for X and is denoted by RB(X).
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Let G be a finite group with the identity element 1 and S be a Cayley subset of G,
that is, a symmetric generating subset of G without 1. We denote by X(S ) the Cayley
graph of G with respect to the Cayley subset S . This is the undirected, connected and
simple |S |-regular graph with the vertex set G and the edge set {(x, y) ∈ G2 | x−1y ∈ S }.
In what follows, for a Cayley subset S , we write Λ(S ) = Λ(X(S )), µ(S ) = µ(X(S )),
RB(S ) = RB(X(S )) and so on. It is well known that the spectra of Cayley graphs are
described by the irreducible characters of the underlying group, as follows.

Lemma 2.1 [2]. Let X = X(S ) be a Cayley graph of a finite group G with respect to a
Cayley subset S and let AX be its adjacency matrix.

(1) AX =
∑

s∈S Rs, where Rs is the matrix of the right multiplication by s ∈ G in the
group algebra CG.

(2) Let χ1, . . . , χh be all of the irreducible characters of G with deg χi = ni. Then
Λ(S ) = {λi, j | 1 ≤ i ≤ h, 1 ≤ j ≤ ni}, where the multiplicity of λi, j is ni and
{λi, j}1≤ j≤ni is determined by the ni equations

λt
i,1 + · · · + λt

i,ni
=

∑
s1,...,st∈S

χi

( t∏
l=1

sl

)
, 1 ≤ t ≤ ni.

In particular, if S is normal, that is, a union of conjugacy classes of G, then
λi,1 = · · · = λi,ni . Therefore Λ(S ) = {λi | 1 ≤ i ≤ h}, where the multiplicity of λi is
n2

i and

λi =
1
ni

∑
s∈S

χi(s).

2.2. Two formulations for a Ramanujan boundary problem. Let G be a finite
group and let S be a set consisting of Cayley subsets of G. For S ∈ S, we define
l(S ) = |G| − |S | = |G \ S | and call it a covalency of X(S ). Letting L = {l(S ) | S ∈ S},
we write S =

⊔
l∈L Sl, where Sl = {S ∈ S | l(S ) = l}. We consider the following bound

for the covalency which guarantees the Ramanujan property:

l̂ = l̂(G) = max{l ∈ L | X(S ) is Ramanujan for all S ∈ Sk (1 ≤ k ≤ l)}.

In view of Lemma 2.1, we will take the following two subsets as S: the set SN of all
normal Cayley subsets of G and the set SA of all Cayley subsets of G. These two sets
are the same if G is abelian. We write l̂N and l̂A for the bounds corresponding to these
two cases. In general, l̂N is easier to evaluate than l̂A, because the spectra for X(S )
with S ∈ SN have a closed formula, as in Lemma 2.1, and we can find the trivial lower
bound l0 for l̂N based on the following lemma.

Lemma 2.2. For S = SN , put l0 = max{l ∈ L | l ≤ 2(
√
|G| − 1)}. Then l0 ≤ l̂N .

Proof. Take S ∈ SN with l(S ) ≤ 1
2 |G|. It is enough to see that X(S ) is Ramanujan if

l(S ) ≤ 2(
√
|G| − 1). For any nontrivial irreducible character χi of G,

λi =
1
ni

∑
s∈S

χi(s) = −
1
ni

∑
s∈G\S

χi(s)
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Table 1. The character table of the Frobenius group G = N o H.

