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Abstract

A special atom (respectively, supernilpotent atom) is a minimal element of the lattice S of all special
radicals (respectively, a minimal element of the lattice K of all supernilpotent radicals). A semiprime ring
R is called prime essential if every nonzero prime ideal of R has a nonzero intersection with each nonzero
two-sided ideal of R. We construct a prime essential ring R such that the smallest supernilpotent radical
containing R is not a supernilpotent atom but where the smallest special radical containing R is a special
atom. This answers a question put by Puczylowski and Roszkowska.
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1. Introduction

In this paper, all rings are associative and all classes of rings are closed under
isomorphisms and contain the one-element ring zero. The fundamental definitions and
properties of radicals can be found in [1, 12]. A class µ of rings is called hereditary
if µ is closed under ideals. If µ is a hereditary class of rings, then U(µ) denotes the
upper radical determined by µ, that is, the class of all rings which have no nonzero
homomorphic images in µ. As usual, for a radical ρ, the ρ radical of a ring R is
denoted by ρ(R) and the class of all ρ-semisimple rings is denoted by S(ρ). The class
of all prime rings is denoted by π and β = U(π) denotes the prime radical. For a
radical ρ, let π(ρ) = S(ρ) ∩ π. The notation I C R means that I is a two-sided ideal of
a ring R. An ideal I of a ring R is called a prime (respectively, semiprime) ideal of
R if R/I ∈ π (respectively, R/I ∈ S(β)). A ring R is called simple if, for every I C R,
either I = 0 or I = R. An ideal I of a ring R is called essential in R if I ∩ J , 0 for any
nonzero two-sided ideal J of R. A ring R is called an essential extension of a ring I
if I is an essential ideal of R. A class µ of rings is called essentially closed if µ = µk,
where µk = {R : R is an essential extension of some I ∈ µ}. A hereditary and essentially
closed class of prime rings is called a special class and the upper radical determined

c© 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 $16.00

214

https://doi.org/10.1017/S000497271600085X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271600085X


[2] A prime essential ring that generates a special atom 215

by a special class is called a special radical. A hereditary radical containing the prime
radical β is called a supernilpotent radical.

It is well known [1, 15] that the families of special and supernilpotent radicals form
complete lattices. We denote these lattices by S and K, respectively. The smallest
special (respectively, the smallest supernilpotent) radical containing a ring A will be
denoted by l̂A (respectively, lA). It is easy to check that if α is a supernilpotent radical,
then π(α) is a special class. Thus the upper radical α̂ determined by this class is the
smallest special radical containing α.

The problem of a description of special atoms (that is, the minimal elements in S)
and supernilpotent atoms (that is, the minimal elements in K) was raised in [1]. Then
it was studied in [2, 3, 6–8, 13] and [14]. This problem is also related to other long-
standing open problems in radical theory such as the problem of Gardner which asks
whether β is extra special [10] or the problem of Leavitt which asks whether there
exists the smallest special class that determines the prime radical β [9]. Thus there is a
motivation for studying special and supernilpotent atoms. One way to describe special
or supernilpotent atoms is to study properties of rings that generate them.

All special (respectively, supernilpotent) atoms known to this day are of the form
l̂R (respectively, lR), for some nonzero ∗-ring R, that is, a semiprime ring R such that
R/I ∈ β for every nonzero ideal I of R [7]. Therefore, in [14, Question 6], Puczylowski
and Roszkowska pose a natural question which asks whether there exists a non ∗-ring
R that generates a special atom. A nonsemiprime ring R that meets those prerequisites
was constructed in [4]. But, clearly, it is sufficient to restrict our search for such rings
to semiprime rings.

A semiprime ring R is called prime essential [11] if, for every nonzero prime ideal
P of R, P ∩ I , 0 whenever I is a nonzero two-sided ideal of R. Since the class E
of all prime essential rings is hereditary [11] and every supernilpotent radical α ) β
with E ⊆ S(α) is not special [5], it follows that every special radical α ) β contains a
nonzero prime essential ring. It is therefore interesting to know whether every nonzero
prime essential ring generates a special atom or contains a nonzero ∗-ring.

In this paper, we construct a prime essential ring R such that lR is not a
supernilpotent atom but where l̂R is a special atom. Prime essential rings cannot be
∗-rings since the latter must be prime, while the former cannot be. Therefore our
example answers the question of Puczylowski and Roszkowska in the positive. It also
gives impetus for further research related to special or supernilpotent atoms as well as
the structure of prime essential rings.

2. Main results

We start with the following construction. Let Q be the field of all rational numbers.
Then the set B := {bi : i ∈ Q} forms a semigroup with respect to the multiplication given
by

bib j := bmax(i, j).

