Invited commentary

Universal cut-off BMI points for obesity are not appropriate

The World Health Organization (1998) defines obesity as a condition with excess body fat to the extent that health and well-being are adversely affected. The BMI (weight/height2, kg/m2) is normally used for classification. The use of BMI as a surrogate measure for body fat percentage (BF%) is justified on the observation that BMI correlates well with BF% and is hardly dependent on height. The suggested cut-off points for overweight (BMI ≥ 25 kg/m2) and obesity (BMI ≥ 30 kg/m2) are based on observational studies in Europe and USA on the relationship between morbidity and mortality with BMI. In Caucasians, a BMI 30 kg/m2 corresponds to a BF% about 25% in young adult males and about 35% in young adult females (World Health Organization, 1995).

The argument that different cut-off points for different ethnic groups should be based on proper evidence. Such evidence should not only be based on the relationship between BMI and BF%, but also on morbidity and mortality risks in relation to BMI. For example, according to BF% and health risks in Singapore, lowering the cut-off point for obesity from 30 kg/m2 to 27 kg/m2 would increase the prevalence of obesity from about 6% to 16% (Deurenberg-Yap et al. 2000). Such an ‘increase’ has of course an enormous impact on the public health policies of a country. However, in the long term, the economic burden of a hidden obesity prevalence might be much higher. On the other hand, it is interesting to note that the cut-off point for underweight might also be different among ethnic groups. For example in the recent National Health Survey (Ministry of Health, 1999) in Singapore, as much as 11% females and 7% males had a BMI < 18.5 kg/m2. The proportion of Singaporeans with a BMI < 20 kg/m2 were 25 and 15% for females and males respectively. There is no reason at all to assume that undernutrition is epidemic among Singaporeans.

Redefining (different) cut-off points for different ethnic groups should be based on proper evidence. Such evidence should not only be based on the relationship between BMI and BF%, but also on morbidity and mortality risks in relation to BMI. For example, according to BF% and health risks in Singapore, lowering the cut-off point for obesity from 30 kg/m2 to 27 kg/m2 would increase the prevalence of obesity from about 6% to 16% (Deurenberg-Yap et al. 2000). Such an ‘increase’ has of course an enormous impact on the public health policies of a country. However, in the long term, the economic burden of a hidden obesity prevalence might be much higher. On the other hand, it is interesting to note that the cut-off point for underweight might also be different among ethnic groups. For example in the recent National Health Survey (Ministry of Health, 1999) in Singapore, as much as 11% females and 7% males had a BMI < 18.5 kg/m2. The proportion of Singaporeans with a BMI < 20 kg/m2 were 25 and 15% for females and males respectively. There is no reason at all to assume that undernutrition is epidemic among Singaporeans.

Recent studies also show that in some ‘Asian’ populations morbidity and mortality of obesity-related diseases are high already at a low level of BMI. This affirms the World Health Organization (1998) definition of obesity, namely that not only BF% should be increased, but that in addition also health and well being should be affected.

The consequence of these observations, if true, is obvious: an universal BMI cut-off point for obesity is not appropriate.

Changing the level of BMI cut-off points has consequences for the prevalence of obesity. For example, according to BF% and health risks in Singapore, lowering the cut-off point for obesity from 30 kg/m2 to 27 kg/m2 would increase the prevalence of obesity from about 6% to 16% (Deurenberg-Yap et al. 2000). Such an ‘increase’ has of course an enormous impact on the public health policies of a country. However, in the long term, the economic burden of a hidden obesity prevalence might be much higher. On the other hand, it is interesting to note that the cut-off point for underweight might also be different among ethnic groups. For example in the recent National Health Survey (Ministry of Health, 1999) in Singapore, as much as 11% females and 7% males had a BMI < 18.5 kg/m2. The proportion of Singaporeans with a BMI < 20 kg/m2 were 25 and 15% for females and males respectively. There is no reason at all to assume that undernutrition is epidemic among Singaporeans.

Redefining (different) cut-off points for different ethnic groups should be based on proper evidence. Such evidence should not only be based on the relationship between BMI and BF%, but also on morbidity and mortality risks in relation to BMI. For example, according to BF% and health risks in Singapore, lowering the cut-off point for obesity from 30 kg/m2 to 27 kg/m2 would increase the prevalence of obesity from about 6% to 16% (Deurenberg-Yap et al. 2000). Such an ‘increase’ has of course an enormous impact on the public health policies of a country. However, in the long term, the economic burden of a hidden obesity prevalence might be much higher. On the other hand, it is interesting to note that the cut-off point for underweight might also be different among ethnic groups. For example in the recent National Health Survey (Ministry of Health, 1999) in Singapore, as much as 11% females and 7% males had a BMI < 18.5 kg/m2. The proportion of Singaporeans with a BMI < 20 kg/m2 were 25 and 15% for females and males respectively. There is no reason at all to assume that undernutrition is epidemic among Singaporeans.
countries: no scientist wants to compare apples with pears and that is precisely what is happening when using a universal cut-off point.

Paul Deurenberg
Department of Nutrition and Epidemiology
Wageningen University
The Netherlands
and
Department of Physiology and Nutrition
University ‘Tor Vergata’
Rome
Italy

References