1 xi (1 ≤ i ≤ k) y j (1 ≤ j ≤ h)
1 1 1 1

χα (1 ≤ α ≤ h) χα(1) χα(1) χα(y j)
φβ (1 ≤ β ≤ k) |H|ψβ(1)

∑
z∈H ψβ(xz) 0

from the orthogonality. Since |χi(s)| ≤ ni, this shows that |λi| ≤ min{|S |, l(S )} = l(S ).
Hence, if l(S ) ≤ RB(S ) = 2

√
|G| − l(S ) − 1, or, equivalently, l(S ) ≤ 2(

√
|G| − 1), then

X(S ) is Ramanujan. Note that 2(
√
|G| − 1) ≤ 1

2 |G| for any G. �

3. The normal cases

In this section, we discuss the determination of l̂N for the normal dihedrants of order
2p with p ∈ P, that is, the normal Cayley graphs of the dihedral groups D2p. To do this,
we study a wider class of graphs, the Cayley graphs of the Frobenius groups. We refer
to [3] for the Frobenius groups. For a group G and x, y ∈ G, we write xy = y−1xy
and ConjG(x) for the conjugacy class of x ∈ G in G. Let c(G) denote the number of
conjugacy classes in G. Throughout this section, we drop the subscript N on SN for
brevity.

3.1. Spectra of normal Frobenius graphs. We recall the character table of the
Frobenius group G = N o H, where N and H are subgroups of G called the Frobenius
kernel and complement, respectively. Notice that r = (|N| − 1)/|H| is a positive
integer. It is known that a set of representatives of the conjugacy classes of G can
be taken as {1} t {xi}

k
i=1 t {y j}

h
j=1, where xi ∈ N (1 ≤ i ≤ k) and y j ∈ H (1 ≤ j ≤ h) with

k = (c(N) − 1)/|H| and h = c(H) − 1. Notice that ConjG(xi) ⊂ N and ConjG(y j) ⊂G \ N
and that

|ConjG(xi)| = |ConjN(xi)| |H|, |ConjG(y j)| = |ConjH(yi)| |N|.

The irreducible characters of G are given as follows. Since H ' G/N, a nontrivial
irreducible character of H corresponds to a character of G whose kernel contains N.
We write these as χα (1 ≤ α ≤ h). Moreover, for a nontrivial irreducible character ψβ
of N, its induced character is again an irreducible character of G. We write these as
φβ = Ind(ψβ) (1 ≤ β ≤ k). Notice that

φβ(x) =
1
|N|

∑
y∈G
xy∈N

ψβ(xy) =
∑
z∈H

ψβ(xz).

It is known that these, together with the trivial character 1, exhaust all irreducible
characters of G. The character table of G is as shown in Table 1.

Let us calculate the eigenvalues of normal Cayley graphs of Frobenius groups. For
subsets X ⊂ {xi}

k
i=1 and Y ⊂ {y j}

h
j=1, we put SX,Y = SX t SY , where

SX =
⊔
x∈X

ConjG(x), SY =
⊔
y∈Y

ConjG(y).
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We say that X ⊂ {xi}
k
i=1 (respectively, Y ⊂ {y j}

h
j=1) is symmetric if SX (respectively,

SY ) is symmetric. It is clear that SX,Y is symmetric if and only if both X and Y are
symmetric. Further,

S ⊂ {SX,Y | both X ⊂ {xi}
k
i=1 and Y ⊂ {y j}

h
j=1 are symmetric}.

Notice that, if SX,Y on the right-hand side satisfies |SX,Y | >
1
2 |G|, then it generates G

and hence is in S and, moreover, Y , ∅ because, otherwise, |SX,Y | = |SX,∅| < |N| − 1,
which contradicts 1

2 |G| ≥ |N|. This means that, in the determination of l0 and l̂N , we
may assume that S ∈ S is always of the form of S = SX,Y for some symmetric subsets
X ⊂ {xi}

k
i=1 and ∅ , Y ⊂ {y j}

h
j=1.

The following lemma is a consequence of Lemma 2.1 and the character table of G.

Lemma 3.1. For X ⊂ {xi}
k
i=1 and ∅ , Y ⊂ {y j}

h
j=1,

Λ(SX,Y ) = {λ1} ∪ {λχα}
h
α=1 ∪ {λφβ}

k
β=1,

where

λ1 = |SX,Y | = |H|
∑
x∈X

|ConjN(x)| + |N|
∑
y∈Y

|ConjH(y)|, (3.1)

λχα = |H|
∑
x∈X

|ConjN(x)| +
|N|
χα(1)

∑
y∈Y

χα(y)|ConjH(y)|,

λφβ =
1

ψβ(1)

∑
x∈X

∑
z∈H

ψβ(xz)|ConjN(x)|

have the multiplicities 1, χα(1)2 and |H|2ψβ(1)2, respectively.