Let R := Z2[B] be the semigroup ring of the semigroup B over the two element field Z2.
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Theorem 2.1. The ring R := Z2[B] is a commutative prime essential ring, each subring
of which is an idempotent ring, and no nonzero ideal of R is a simple ring.

Proof. Clearly, R is a commutative ring. We will show that R is a Boolean ring (that
is, r2 = r for every r ∈ R) which does not have an ideal isomorphic to Z2. Indeed,
let 0 , r = bi1 + · · · + bim , where i1 < · · · < im. Since bib j = b jbi for every bi, b j ∈ B,
r2 = (bi1 + · · · + bim )2 = b2

i1
+ · · · + b2

im
= bi1 + · · · + bim = r. This clearly implies that

S 2 = S for every subring S of R.
Let 0 , I C R. Then, there exists a nonzero element r = bi1 + · · · + bik ∈ I with

i1 < · · · < ik. If k is even, then, for every ik−1 < j < ik, 0 , r(b j + bik ) = b j + bik ∈ I and
then r < K := R(b j + bik ) C I. If k is odd, then, for every ik < j, 0 , rb j = kb j = b j ∈ I
and then r < K := Rb j C I. Thus, in either case, I contains a nonzero ideal K , I which
shows that I is not a simple ring. Since Z2 is a simple ring, this shows, in particular,
that no nonzero ideal of R is isomorphic to Z2. Since every Boolean ring without
ideals isomorphic to Z2 is prime essential [11, Example 3], it follows that R is a prime
essential ring. �

Remark 2.2. Recall that a subring A of a ring R is accessible in R if A = I0 C I1 C · · · C
In = R, for some natural number n. Since the lower radical lµ containing a hereditary
class µ is hereditary [12], the smallest supernilpotent radical lµ containing any given
class µ of rings is

l{A:A is an accessible subring of some ring R∈µ}∪ β

=U(S(l{A:A is an accessible subring of some ring R∈µ}) ∩ S(β)).

Since l{A:A is an accessible subring of some ring R∈µ} is a hereditary radical, it follows that

S(l{A:A is an accessible subring of some ring R∈µ})

is essentially closed, and hence

S(l{A:A is accessible subring of some ring R∈µ}) ∩ π

is essentially closed and hereditary for nonzero ideals and thus is a special class.
Therefore, the smallest special radical l̂µ containing µ is

U(S(l{A:A is accessible subring of some ring R∈µ}) ∩ π).

Theorem 2.3. Let R be the ring constructed above. Then lR is not a supernilpotent
atom but l̂R is a special atom.

Proof. Let r be a nonzero element of R. It follows, from the proof of Theorem 2.1, that
R is a Boolean ring, which implies that R is commutative and r = r2 so that r ∈ Rr C R.
Moreover, for every x ∈ R, r(xr) = (xr)r = xr2 = xr, which shows that r is the identity
element of Rr. Since any ideal of a Boolean ring is Boolean, it therefore follows that
Rr is a Boolean ring with identity r. Then Rr can be homomorphically mapped onto a
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simple ring Rr with identity that is a prime ring. Since Z2 is the only Boolean prime
ring, it therefore follows that Rr ' Z2.

Now, since lR is hereditary and Rr C R ∈ lR, it follows that Rr ∈ lR. Then, since
radical classes are homomorphically closed, Z2 ∈ lR\β. This implies that β � lZ2 6 lR.
Now, by Remark 2.2, lZ2 = l{Z2}∪β. Thus, if R ∈ lZ2 , then, since R ∈ S (β), R would
contain a nonzero ideal isomorphic to Z2, which contradicts Theorem 2.1. Thus
R ∈ lR\lZ2 . Hence β � lZ2 � lR, which shows that lR is not a supernilpotent atom.

Similarly, since special radicals are hereditary, it follows that β � l̂Z2 � l̂R, as Z2 ∈

l̂Z2 \β. Moreover, since Z2 is a nonzero ∗-ring, it follows from [13] that l̂Z2 =U
(
π\{Z2}

)
is a special atom. Suppose that R < l̂Z2 . Then R is semiprime so it has a homomorphic
image in π\{Z2}. But this image, like R, is Boolean, so we have a contradiction. Thus
R ∈ l̂Z2 , which implies that l̂R 6 l̂Z2 . Consequently, l̂R = l̂Z2 . But, since l̂Z2 is a special
atom, this shows that so is l̂R, which ends the proof. �

In view of Theorem 2.3, two natural questions spring to mind.

Question 1. For which prime essential rings R is l̂R a special atom or is lR a
supernilpotent atom?

Question 2. Does the special radical l̂A contain a nonzero ∗-ring for every nonzero
prime essential ring A?

Note that a positive answer to the second question will mean that the lattice S is
atomic and every special atom is generated by a nonzero ∗ ring. This would also give
a positive answer to the question of Gardner and the question of Leavitt.
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