3.2. The boundary in the normal cases. To determine l0 and l̂N , we first describe
the set L = {l(S ) | S ∈ S}. For symmetric subsets X ⊂ {xi}

k
i=1 and ∅ , Y ⊂ {y j}

h
j=1, set

aX = r −
∑
x∈X

|ConjN(x)|, bY = |H| − 1 −
∑
y∈Y

|ConjH(y)|.

Then 0 ≤ aX ≤ r, 0 ≤ bY < |H| − 1 and, from (3.1),

l(SX,Y ) = |G| − |SX,Y | = 1 + aX |H| + bY |N|. (3.2)

Lemma 3.2. Let X, X′ ⊂ {xi}
k
i=1 and ∅ , Y, Y ′ ⊂ {y j}

h
j=1 be symmetric subsets. Then

l(SX,Y ) = l(SX′,Y ′) if and only if (aX , bY ) = (aX′ , bY ′).

Proof. From (3.2), l(SX,Y ) = l(SX′,Y ′) is equivalent to (aX − aX′)|H| + (bY − bY ′)|N| = 0.
Since (aX − aX′)|H| < |N|, it follows that aX = aX′ and hence bY = bY ′ . �

Put l(a, b) = 1 + a|H| + b|N|. From Lemma 3.2, we write S =
⊔

a∈A,b∈BSl(a,b), where

A = {aX | X ⊂ {xi}
k
i=1 is symmetric}, B = {bY | ∅ , Y ⊂ {y j}

h
j=1 is symmetric}.

We arrange the elements of A and B in ascending order, respectively: that is,

A = {ai | a1 < a2 < · · · < am}, B = {bi | b1 < b2 < · · · < bn},
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with m = |A| and n = |B|. Here we observe that a1 = 0 and am = r, which, respectively,
correspond to the cases X = {xi}

k
i=1 and X = ∅. Similarly, b1 = 0, which corresponds

to the case Y = {y j}
h
j=1, and bn < |H| − 1 because Y , ∅. Moreover, when h ≥ 2, since

the centre of H is nontrivial, there exists y′ ∈ {y j}
h
j=1 such that ConjH(y′) = {y′}. This

implies that b2 = 1 if {y′} is not symmetric (that is, y′2 , 1) and b2 = 2 otherwise. The
relations among l(a, b) for a ∈ A and b ∈ B are

1 = l(a1, b1) < l(a2, b1) < · · · < l(am, b1) = (b1 + 1)|N| = |N|
< b2|N| + 1 = l(a1, b2) < l(a2, b2) < · · · < l(am, b2) = (b2 + 1)|N|
< b3|N| + 1 = l(a1, b3) < l(a2, b3) < · · · < l(am, b3) = (b3 + 1)|N|

...

< bn|N| + 1 = l(a1, bn) < l(a2, bn) < · · · < l(am, bn) = (bn + 1)|N|.

The following is the main result in this section.

Theorem 3.3. Assume that r = (|N| − 1)/|H| ≥ 4.

(1) There exists 1 ≤ i0 < m such that l0 = l(ai0 , b1) < |N|.
(2) l̂N = l0.

Proof. Under the condition r ≥ 4, we have |H| ≤ 1
4 (|N| − 1) < 1

4 |N| and hence

2(
√
|G| − 1) < 2

√
|N||H| < 2

√
|N| · 1

4 |N| = |N|. Therefore, the first assertion follows
from the definition of l0.

To prove the second assertion, it is enough to show that there exists S ∈ Sl(ai0+1,b1)
such that X(S ) is not Ramanujan. Actually, take any S = SX,Y ∈ Sl(ai0+1,b1). Then, since
Y = {y j}

h
j=1, Lemma 3.1 gives

λχα(SX,Y ) = |H|
∑
x∈X

|ConjN(x)| +
|N|
χα(1)

h∑
i=1

χα(y j)|ConjH(y j)|

= |H|
(
|N| − 1
|H|

− ai0+1

)
+
|N|
χα(1)

(−χα(1))

= −(1 + ai0+1|H|) = −l(ai0+1, b1) = −l(SX,Y ).

Here, the second equality follows from the orthogonality of characters together with
the fact that χα is regarded as a nontrivial irreducible character of H. This implies that
|λχα(SX,Y )| = l(SX,Y ) > l0 and hence |λχα(SX,Y )| > RB(S ), by the definition of l0. This
completes the proof. �

We remark that, since l(ai0 , b1) ≤ 2(
√
|G| − 1) < l(ai0+1, b1) with l(ai, b1) = 1 + ai|H|,

ai0 can be expressed as

ai0 = max
{
a ∈ A

∣∣∣∣∣ a ≤ 2
√
|N| |H| − 3
|H|

}
. (3.3)
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We apply the above theorem to dihedrants for

D2p = Zp o Z2 = 〈x, y | xp = y2 = 1, y−1xy = x−1〉,

with p ∈ P. This is a Frobenius group with r = (p − 1)/2. We can take representatives
of the conjugacy classes of D2p as {1} t {xv}

(p−1)/2
v=1 t {y}. Since all the conjugacy

classes ConjD2p
(xv) = {xv, x−v} for 1 ≤ v ≤ 1

2 (p − 1) and ConjD2p
(y) = {xay | 0 ≤ a ≤

p − 1} are symmetric, A = {i | 0 ≤ i ≤ 1
2 (p − 1)} and B = {0}. Now, from Theorem 3.3

together with (3.3), we obtain the following result (noticing that r ≥ 4 if p ≥ 11).

Corollary 3.4. Let G = D2p, where p ∈ P. If p ≥ 11, then

l̂N = l0 = 2
⌊√

2p − 1
2
⌋
− 1,

where bxc is the largest integer not exceeding x.

Remark 3.5. There are several examples of Frobenius groups with r = (|N| − 1)/|H|
≤ 3 for which the claims in Theorem 3.3 do not hold. For example, consider
the dihedral groups D2p for p = 3, 5, 7, which correspond to the cases r = 1, 2, 3,
respectively. In these cases, (m, n) = ( 1

2 (p + 1), 1) and we can check that l0 =

l(a(p−1)/2, b1) = p − 2. Moreover, l̂N = l(a(p+1)/2, b1) = p because the corresponding
Cayley graph is X(S∅,{y}), which is Ramanujan because Λ(S∅,{y}) = {±p, 0}.

4. The cases with all Cayley subsets

The determination of l̂A is much more difficult than that of l̂N because of Lemma 2.1.
In this section, we study this problem for the case of dihedrants. Throughout this
section, we drop the subscript A on SA, the set of all Cayley subsets of D2p.

4.1. Initial results. Let us consider the dihedrant X(S ) of D2p with respect to S ∈ S.
Divide D2p into two parts as D2p = D1 t D2, where D1 = {1, x, x2, . . . , xp−1} and
D2 = {y, xy, x2y, . . . , xp−1y}. According to this decomposition, we write S = S1 t S2
and l(S ) = l1(S ) + l2(S ), where Si = S ∩ Di and li(S ) = |Di \ Si| = p − |Si| for i = 1, 2.
Since any subset of D2 is symmetric because the order of any element in D2 is two,
S is symmetric if and only if S1 is. This implies that |S1| is always even and hence
l1(S ) is odd. Define z j = z j(S ),w j = w j(S ) ∈ C (0 ≤ j ≤ p − 1) by z0 = |S1| + |S2|,
w0 = |S1| − |S2| and

z j =
∑
xa∈S1

ω ja = −
∑

xa∈D1\S1

ω ja, w j =
∑

xay∈S2

ω ja = −
∑

xay∈D2\S2

ω ja (4.1)

for 1 ≤ j ≤ p − 1. Here, ω = e2πi/p. Note that z j ∈ R because S1 is symmetric. Then
the eigenvalues of X(S ) are described by using z j and w j from Lemma 2.1.

Lemma 4.1.

(1) Λ(S ) = {µ(+)
j , µ(−)

j | 0 ≤ j ≤ p − 1}, where µ(±)
j = z j ± |w j|.

(2) Let |µ j| = max{|µ(+)
j |, |µ

(−)
j |}. Then |µ j| = |z j| + |w j|.

Now a lower bound of l̂A follows from the trivial estimate for the eigenvalues.
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Lemma 4.2. For p ≥ 29, we have l̂A ≥ b2
√

2pc − 2.

Proof. We first remark that µ(+)
0 = |S1| + |S2| = |S | is the largest eigenvalue of X(S ) and

hence µ(S ) = max{|µ| | µ ∈ Λ(S ), |µ| , µ(+)
0 } = max{|µ(−)

0 |, |µ1|, . . . , |µp−1|}.
Assume that l(S ) ≤ 1

2 p, which implies that li(S ) ≤ 1
2 p for i = 1, 2. Then, from (4.1),

for 1 ≤ j ≤ p − 1, we see that |µ j| = |z j| + |w j| ≤ min{|S1|, l1(S )} + min{|S2|, l2(S )} ≤
l1(S ) + l2(S ) = l(S ). Moreover, µ(−)

0 = 2|S1| − 2p + l(S ) ≤ l(S ). Thus µ(S ) ≤ l(S ).
Therefore, if l(S ) ≤ RB(S ) = 2

√
2p − l(S ) − 1 or, equivalently, l(S ) ≤ b2

√
2pc − 2,

then X(S ) is Ramanujan. Notice that 2
√

2p − 2 ≤ 1
2 p when p ≥ 29. �

From this lemma, together with the result in the previous section, we can narrow
the candidates for l̂A down to at most two.

Theorem 4.3. Assume that p ≥ 29 and put l̂N = 2
⌊√

2p − 1
2
⌋
− 1, as in Corollary 3.4.

(1) If b2
√

2pc is even, then l̂A = l̂N + 1.
(2) If b2

√
2pc is odd, then l̂A = l̂N or l̂A = l̂N + 1.

Proof. We first remark that, for α ∈ R,

2
⌊
α − 1

2
⌋
− 1 =

b2αc − 2 − 1 if 0 ≤ α − bαc < 1
2 or, equivalently, b2αc is even,

b2αc − 2 if 1
2 ≤ α − bαc < 1 or, equivalently, b2αc is odd.

Using this formula with α =
√

2p, we see that b2
√

2pc − 2 coincides with l̂N + 1
(respectively, l̂N) if b2

√
2pc is even (respectively, odd) and hence, from Lemma 4.2,

l̂A ≥ l̂N + 1 (respectively, l̂A ≥ l̂N). The results follow because l̂A < l1 = l̂N + 2, where
l1 = min{l ∈ LN | l > l0} with LN = {l(S ) | S ∈ SN}. �

From this theorem, l̂A = l̂N + ε with ε = εp ∈ {0, 1}. Similarly to the case of
circulants [5], we call p exceptional if b2

√
2pc is odd and ε = 1 and ordinary

otherwise.

4.2. A characterisation of exceptional primes. Assume that b2
√

2pc is odd. For
l ∈ L, let µ(l) = max{µ(S ) | S ∈ Sl} and RB(l) = RB(S ) = 2

√
2p − l − 1 for S ∈ Sl.

From the definition, p is exceptional if and only if µ(l̂N + 1) ≤ RB(l̂N + 1). To study
this inequality, we first construct S ∈ Sl̂N+1 such that µ(l̂N + 1) = µ(S ).

For l ∈ L, let L(l) = {(l1, l2) ∈ Z2
≥0 | l1 + l2 = l, l1 odd}. Further, for (l1, l2) ∈ L(l),

define S (l1,l2) = S (l1)
1 t S (l2)

2 ∈ Sl by S (l1)
1 = D1 \ {1, x±1, x±2, . . . , x±(l1−1)/2} and

S (l2)
2 = D2 \ {y, xy, x2y, . . . , xl2−1y}. One sees that li(S (l1,l2)) = li for i = 1, 2 and

z j =

(l1−1)/2∑
h=−(l1−1)/2

ωh j =
sin π jl1/p
sin π j/p

, w j =

l2−1∑
h=0

ωh j = ω j(l2−1)/2 sin π jl2/p
sin π j/p

,

and hence |µ j| = |µ j(l1, l2)| can be written as

|µ j| = |z j| + |w j| =
sin π jl1/p
sin π j/p

+
sin π jl2/p
sin π j/p

= 2
sin π jl/2p
sin π j/p

cos
π j|l1 − l2|

2p
.

Now let us write l̂N = b2
√

2pc − 2 as l̂N = 4k + r for some k ≥ 0 and r ∈ {1, 3}.
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Lemma 4.4. Let (ľ1, ľ2) =
( 1

2 (l̂N + 1), 1
2 (l̂N + 1)

)
if r = 1 and

( 1
2 (l̂N + 3), 1

2 (l̂N − 1)
)

otherwise. Then,
µ(l̂N + 1) = µ(S (ľ1,ľ2)) = |µ1(ľ1, ľ2)|.

Proof. Consider when |l1 − l2| takes its minimum under the condition that l1 + l2 =

l̂N + 1 and l1 is odd. Note that, since p is prime, |µ1(ľ1, ľ2)| is the maximum among
|µ j(ľ1, ľ2)| for 1 ≤ j ≤ p − 1. �

When l̂N = 4k + r, we see that p ∈ Ir,k ∩ P, where

Ir,k =
{
t ∈ R | b2

√
2tc − 2 = 4k + r

}
=

[
2k2 + (r + 2)k + 1

8 (r + 2)2, 2k2 + (r + 3)k + 1
8 (r + 3)2).

This means that p can be expressed as p = fr,cr (k) for some integers k ≥ 3 and cr ∈ Z
with −k + 2 ≤ c1 ≤ 1, if r = 1, and −k + 4 ≤ c3 ≤ 4, otherwise. Here,

fr,cr (t) = 2t2 + (r + 3)t + cr.

Let Ir =
⊔

k≥3 Ir,k ∩ P and Cr = {r − 4, r − 2, r}. Moreover, for cr ∈ Cr, define an integer
kr,cr ≥ 3 by (k1,−3, k1,−1, k1,1) = (5, 3, 3) and (k3,−1, k3,1, k3,3) = (7, 3, 3). We now obtain
the following theorem, which gives a characterisation for exceptional primes.

Theorem 4.5. A prime p ∈ Ir with p ≥ 29 is exceptional if and only if it is of the form
of p = fr,cr (k) for some cr ∈ Cr and k ≥ kr,cr .

Proof. To clarify when the inequality µ(l̂N + 1) = |µ1(ľ1, ľ2)| ≤ RB(l̂N + 1) holds, we
introduce an interpolation function dr(t) of the difference between |µ1(ľ1, ľ2)| and
RB(l̂N + 1) on Ir,k. Set

dr(t) = 2
sin π(4k + r + 1)/2t

sin π/t
cos

π(r − 1)
2t

− 2
√

2t − 4k − r − 2.

One can see that dr(t) is monotonically decreasing on Ir,k for sufficiently large k.
Moreover, at t = p = fr,cr (k) ∈ Ir,k ∩ P,

dr(p) =
3(r + 3)2 − 24cr − 16π2

24
k−1 + O(k−2)

as k→∞ because

|µ1(ľ1, ľ2)| = 2
sin π(4k + r + 1)/(2(2k2 + (r + 3)k + cr))

sin π/(2k2 + (r + 3)k + cr)
cos

π(r − 2)
2(2k2 + (r + 3)k + cr)

= 4k + r + 1 −
2π2

3
1
k

+ O(k−2),

RB(l̂N + 1) = 2
√

2(2k2 + (r + 3)k + cr) − 4k − r − 2

= 4k + r + 1 −
(r + 3)2 − 8cr

8
1
k

+ O(k−2).
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This shows dr(p) < 0 for sufficiently large k if and only if 3(r + 3)2 − 24cr − 16π2 < 0,
that is, if cr ∈ Cr (note that cr should be odd because p is). In fact, for each r ∈ {1, 3}
and cr ∈ Cr, we can check that the inequality dr(p) < 0 with p = fr,cr (k) holds if and
only if k ≥ kr,cr . �

For r ∈ {1, 3} and cr ∈ Cr, let Jr,cr = { fr,cr (k) ∈ Ir | k ≥ kr,cr }, that is, let Jr,cr be the
set of exceptional primes p of the form p = fr,cr (k). The classical Hardy–Littlewood
conjecture [4] asserts that if a quadratic polynomial f (t) = at2 + bt + c with a, b, c ∈ Z
satisfies the conditions that a > 0, (a, b, c) = 1, a + b and c are not both even and
D = b2 − 4ac is not a square, then there are an infinite number of primes represented
by f (t) and, moreover, that π( f ; x) = #{k ≤ x | f (k) ∈ P} has the asymptotic behaviour

π( f ; x) ∼
C( f )

2
x

log x
, C( f ) = 2

∏
p≥3

(
1 −

(D
p
)

p − 1

)
, (4.2)

as x→ ∞. Here, C( f ) is called the Hardy–Littlewood constant and (D/p) is the
Legendre symbol. From Theorem 4.5, the existence of an infinite number of
exceptional primes is related to this conjecture.

Corollary 4.6. There are an infinite number of exceptional primes if the Hardy–
Littlewood conjecture is true for at least one of fr,cr (t) with r ∈ {1, 3} and cr ∈ Cr.

Remark 4.7. From (4.2), we can expect that π( fr,cr ; x) ∼ 1
2C( fr,cr )x/ log x, where

C( fr,cr )
2

=
∏
p≥3

(
1 −

( c′r
p
)

p − 1

)
=




0.671043 . . . , r = 1, c1 = −3,
1.03566 . . . , r = 1, c1 = −1,
1.84998 . . . , r = 1, c1 = 1,
1.14801 . . . , r = 3, c3 = −1,
0.757353 . . . , r = 3, c3 = 1,
1.38332 . . . , r = 3, c3 = 3,

with c′1 = 4 − 2c1 and c′3 = 9 − 2c3.

Remark 4.8. The existence of an infinite number of ordinary primes can be verified as
follows. Let J =

⊔
r∈{1,3}

⊔
cr∈Cr

Jr,cr . For a positive integer a, let

Jr,cr (a) = {n ∈ Z≥0 | 0 ≤ n ≤ a − 1 and n ≡ fr,cr (k) (mod a) for some 0 ≤ k ≤ a − 1}

and J(a) =
⋃

r∈{1,3}
⋃

cr∈Cr
Jr,cr (a). If we can find b ∈ {0,1,2, . . . ,a − 1} \ J(a) satisfying

(a, b) = 1, then {at + b | t ∈ Z} ∩ J = ∅ and, from the Dirichlet theorem for primes in
arithmetic progressions, there are an infinite number of primes in {at + b | t ∈ Z}. These
are ordinary primes, by Theorem 4.5. To achieve this purpose, one may take, for
example, (a, b) = (29, 4), (35, 8) or (40, 33).
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